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Abstract. In this paper, we study warped product manifolds admitting τ -quasi Ricci-
harmonic(RH) metrics. We prove that the metric of the fibre is harmonic Einstein when
warped product metric is τ -quasi RH metric. We also provide some conditions for M
to be a harmonic Einstein manifold. Finally, we provide necessary and sufficient con-
ditions for a metric g to be τ -quasi RH metric by using a differential equation system.
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1. Introduction

Various geometric flows have been studied recently and one of them is Ricci
flow coupled with harmonic map flow(shortly RH for Ricci-harmonic), defined by
Müller [14, 15]. Let (Mn, g(t)) and (Nm, h) be smooth Riemannian manifolds and
φ(t) : M −→ N is a family of smooth maps between (Mn, g(t)) with the metric
g(t) evolving along the RH flow and a fixed Riemannian manifold (N,h). The
Ricci-harmonic flow is the coupled system{

∂
∂tg = −2Ric + 2cdφ⊗ dφ
∂
∂tφ = τgφ

where c(t) > 0 is a time dependent constant, dφ⊗dφ = φ∗h is the pullback of h via
φ and τgφ = tr∇dφ is the tension field of φ. The RH flow behaves less singular than
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334 S. Günsen and L. Onat

Ricci flow and many fundamental results in Ricci flow have been extended to the
RH flow. A self-similar solution to RH flow is defined by Müller[14, 15] as follows.

Definition 1.1. Let (M, g) and (N,h) be two smooth Riemannian manifolds and
φ : M −→ N be a smooth map. If there is a smooth function f : M −→ R and
constants c ≥ 0, λ such that the coupled system{

Ric +∇2f − cdφ⊗ dφ = λg,

τ(φ)− dφ(∇f) = 0,

is satisfied, then (M, g, f, φ, λ) is called as a gradient Ricci-harmonic soliton and f
is called the potential function. There have been many studies involving gradient
Ricci-harmonic solitons such as [9, 18, 20, 21, 23]. When f is a constant, gradient
RH soliton is called harmonic Einstein, i.e.,{

Ric− cdφ⊗ dφ = λg,

τgφ = 0.

It is well-known that for τ > 0, the Bakry-Émery curvature is defined by

Ricu,τ = Ric +∇2u− 1

τ
du⊗ du,

and g is called a τ -quasi Einstein metric for some constant τ if there is a constant
λ and a potential function u such that

(1.1) Ricu,τ = λg

is satisfied. From this point of view, τ -quasi Ricci-harmonic metric is defined in
[20].

Definition 1.2. Let (N,h) be a fixed Riemannian manifold. A metric g of M is
called τ(> 0)-quasi RH (with respect to h), if for a map φ : M −→ N , potential
function u : M −→ R and constants α ≥ 0, λ, g satisfies the coupled systemRic +∇2u− 1

τ
du⊗ du− cdφ⊗ dφ = λg,(1.2)

τ(φ)− dφ(∇u) = 0.(1.3)

In [17], the authors studied a structure such that the warping function and the
potential function are not the same. This idea provided interesting results and led a
growing interest in warped products on Ricci solitons [1, 5, 6, 8, 11, 13, 17], almost
Ricci solitons [7], Yamabe solitons [10, 19] and RH solitons [2].

In this paper, we will investigate a generalized version on the warped product
manifolds which admits τ -quasi RH metric. We prove that the metric of the fibre
is harmonic Einstein when warped product metric is τ -quasi RH metric. We also
provide some conditions for M to be a harmonic Einstein manifold. Finally, we
provide necessary and sufficient conditions for a metric g to be τ -quasi RH metric
by using a differential equation system.
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2. Preliminaries

Our aim is to remind the warped product M = B ×f F , and the notion of lift
by following the notation and terminology of O’Neill [16].

Definition 2.1. Let (Bn, gB) and (Fm, gF ) be two Riemannian manifolds, and
f be a positive smooth function on B. The warped product M = B ×f F is the
product manifold B × F with the metric tensor g defined by

g = π∗gB + (f ◦ π)2σ∗gF .

Here π and σ are the projections of B×F onto B and F respectively. The function
f is called the warping function, B is the base and F is the fiber. When f is a
constant function, M is simply a Riemannian product.

The lift of V to M is the unique element of X(M) that is σ−related to V and
π−related to zero vector field on B. The set of all such vertical lifts Ṽ is denoted
by L(F ). The set of all horizontal lifts X̃ is denoted by L(B). In the same way,
functions defined on B and F can be lifted to M . Let uB , hF be a smooth functions
on B and F , respectively. The lift of uB to M is the function u = uB ◦ π, and the
lift of hF to M is the function h = hF ◦ σ. Moreover, one can extend the idea
to a mapping φ : M = Bn ×f Fm −→ N by component-wise and consider φ as
φ = φB ◦ π or φ = φF ◦ σ. Throughout this paper, we will use the same notation
for a vector field(and for a function) and its lift for simplicity. We denote the

Levi-Civita connections by D,∇ and
F

∇; Ricci tensors by Ric, BRic and FRic of the
M,B and F , respectively.

Now, we recall the following propositions.

Proposition 2.1. On M = Bn ×f Fm, if X,Y ∈ L(B) and V,W ∈ L(F ), then

1. DXY ∈ L(B) is the lift of ∇XY on B,

2. DXV = DVX =
Xf

f
V ,

3. nor DVW = −g(V,W )

f
∇f ,

4. tan DVW ∈ L(F ) is the lift of
F

∇VW on F .

Proposition 2.2. On a warped product M = Bn ×f Fm with m > 1, let X,Y ∈
L(B) and V,W ∈ L(F ). Then,

1. Ric(X,Y ) = BRic(X,Y )− m
f ∇

2f(X,Y ),

2. Ric(X,V ) = 0,
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3. Ric(V,W ) = FRic(V,W )−
(

∆f
f + (m− 1) |∇f |

2

f2

)
g(V,W ).

In [12], the authors give the following corollary from Proposition 2.2.

Corollary 2.1. The warped product M = Bn ×f Fm is Einstein with Ric = λg if
and only if

1. BRic = λgB + m
f ∇

2f ,

2. (F, gF ) is Einstein with FRic = µgF ,

3. λf2 + f∆f + (m− 1)|∇f |2 = µ.

3. Main Results

Inspiring from [17], we investigate the potential function u and conclude the
next proposition.

Proposition 3.1. Let the metric g of warped product manifold M = Bn ×f Fm
be a
τ -quasi Ricci-harmonic metric. Then in a neighbourhood of a point (p, q) ∈ Bn ×
Fm, the non-constant map φ is φ = φB ◦π or φ = φF ◦σ if and only if the potential
u is the lift of a function defined on B.

Proof. Let X ∈ L(B) and V ∈ L(F ). Assume that g be a τ -quasi RH metric on
M = Bn ×f Fm, then we have

(3.1) Ric(X,V ) +∇2u(X,V )− 1

τ
du⊗ du(X,V )− cdφ⊗ dφ(X,V ) = λg(X,V ).

Since Ric(X,V ) = 0 and g(X,V ) = 0, (3.1) becomes,

∇2u(X,V )− 1

τ
du⊗ du(X,V )− cdφ⊗ dφ(X,V ) = 0.

Now suppose that u is the lift of a function defined on F , and therefore ∇u ∈ L(F ).
Then the equation (3.2) is reduced to

0 = ∇2u(X,V ) = 〈∇X∇u, V 〉

=
Xf

f
〈∇u, V 〉

meaning u is a constant which contradicts the hypothesis. As a result, u is the lift
of a function defined on B.

Conversely, suppose that u is a lift of a function defined on B, and therefore
∇u ∈ L(B). From Proposition 2.2, we have

(3.2) ∇2u(X,V )− 1

τ
du⊗ du(X,V ) = 0.
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and

(3.3) cdφ(X)dφ(V ) = 0.

Since φ is not constant from the hypothesis, there is a vector field W = X + V in
M such that dφ(W )dφ(W ) 6= 0 in a neighbourhood of (p, q) ∈M . By taking square
of both sides we have that

(dφ(X))
2

+ 2φ(X)dφ(V ) + (dφ(V ))
2 6= 0.

Using (3.3) in the above, we can conclude that (dφ(X))
2

+ (dφ(V ))
2 6= 0, hence

dφ(X) = 0 or dφ(V ) = 0.

Remark 3.1. Notice that the function f on the second line cannot be a constant because
in that case M is simply a Riemannian product.

Now we can state our first theorem by using Proposition 3.1.

Theorem 3.1. The metric g of warped product M = Bn ×f Fm is a τ -quasi
Ricci-harmonic metric if and only if

(i) If φ = φB ◦ π, then

(3.4) BRic− m

f
∇2f +∇2u− 1

τ
du⊗ du− cdφ⊗ dφ = λgB ,

and F is Einstein with FRic = µgF .

(ii) If φ = φF ◦ σ, then

(3.5) BRic− m

f
∇2f +∇2u− 1

τ
du⊗ du = λgB ,

and F is harmonic Einstein with{
FRic− cdφ⊗ dφ = µgF ,

τgφ = 0.

In both cases µ is

(3.6) µ = f∆f + (m− 1)|∇f |2 + λf2 + f∇f(u).

Proof. Case (i): Let φ = φB ◦ π. Using Proposition 2.2 for X,Y ∈ L(B) in (1.2),
we get (3.4). For V,W ∈ L(F ), the equation (1.2) is

Ric(V,W ) +∇2u(V,W )− 1

τ
du⊗ du(V,W )− cdφ⊗ dφ(V,W ) = λg(V,W ).
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From Proposition 3.1, we know that u is lifted from B. So we can conclude that
du(V ) = 0 and similarly dφ(V ) = 0. Using Proposition 2.2 above we reach

(3.7) FRic(V,W )−
(

∆f

f
+ (m− 1)

|∇f |2

f2

)
g(V,W ) +∇2u(V,W ) = λg(V,W ).

Using Proposition 2.1, we compute

∇2u(V,W ) = g (∇V∇u,W )

= g

(
∇u(f)

f
V,W

)
= fgF (V,W )∇u(f)(3.8)

and substitute the result in (3.7) so we get

FRic(V,W ) =
(
f∆f + (m− 1)|∇f |2 + λf2 + f∇f(u)

)
gF (V,W )

which means F is Einstein.

Case (ii): Assume that φ = φF ◦ σ. Using Proposition 2.2 for X,Y ∈ L(B) in
(1.2), we get (3.5) since dφ(X) = 0. For V,W ∈ L(F ), the equation (1.2) is

Ric(V,W ) +∇2u(V,W )− 1

τ
du⊗ du(V,W )− cdφ⊗ dφ(V,W ) = λg(V,W ).

Using Proposition 2.2, the fact that du(V ) = 0 and (3.8) we get

FRic(V,W )− cdφ⊗ dφ(V,W ) = µg(V,W ).

Since dφ(∇u) = 0, we can conclude that F is harmonic Einstein.

Remark 3.2. Theorem 3.1 is a generalization of Corollary 2.1 and Theorem 1.3 in [2].

In [4], if the equation (1.1) is satisfied for a smooth function λ, then the metric is
called generalized τ -quasi Einstein metric. Similarly, when λ in the equation (1.2)
is a function, the metric is called generalized τ -quasi RH metric [22]. Under the
assumption of the gradient of the warping function f being a conformal vector field,
we can conclude the following.

Corollary 3.1. Let the metric g of warped product M = Bn ×f Fm be a τ -quasi
Ricci-harmonic metric and assume that ∇f is conformal vector field on B.

(i) If φ = φB ◦ π, then the metric gB of B is a generalized τ -quasi RH metric.

(ii) If φ = φF ◦ σ, then B is generalized τ -quasi Einsten manifold.

Theorem 3.2. Let the metric g of warped product M = Bn ×f Fm be a τ -quasi

Ricci-harmonic metric with non-constant φ. If λ ≥ 0 and
m

f
∆f ≥BR, then u is a

constant. Therefore, M is harmonic Einstein.
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Proof. Taking the trace of (3.4), we have

∆Bu = λn+
m

f
∆Bf − BR+

1

τ
|∇u|2 + α|∇φ|2.

Using the hypothesis, we reach that ∆Bu ≥ 0, so we can use maximum principle
to conclude that u is a constant on B and so is it’s lift. Hence M is harmonic
Einstein.

The following results of this paper will be given under the assumption of the
harmonic map φ as a real valued function, i.e., φ : M −→ R. Our construction
in Theorem 3.1 helps us to drop the restrictions the fiber manifold F which differs
from [17].

Theorem 3.3. The metric g of warped product M = Rn×f Fm is a τ -quasi Ricci-
harmonic metric with non-constant φ and f = f ◦ ξ, u = u ◦ ξ, ϕ ◦ ξ, φ = φ ◦ ξ
defined in (Rn, ϕ−2g0) furnished with the metric tensor g = ϕ−2g0 + f2gF if and
only if the functions verify the system below:

(3.9) (n− 2)
ϕ′′

ϕ
−mf ′′

f
− 2m

ϕ′

ϕ

f ′

f
+ u′′ + 2

ϕ′

ϕ
u′ − 1

τ
(u′)2 − c(φ′)2 = 0,

(3.10)

[
ϕ′′

ϕ
− (n− 1)

(
ϕ′

ϕ

)2

+m
ϕ′

ϕ

f ′

f
− ϕ′

ϕ
u′

]
||α||2 =

λ

ϕ2
,

(3.11)

[
f ′′

f
− (n− 2)

ϕ′

ϕ

f ′

f
+ (m− 1)

(
f ′

f

)2

− f ′

f
u′

]
||α||2 =

µ

f2ϕ2
− λ

ϕ2
,

(3.12)

[
φ′′ − (n− 2)

ϕ′

ϕ
φ′ +mφ′

f ′

f
− φ′u′

]
||α||2 = 0.

Proof. The Theorem 3.1 gives us necessary and sufficient condition to the metric
g of Bn ×f Fm be a τ -quasi Ricci-harmonic metric. By using invariant solution
technique, we reach equations (3.9), (3.10), (3.11) and (3.12).

For an arbitrary choice of a nonzero vector α = (α1, . . . , αn), consider ξ : Rn →
R given by ξ(x1, . . . , xn) =

n∑
i=1

αixi. Assume that ϕ(ξ), f(ξ), u(ξ) and φ(ξ) are

functions of ξ, so we have

ϕ,xi
= ϕ′αi, f,xi

= f ′αi, u,xi
= u′αi, φ,xi

= φ′αi

ϕ,xixj
= ϕ′′αiαj , f,xixj

= f ′′αiαj , u,xixj
= u′′αiαj φ,xixj

= φ′′αiαj .

Notice that the functions f , ϕ, u and φ are lifted from B = (Rn, ϕ−2g0).
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For the conformal metric gB = ϕ−2g0, the Ricci curvature is given by [3]:

BRic =
1

ϕ2

{
(n− 2)ϕHessg0(ϕ) + [ϕ∆g0ϕ− (n− 1)|∇g0ϕ|2]g0

}
.

Since (Hessg0(ϕ))i,j = ϕ′′αiαj , ∆g0ϕ = ϕ′′||α||2, and |∇g0ϕ|2 = ϕ′||α||2 we have

(3.13) (BRic)i,j =
1

ϕ
{(n− 2)ϕ′′αiαj} ∀i 6= j = 1, ..., n

(3.14)

(BRic)i,i =
1

ϕ2

{
(n− 2)ϕϕ′′(αi)

2 + [ϕϕ′′||α||2 − (n− 1)(ϕ′)2||α||2]εi
}
∀i = 1, ..., n.

For the metric gB , Hess(u) is

(HessgB (u))ij = u,xixj
−

n∑
k=1

Γkiju,xk
,

where the Christoffel symbol Γkij for distinct i, j, k are given by

Γkij = 0, Γiij = −
ϕ,xj

ϕ
, Γkii = εiεk

ϕ,xk

ϕ
and Γiii = −ϕ,xi

ϕ
.

Hence,

(HessgB (u))ij = u,xixj
+ ϕ−1(ϕ,xi

u,xj
+ ϕ,xj

u,xi
)− δijεi

∑
k

εkϕ
−1ϕ,xk

u,xk

= αiαju
′′ + (2αiαj − δijεi||α||2)ϕ−1ϕ′u′.(3.15)

Clearly, the Laplacian ∆gBf =
∑
k ϕ

2εk(HessgB (f))kk of f is

(3.16) ∆gBf = ||α||2ϕ2(f ′′ − (n− 2)ϕ−1ϕ′f ′).

Since gB is a conformal metric, the terms ∇f(u), |∇f |2 and (∇φ ⊗ ∇φ)ij can
be given by

∇gBf(u) = 〈∇gBf,∇gBu〉 = ϕ2
∑
k

εkf,xk
u,xk

= ||α||2ϕ2f ′u′,

|∇gBf |2 = ϕ2
∑
k

εkf
2
,xk

= ||α||2ϕ2(f ′)2,

(∇gBφ⊗∇gBφ)ij = φ,xiφ,xj = αiαj(φ
′)2.

(3.17)

Plugging in (3.14), (3.15) and (3.17) for i = j into (3.4) we get (3.10).

When i 6= j, substituting (3.13) and (3.15) into (3.4) we obtain

αiαj

(
(n− 2)

ϕ′′

ϕ
−mf ′′

f
− 2m

ϕ′

ϕ

f ′

f
+ u′′ + 2

ϕ′

ϕ
u′ − 1

τ
(u′)2 − θ(φ′)2

)
= 0.
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If there exist i, j, i 6= j such that αiαj 6= 0, we have the equation (3.9). If
αiαj = 0, ∀i 6= j, then consider for a fixed k0 6= k such that αk0 = 1, αk = 0. For
i 6= k0, substituting (3.14), (3.15) and (3.17) into (3.4) we get the equation (3.10),
i.e, αi = 0. For i = k0, we have the equation (3.9), i.e., αk0 = 1.

Similarly, we obtain (3.11) by substituting (3.16), (3.17) in (3.6). Considering
(1.3) and the laplace of φ, which is lifted from base, we have

(3.18) ∆φ =

[
∆gBφ+

m

f
gB(∇φ,∇f)

]
= gB(∇φ,∇u).

Using (3.16) and (3.17) in (3.18) we have (3.12) which completes the proof.

Corollary 3.2. Let f = f ◦ξ, u = u◦ξ, ϕ◦ξ, φ = φ◦ξ defined in (Rn, ϕ−2g0) and
the metric g of warped product

(
M = Rn ×f Fm, g = ϕ−2g0 + f2gF

)
be a τ -quasi

Ricci-harmonic metric with non-constant φ. If ||α||2 = 0, then λ = 0 and µ = 0,
i.e., Fm is Ricci flat.

Example 3.1. Let ||α||2 = 0 in Theorem 3.3. For simplicity, assume that c = 1, m = 4,
n = 3, τ = 1 and ϕ(ξ) = eξ, f(ξ) = eξ and φ(ξ) = ξ. Solving (3.9), we obtain

u(ξ) = − log
(

cos(
√

10(c1 + ξ))
)

+ ξ + c2, c1, c2 ∈ R

which defines a τ -quasi RH metric on M .

Theorem 3.4. The metric g of warped product M = Bn×f Fm is a τ -quasi Ricci-
harmonic metric with non-constant φ, f = f ◦ ξ, u = u ◦ ξ, ϕ ◦ ξ, φ = φ ◦ ζ defined
in (Rn, ϕ−2g0) and (Rm, ψ−2g0), respectively, and furnished with the metric tensor
g = ϕ−2g0 + f2ψ−2gF if and only if the functions verify the system below:

(3.19) (n− 2)
ϕ′′

ϕ
−mf ′′

f
− 2m

ϕ′

ϕ

f ′

f
+ u′′ + 2

ϕ′

ϕ
u′ − 1

τ
(u′)2 = 0,

(3.20)

[
ϕ′′

ϕ
− (n− 1)

(
ϕ′

ϕ

)2

+m
ϕ′

ϕ

f ′

f
− ϕ′

ϕ
h′

]
||α||2 =

λ

ϕ2
,

[
f ′′ϕ2f − (n− 2)ϕ′ϕff ′ + (m− 1)(f ′)2ϕ2 − f ′fϕ2h′

]
||α||2 + λf2

=

[
ψ′′

ψ
− (m− 1)

(
ψ′

ψ

)2
]
||β||2,

(3.21)

(3.22) (m− 2)
ψ′′

ψ
− c(φ′)2 = 0,

(3.23)
[
ψ2φ′′ − (m− 2)ψψ′φ′

]
||β||2 = 0.
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Proof. We use the same technique as in the proof of the Theorem 3.3 for both the
base and the fiber. When i 6= j, substituting the equation (3.13) and (3.17) in (3.5)
we have the equation (3.19) and when i = j, plugging in (3.14) and (3.17) in (3.5)
we get (3.20).

From Theorem 3.1, F is harmonic Einstein,

(3.24) FRic− cdφ⊗ dφ = µgF

where c > 0 and

(3.25) µ = f∆gBf + (m− 1)|∇f |2 + λf2 + f∇f(u).

For an arbitrary choice of a nonzero vector β = (β1, . . . , βm), let ψ : Rm → R+ be
the conformal factor of the fiber and ζ : Rm → R be the invariant function so that
u(ζ) is a function of ζ which gives

(3.26) (∇gF φF ⊗∇gF φF )ij = φ,yiφ,yjβiβj ∀i, j = 1, ...,m.

Using (3.17) in (3.25) we obtain

(3.27)
[
f ′′ϕ2f − (n− 2)ϕ′ϕff ′ + (m− 1)(f ′)2ϕ2 − f ′fϕ2u′

]
||α||2 + λf2 = µ.

Replacing (3.13), (3.14), (3.26) and (3.27) in (3.24) we get the equations (3.21)
and (3.22) for i = j or i 6= j.

From (ii) of Theorem 3.1 we have ∆gF φ = 0, by using (3.16), we obtain
(3.23).
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