FACTA UNIVERSITATIS (NIŠ) SER. MATH. INFORM. Vol. 37, No 2 (2022), 333-343 https://doi.org/10.22190/FUMI211212023G Original Scientific Paper

ON WARPED PRODUCT MANIFOLDS ADMITTING τ -QUASI RICCI-HARMONIC METRICS

Seçkin Günsen and Leyla Onat

Aydin Adnan Menderes University, Faculty of Science and Arts, Department of Mathematics, 09010 Aydin, Turkey

Abstract. In this paper, we study warped product manifolds admitting τ -quasi Ricciharmonic(RH) metrics. We prove that the metric of the fibre is harmonic Einstein when warped product metric is τ -quasi RH metric. We also provide some conditions for Mto be a harmonic Einstein manifold. Finally, we provide necessary and sufficient conditions for a metric g to be τ -quasi RH metric by using a differential equation system. **Keywords**: warped products, gradient Ricci-Harmonic soliton, τ -quasi Ricci- Harmonic metric, Harmonic Einstein

1. Introduction

Various geometric flows have been studied recently and one of them is Ricci flow coupled with harmonic map flow(shortly RH for Ricci-harmonic), defined by Müller [14, 15]. Let $(M^n, g(t))$ and (N^m, h) be smooth Riemannian manifolds and $\phi(t) : M \longrightarrow N$ is a family of smooth maps between $(M^n, g(t))$ with the metric g(t) evolving along the RH flow and a fixed Riemannian manifold (N, h). The Ricci-harmonic flow is the coupled system

$$\begin{cases} \frac{\partial}{\partial t}g = -2\text{Ric} + 2cd\phi \otimes d\phi \\ \frac{\partial}{\partial t}\phi = \tau_g\phi \end{cases}$$

where c(t) > 0 is a time dependent constant, $d\phi \otimes d\phi = \phi^* h$ is the pullback of h via ϕ and $\tau_q \phi = \text{tr} \nabla d\phi$ is the tension field of ϕ . The RH flow behaves less singular than

Received December 12, 2021. accepted February 24, 2022.

Communicated by Uday Chand De

Corresponding Author: Seçkin Günsen, Aydin Adnan Menderes University, Faculty of Science and Arts, Department of Mathematics, 09010 Aydin, Turkey | E-mail seckin.gunsen@adu.edu.tr 2010 Mathematics Subject Classification. Primary 53C21; Secondary 53C25

^{© 2022} by University of Niš, Serbia | Creative Commons License: CC BY-NC-ND

Ricci flow and many fundamental results in Ricci flow have been extended to the RH flow. A self-similar solution to RH flow is defined by Müller[14, 15] as follows.

Definition 1.1. Let (M, g) and (N, h) be two smooth Riemannian manifolds and $\phi: M \longrightarrow N$ be a smooth map. If there is a smooth function $f: M \longrightarrow \mathbb{R}$ and constants $c \ge 0$, λ such that the coupled system

$$\begin{cases} \operatorname{Ric} + \nabla^2 f - c d\phi \otimes d\phi = \lambda g, \\ \tau(\phi) - d\phi(\nabla f) = 0, \end{cases}$$

is satisfied, then (M, g, f, ϕ, λ) is called as a gradient Ricci-harmonic soliton and f is called the potential function. There have been many studies involving gradient Ricci-harmonic solitons such as [9, 18, 20, 21, 23]. When f is a constant, gradient RH soliton is called harmonic Einstein, i.e.,

$$\begin{cases} \operatorname{Ric} - cd\phi \otimes d\phi = \lambda g, \\ \tau_g \phi = 0. \end{cases}$$

It is well-known that for $\tau > 0$, the Bakry-Émery curvature is defined by

$$\operatorname{Ric}_{u,\tau} = \operatorname{Ric} + \nabla^2 u - \frac{1}{\tau} du \otimes du,$$

and g is called a τ -quasi Einstein metric for some constant τ if there is a constant λ and a potential function u such that

(1.1)
$$\operatorname{Ric}_{u,\tau} = \lambda g$$

is satisfied. From this point of view, τ -quasi Ricci-harmonic metric is defined in [20].

Definition 1.2. Let (N, h) be a fixed Riemannian manifold. A metric g of M is called $\tau(> 0)$ -quasi RH (with respect to h), if for a map $\phi : M \longrightarrow N$, potential function $u : M \longrightarrow \mathbb{R}$ and constants $\alpha \ge 0, \lambda, g$ satisfies the coupled system

(1.2)
$$\int \operatorname{Ric} + \nabla^2 u - \frac{1}{\tau} du \otimes du - c d\phi \otimes d\phi = \lambda g,$$

(1.3)
$$\int \tau(\phi) - d\phi(\nabla u) = 0.$$

In [17], the authors studied a structure such that the warping function and the potential function are not the same. This idea provided interesting results and led a growing interest in warped products on Ricci solitons [1, 5, 6, 8, 11, 13, 17], almost Ricci solitons [7], Yamabe solitons [10, 19] and RH solitons [2].

In this paper, we will investigate a generalized version on the warped product manifolds which admits τ -quasi RH metric. We prove that the metric of the fibre is harmonic Einstein when warped product metric is τ -quasi RH metric. We also provide some conditions for M to be a harmonic Einstein manifold. Finally, we provide necessary and sufficient conditions for a metric g to be τ -quasi RH metric by using a differential equation system.

2. Preliminaries

Our aim is to remind the warped product $M = B \times_f F$, and the notion of lift by following the notation and terminology of O'Neill [16].

Definition 2.1. Let (B^n, g_B) and (F^m, g_F) be two Riemannian manifolds, and f be a positive smooth function on B. The warped product $M = B \times_f F$ is the product manifold $B \times F$ with the metric tensor g defined by

$$g = \pi^* g_B + (f \circ \pi)^2 \sigma^* g_F.$$

Here π and σ are the projections of $B \times F$ onto B and F respectively. The function f is called the warping function, B is the base and F is the fiber. When f is a constant function, M is simply a Riemannian product.

The lift of V to M is the unique element of $\mathfrak{X}(M)$ that is σ -related to V and π -related to zero vector field on B. The set of all such vertical lifts \tilde{V} is denoted by $\mathfrak{L}(F)$. The set of all horizontal lifts \tilde{X} is denoted by $\mathfrak{L}(B)$. In the same way, functions defined on B and F can be lifted to M. Let u_B , h_F be a smooth functions on B and F, respectively. The lift of u_B to M is the function $u = u_B \circ \pi$, and the lift of h_F to M is the function $h = h_F \circ \sigma$. Moreover, one can extend the idea to a mapping $\phi : M = B^n \times_f F^m \longrightarrow N$ by component-wise and consider ϕ as $\phi = \phi_B \circ \pi$ or $\phi = \phi_F \circ \sigma$. Throughout this paper, we will use the same notation for a vector field (and for a function) and its lift for simplicity. We denote the

Levi-Civita connections by D, ∇ and ∇ ; Ricci tensors by Ric, ^BRic and ^FRic of the M, B and F, respectively.

Now, we recall the following propositions.

Proposition 2.1. On $M = B^n \times_f F^m$, if $X, Y \in \mathfrak{L}(B)$ and $V, W \in \mathfrak{L}(F)$, then

- 1. $D_X Y \in \mathfrak{L}(B)$ is the lift of $\nabla_X Y$ on B,
- 2. $D_X V = D_V X = \frac{Xf}{f}V,$
- 3. nor $D_V W = -\frac{g(V,W)}{f} \nabla f$,
- 4. $\tan D_V W \in \mathfrak{L}(F)$ is the lift of $\nabla_V W$ on F.

Proposition 2.2. On a warped product $M = B^n \times_f F^m$ with m > 1, let $X, Y \in \mathfrak{L}(B)$ and $V, W \in \mathfrak{L}(F)$. Then,

- 1. $\operatorname{Ric}(X,Y) = {}^{B}\operatorname{Ric}(X,Y) \frac{m}{f}\nabla^{2}f(X,Y),$
- 2. $\operatorname{Ric}(X, V) = 0$,

S. Günsen and L. Onat

3.
$$\operatorname{Ric}(V, W) = {}^{F}\operatorname{Ric}(V, W) - \left(\frac{\Delta f}{f} + (m-1)\frac{|\nabla f|^{2}}{f^{2}}\right)g(V, W).$$

In [12], the authors give the following corollary from Proposition 2.2.

Corollary 2.1. The warped product $M = B^n \times_f F^m$ is Einstein with $Ric = \lambda g$ if and only if

- 1. ${}^{B}\operatorname{Ric} = \lambda g_{B} + \frac{m}{f} \nabla^{2} f$,
- 2. (F, g_F) is Einstein with ^FRic = μg_F ,
- 3. $\lambda f^2 + f \Delta f + (m-1) |\nabla f|^2 = \mu$.

3. Main Results

Inspiring from [17], we investigate the potential function u and conclude the next proposition.

Proposition 3.1. Let the metric g of warped product manifold $M = B^n \times_f F^m$ be a

 τ -quasi Ricci-harmonic metric. Then in a neighbourhood of a point $(p,q) \in B^n \times F^m$, the non-constant map ϕ is $\phi = \phi_B \circ \pi$ or $\phi = \phi_F \circ \sigma$ if and only if the potential u is the lift of a function defined on B.

Proof. Let $X \in \mathfrak{L}(B)$ and $V \in \mathfrak{L}(F)$. Assume that g be a τ -quasi RH metric on $M = B^n \times_f F^m$, then we have

(3.1)
$$\operatorname{Ric}(X,V) + \nabla^2 u(X,V) - \frac{1}{\tau} du \otimes du(X,V) - cd\phi \otimes d\phi(X,V) = \lambda g(X,V).$$

Since $\operatorname{Ric}(X, V) = 0$ and g(X, V) = 0, (3.1) becomes,

$$\nabla^2 u(X,V) - \frac{1}{\tau} du \otimes du(X,V) - c d\phi \otimes d\phi(X,V) = 0.$$

Now suppose that u is the lift of a function defined on F, and therefore $\nabla u \in \mathfrak{L}(F)$. Then the equation (3.2) is reduced to

$$\begin{array}{lll} 0 = \nabla^2 u(X,V) & = & \langle \nabla_X \nabla u, V \rangle \\ & = & \displaystyle \frac{Xf}{f} \langle \nabla u, V \rangle \end{array}$$

meaning u is a constant which contradicts the hypothesis. As a result, u is the lift of a function defined on B.

Conversely, suppose that u is a lift of a function defined on B, and therefore $\nabla u \in \mathfrak{L}(B)$. From Proposition 2.2, we have

(3.2)
$$\nabla^2 u(X,V) - \frac{1}{\tau} du \otimes du(X,V) = 0.$$

336

and

$$(3.3) cd\phi(X)d\phi(V) = 0.$$

Since ϕ is not constant from the hypothesis, there is a vector field W = X + V in M such that $d\phi(W)d\phi(W) \neq 0$ in a neighbourhood of $(p,q) \in M$. By taking square of both sides we have that

$$(d\phi(X))^{2} + 2\phi(X)d\phi(V) + (d\phi(V))^{2} \neq 0.$$

Using (3.3) in the above, we can conclude that $(d\phi(X))^2 + (d\phi(V))^2 \neq 0$, hence $d\phi(X) = 0$ or $d\phi(V) = 0$. \Box

Remark 3.1. Notice that the function f on the second line cannot be a constant because in that case M is simply a Riemannian product.

Now we can state our first theorem by using Proposition 3.1.

Theorem 3.1. The metric g of warped product $M = B^n \times_f F^m$ is a τ -quasi Ricci-harmonic metric if and only if

(i) If $\phi = \phi_B \circ \pi$, then

(3.4)
$${}^{B}\operatorname{Ric} - \frac{m}{f}\nabla^{2}f + \nabla^{2}u - \frac{1}{\tau}du \otimes du - cd\phi \otimes d\phi = \lambda g_{B},$$

and F is Einstein with F Ric = μg_{F} .

(ii) If $\phi = \phi_F \circ \sigma$, then

(3.5)
$${}^{B}\operatorname{Ric} - \frac{m}{f}\nabla^{2}f + \nabla^{2}u - \frac{1}{\tau}du \otimes du = \lambda g_{B},$$

and F is harmonic Einstein with

$$\begin{cases} {}^{F}\mathrm{Ric} - cd\phi \otimes d\phi = \mu g_{F}, \\ \tau_{g}\phi = 0. \end{cases}$$

In both cases μ is

(3.6)
$$\mu = f\Delta f + (m-1)|\nabla f|^2 + \lambda f^2 + f\nabla f(u).$$

Proof. Case (i): Let $\phi = \phi_B \circ \pi$. Using Proposition 2.2 for $X, Y \in \mathfrak{L}(B)$ in (1.2), we get (3.4). For $V, W \in \mathfrak{L}(F)$, the equation (1.2) is

$$\operatorname{Ric}(V,W) + \nabla^2 u(V,W) - \frac{1}{\tau} du \otimes du(V,W) - cd\phi \otimes d\phi(V,W) = \lambda g(V,W).$$

From Proposition 3.1, we know that u is lifted from B. So we can conclude that du(V) = 0 and similarly $d\phi(V) = 0$. Using Proposition 2.2 above we reach

(3.7)
$${}^{F}\operatorname{Ric}(V,W) - \left(\frac{\Delta f}{f} + (m-1)\frac{|\nabla f|^2}{f^2}\right)g(V,W) + \nabla^2 u(V,W) = \lambda g(V,W).$$

Using Proposition 2.1, we compute

$$\nabla^2 u(V, W) = g \left(\nabla_V \nabla u, W \right)$$
$$= g \left(\frac{\nabla u(f)}{f} V, W \right)$$
$$= f g_F \left(V, W \right) \nabla u(f)$$

and substitute the result in (3.7) so we get

$${}^{F}\operatorname{Ric}(V,W) = \left(f\Delta f + (m-1)|\nabla f|^{2} + \lambda f^{2} + f\nabla f(u)\right)g_{F}(V,W)$$

which means F is Einstein.

Case (ii): Assume that $\phi = \phi_F \circ \sigma$. Using Proposition 2.2 for $X, Y \in \mathfrak{L}(B)$ in (1.2), we get (3.5) since $d\phi(X) = 0$. For $V, W \in \mathfrak{L}(F)$, the equation (1.2) is

$$\operatorname{Ric}(V,W) + \nabla^2 u(V,W) - \frac{1}{\tau} du \otimes du(V,W) - cd\phi \otimes d\phi(V,W) = \lambda g(V,W).$$

Using Proposition 2.2, the fact that du(V) = 0 and (3.8) we get

$${}^{F}\operatorname{Ric}(V,W) - cd\phi \otimes d\phi(V,W) = \mu g(V,W).$$

Since $d\phi(\nabla u) = 0$, we can conclude that F is harmonic Einstein. \Box

Remark 3.2. Theorem 3.1 is a generalization of Corollary 2.1 and Theorem 1.3 in [2].

In [4], if the equation (1.1) is satisfied for a smooth function λ , then the metric is called generalized τ -quasi Einstein metric. Similarly, when λ in the equation (1.2) is a function, the metric is called generalized τ -quasi RH metric [22]. Under the assumption of the gradient of the warping function f being a conformal vector field, we can conclude the following.

Corollary 3.1. Let the metric g of warped product $M = B^n \times_f F^m$ be a τ -quasi Ricci-harmonic metric and assume that ∇f is conformal vector field on B.

- (i) If $\phi = \phi_B \circ \pi$, then the metric g_B of B is a generalized τ -quasi RH metric.
- (ii) If $\phi = \phi_F \circ \sigma$, then B is generalized τ -quasi Einsten manifold.

Theorem 3.2. Let the metric g of warped product $M = B^n \times_f F^m$ be a τ -quasi Ricci-harmonic metric with non-constant ϕ . If $\lambda \geq 0$ and $\frac{m}{f} \Delta f \geq {}^BR$, then u is a constant. Therefore, M is harmonic Einstein.

338

(3.8)

Proof. Taking the trace of (3.4), we have

$$\Delta_B u = \lambda n + \frac{m}{f} \Delta_B f - {}^B R + \frac{1}{\tau} |\nabla u|^2 + \alpha |\nabla \phi|^2.$$

Using the hypothesis, we reach that $\Delta_B u \ge 0$, so we can use maximum principle to conclude that u is a constant on B and so is it's lift. Hence M is harmonic Einstein. \Box

The following results of this paper will be given under the assumption of the harmonic map ϕ as a real valued function, i.e., $\phi : M \longrightarrow \mathbb{R}$. Our construction in Theorem 3.1 helps us to drop the restrictions the fiber manifold F which differs from [17].

Theorem 3.3. The metric g of warped product $M = \mathbb{R}^n \times_f F^m$ is a τ -quasi Ricciharmonic metric with non-constant ϕ and $f = f \circ \xi$, $u = u \circ \xi$, $\varphi \circ \xi$, $\phi = \phi \circ \xi$ defined in $(\mathbb{R}^n, \varphi^{-2}g_0)$ furnished with the metric tensor $g = \varphi^{-2}g_0 + f^2g_F$ if and only if the functions verify the system below:

(3.9)
$$(n-2)\frac{\varphi''}{\varphi} - m\frac{f''}{f} - 2m\frac{\varphi'}{\varphi}\frac{f'}{f} + u'' + 2\frac{\varphi'}{\varphi}u' - \frac{1}{\tau}(u')^2 - c(\phi')^2 = 0,$$

(3.10)
$$\left[\frac{\varphi''}{\varphi} - (n-1)\left(\frac{\varphi'}{\varphi}\right)^2 + m\frac{\varphi'}{\varphi}\frac{f'}{f} - \frac{\varphi'}{\varphi}u'\right]||\alpha||^2 = \frac{\lambda}{\varphi^2},$$

(3.11)
$$\left[\frac{f''}{f} - (n-2)\frac{\varphi'}{\varphi}\frac{f'}{f} + (m-1)\left(\frac{f'}{f}\right)^2 - \frac{f'}{f}u'\right]||\alpha||^2 = \frac{\mu}{f^2\varphi^2} - \frac{\lambda}{\varphi^2},$$

(3.12)
$$\left[\phi'' - (n-2)\frac{\varphi'}{\varphi}\phi' + m\phi'\frac{f'}{f} - \phi'u'\right]||\alpha||^2 = 0.$$

Proof. The Theorem 3.1 gives us necessary and sufficient condition to the metric g of $B^n \times_f F^m$ be a τ -quasi Ricci-harmonic metric. By using invariant solution technique, we reach equations (3.9), (3.10), (3.11) and (3.12).

For an arbitrary choice of a nonzero vector $\alpha = (\alpha_1, \ldots, \alpha_n)$, consider $\xi : \mathbb{R}^n \to \mathbb{R}$ given by $\xi(x_1, \ldots, x_n) = \sum_{i=1}^n \alpha_i x_i$. Assume that $\varphi(\xi)$, $f(\xi)$, $u(\xi)$ and $\phi(\xi)$ are functions of ξ , so we have

$$\varphi_{,x_i} = \varphi' \alpha_i, \qquad f_{,x_i} = f' \alpha_i, \qquad u_{,x_i} = u' \alpha_i, \qquad \phi_{,x_i} = \phi' \alpha_i$$

$$\varphi_{,x_ix_j} = \varphi''\alpha_i\alpha_j, \quad f_{,x_ix_j} = f''\alpha_i\alpha_j, \quad u_{,x_ix_j} = u''\alpha_i\alpha_j \quad \phi_{,x_ix_j} = \phi''\alpha_i\alpha_j.$$

Notice that the functions f, φ , u and ϕ are lifted from $B = (\mathbb{R}^n, \varphi^{-2}g_0)$.

S. Günsen and L. Onat

For the conformal metric $g_B = \varphi^{-2}g_0$, the Ricci curvature is given by [3]:

$${}^{B}\operatorname{Ric} = \frac{1}{\varphi^{2}} \Big\{ (n-2)\varphi Hess_{g_{0}}(\varphi) + [\varphi \Delta_{g_{0}}\varphi - (n-1)|\nabla_{g_{0}}\varphi|^{2}]g_{0} \Big\}.$$

Since $(Hess_{g_0}(\varphi))_{i,j} = \varphi'' \alpha_i \alpha_j$, $\Delta_{g_0} \varphi = \varphi'' ||\alpha||^2$, and $|\nabla_{g_0} \varphi|^2 = \varphi' ||\alpha||^2$ we have

(3.13)
$$({}^{B}\operatorname{Ric})_{i,j} = \frac{1}{\varphi} \{ (n-2)\varphi'' \alpha_{i} \alpha_{j} \} \quad \forall i \neq j = 1, ..., n$$

$${}^{(B}\operatorname{Ric})_{i,i} = \frac{1}{\varphi^2} \left\{ (n-2)\varphi\varphi''(\alpha_i)^2 + [\varphi\varphi''||\alpha||^2 - (n-1)(\varphi')^2||\alpha||^2]\epsilon_i \right\} \quad \forall i = 1, ..., n.$$

For the metric g_B , Hess(u) is

$$(Hess_{g_B}(u))_{ij} = u_{,x_ix_j} - \sum_{k=1}^n \Gamma_{ij}^k u_{,x_k},$$

where the Christoffel symbol Γ_{ij}^k for distinct i,j,k are given by

$$\Gamma_{ij}^k = 0, \ \Gamma_{ij}^i = -\frac{\varphi_{,x_j}}{\varphi}, \ \Gamma_{ii}^k = \varepsilon_i \varepsilon_k \frac{\varphi_{,x_k}}{\varphi} \text{ and } \Gamma_{ii}^i = -\frac{\varphi_{,x_i}}{\varphi}.$$

Hence,

$$(Hess_{g_B}(u))_{ij} = u_{,x_ix_j} + \varphi^{-1}(\varphi_{,x_i}u_{,x_j} + \varphi_{,x_j}u_{,x_i}) - \delta_{ij}\varepsilon_i \sum_k \varepsilon_k \varphi^{-1}\varphi_{,x_k}u_{,x_k}$$

(3.15)
$$= \alpha_i \alpha_j u'' + (2\alpha_i \alpha_j - \delta_{ij}\varepsilon_i ||\alpha||^2)\varphi^{-1}\varphi' u'.$$

Clearly, the Laplacian $\Delta_{g_B} f = \sum_k \varphi^2 \varepsilon_k (Hess_{g_B}(f))_{kk}$ of f is

(3.16)
$$\Delta_{g_B} f = ||\alpha||^2 \varphi^2 (f'' - (n-2)\varphi^{-1}\varphi' f').$$

Since g_B is a conformal metric, the terms $\nabla f(u)$, $|\nabla f|^2$ and $(\nabla \phi \otimes \nabla \phi)_{ij}$ can be given by

(3.17)

$$\nabla_{g_B} f(u) = \langle \nabla_{g_B} f, \nabla_{g_B} u \rangle = \varphi^2 \sum_k \varepsilon_k f_{,x_k} u_{,x_k} = ||\alpha||^2 \varphi^2 f' u',$$

$$|\nabla_{g_B} f|^2 = \varphi^2 \sum_k \varepsilon_k f_{,x_k}^2 = ||\alpha||^2 \varphi^2 (f')^2,$$

$$(\nabla_{g_B} \phi \otimes \nabla_{g_B} \phi)_{ij} = \phi_{,x_i} \phi_{,x_j} = \alpha_i \alpha_j (\phi')^2.$$

Plugging in (3.14), (3.15) and (3.17) for i = j into (3.4) we get (3.10).

When $i \neq j$, substituting (3.13) and (3.15) into (3.4) we obtain

$$\alpha_i \alpha_j \left((n-2)\frac{\varphi''}{\varphi} - m\frac{f''}{f} - 2m\frac{\varphi'}{\varphi}\frac{f'}{f} + u'' + 2\frac{\varphi'}{\varphi}u' - \frac{1}{\tau}(u')^2 - \theta(\phi')^2 \right) = 0.$$

340

If there exist $i, j, i \neq j$ such that $\alpha_i \alpha_j \neq 0$, we have the equation (3.9). If $\alpha_i \alpha_j = 0, \forall i \neq j$, then consider for a fixed $k_0 \neq k$ such that $\alpha_{k_0} = 1, \alpha_k = 0$. For $i \neq k_0$, substituting (3.14), (3.15) and (3.17) into (3.4) we get the equation (3.10), i.e., $\alpha_i = 0$. For $i = k_0$, we have the equation (3.9), i.e., $\alpha_{k_0} = 1$.

Similarly, we obtain (3.11) by substituting (3.16), (3.17) in (3.6). Considering (1.3) and the laplace of ϕ , which is lifted from base, we have

(3.18)
$$\Delta \phi = \left[\Delta_{g_B}\phi + \frac{m}{f}g_B(\nabla \phi, \nabla f)\right] = g_B(\nabla \phi, \nabla u).$$

Using (3.16) and (3.17) in (3.18) we have (3.12) which completes the proof. \Box

Corollary 3.2. Let $f = f \circ \xi$, $u = u \circ \xi$, $\varphi \circ \xi$, $\phi = \phi \circ \xi$ defined in $(\mathbb{R}^n, \varphi^{-2}g_0)$ and the metric g of warped product $(M = \mathbb{R}^n \times_f F^m, g = \varphi^{-2}g_0 + f^2g_F)$ be a τ -quasi Ricci-harmonic metric with non-constant ϕ . If $||\alpha||^2 = 0$, then $\lambda = 0$ and $\mu = 0$, *i.e.*, F^m is Ricci flat.

Example 3.1. Let $||\alpha||^2 = 0$ in Theorem 3.3. For simplicity, assume that c = 1, m = 4, $n = 3, \tau = 1$ and $\varphi(\xi) = e^{\xi}$, $f(\xi) = e^{\xi}$ and $\phi(\xi) = \xi$. Solving (3.9), we obtain

$$u(\xi) = -\log\left(\cos(\sqrt{10}(c_1 + \xi))\right) + \xi + c_2, \ c_1, c_2 \in \mathbb{R}$$

which defines a τ -quasi RH metric on M.

Theorem 3.4. The metric g of warped product $M = B^n \times_f F^m$ is a τ -quasi Ricciharmonic metric with non-constant ϕ , $f = f \circ \xi$, $u = u \circ \xi$, $\varphi \circ \xi$, $\phi = \phi \circ \zeta$ defined in $(\mathbb{R}^n, \varphi^{-2}g_0)$ and $(\mathbb{R}^m, \psi^{-2}g_0)$, respectively, and furnished with the metric tensor $g = \varphi^{-2}g_0 + f^2\psi^{-2}g_F$ if and only if the functions verify the system below:

(3.19)
$$(n-2)\frac{\varphi''}{\varphi} - m\frac{f''}{f} - 2m\frac{\varphi'}{\varphi}\frac{f'}{f} + u'' + 2\frac{\varphi'}{\varphi}u' - \frac{1}{\tau}(u')^2 = 0,$$

(3.20)
$$\left[\frac{\varphi''}{\varphi} - (n-1)\left(\frac{\varphi'}{\varphi}\right)^2 + m\frac{\varphi'}{\varphi}\frac{f'}{f} - \frac{\varphi'}{\varphi}h'\right]||\alpha||^2 = \frac{\lambda}{\varphi^2},$$

(3.21)
$$\begin{bmatrix} f''\varphi^2 f - (n-2)\varphi'\varphi f f' + (m-1)(f')^2\varphi^2 - f'f\varphi^2 h' \end{bmatrix} ||\alpha||^2 + \lambda f^2 \\ = \begin{bmatrix} \frac{\psi''}{\psi} - (m-1)\left(\frac{\psi'}{\psi}\right)^2 \end{bmatrix} ||\beta||^2,$$

(3.22)
$$(m-2)\frac{\psi''}{\psi} - c(\phi')^2 = 0,$$

(3.23)
$$\left[\psi^2 \phi'' - (m-2)\psi\psi'\phi'\right] ||\beta||^2 = 0.$$

Proof. We use the same technique as in the proof of the Theorem 3.3 for both the base and the fiber. When $i \neq j$, substituting the equation (3.13) and (3.17) in (3.5) we have the equation (3.19) and when i = j, plugging in (3.14) and (3.17) in (3.5) we get (3.20).

From Theorem 3.1, F is harmonic Einstein,

$$(3.24) F \operatorname{Ric} - cd\phi \otimes d\phi = \mu g_F$$

where c > 0 and

(3.25)
$$\mu = f\Delta_{g_B}f + (m-1)|\nabla f|^2 + \lambda f^2 + f\nabla f(u).$$

For an arbitrary choice of a nonzero vector $\beta = (\beta_1, \ldots, \beta_m)$, let $\psi : \mathbb{R}^m \to \mathbb{R}^+$ be the conformal factor of the fiber and $\zeta : \mathbb{R}^m \to \mathbb{R}$ be the invariant function so that $u(\zeta)$ is a function of ζ which gives

$$(3.26) \qquad (\nabla_{g_F}\phi_F \otimes \nabla_{g_F}\phi_F)_{ij} = \phi_{,y_i}\phi_{,y_j}\beta_i\beta_j \qquad \forall i, j = 1, ..., m.$$

Using (3.17) in (3.25) we obtain

(3.27)
$$\left[f'' \varphi^2 f - (n-2)\varphi' \varphi f f' + (m-1)(f')^2 \varphi^2 - f' f \varphi^2 u' \right] ||\alpha||^2 + \lambda f^2 = \mu.$$

Replacing (3.13), (3.14), (3.26) and (3.27) in (3.24) we get the equations (3.21) and (3.22) for i = j or $i \neq j$.

From (*ii*) of Theorem 3.1 we have $\Delta_{g_F} \phi = 0$, by using (3.16), we obtain (3.23). \Box

REFERENCES

- D. AÇIKGÖZ KAYA and L. ONAT: Ricci solitons on multiply warped product manifolds. Int. Electron. J. Geom. 13(2) (2020), 152–159.
- 2. E. BATISTA, L. ADRIANO and W. TOKURA: On warped product gradient Ricciharmonic soliton. arXiv preprint arXiv:1906.11933 (2019).
- 3. A. L. BESSE: Einstein Manifolds. Springer-Verlag, Berlin Heidelberg, 1987.
- G. CATINO: Generalized quasi-Einstein manifolds with harmonic Weyl tensor. Math. Z. 271 (2012), 751–756.
- U. C. DE, C. A. MANTICA, S. SHENAWY and B. ÜNAL: Ricci solitons on singly warped product manifolds and applications. J. Geom. Phys. 166 (2021), 104257, 10 pp.
- F. E. S. FEITOSA, A. A. F. FILHO and J. N. V. GOMES: On the construction of gradient Ricci soliton warped product. Nonlinear Anal. 161 (2017), 30–43.
- F. E. S. FEITOSA, A. A. F. FILHO, J. N. V. GOMES, and R. S. PINA: Gradient almost Ricci soliton warped product. J. Geom. Phys. 143 (2019), 22–32.

342

- S. GÜNSEN, L. ONAT and D. AÇIKGÖZ KAYA: The warped product manifold as a gradient Ricci soliton and relation to its components. C. R. Acad. Bulgare Sci. 72(8) (2019), 1015–1023.
- H. GUO, R. PHILIPOWSKI and A. THALMAIER: On gradient solitons of the Ricci-harmonic flow. Acta Math. Sin. (Engl. Ser.) 31(11) (2015), 1798–1804.
- F. KARACA: Gradient Yamabe solitons on multiply warped product manifolds. Int. Electron. J. Geom. 12(2) (2019), 157–168.
- F. KARACA, and C. OZGUR: Gradient Ricci solitons on multiply warped product manifolds. Filomat **32(12)** (2018), 4221–4228.
- D.-S. KIM, and Y.-H. KIM: Compact Einstein warped product spaces with nonpositive scalar curvature. Proc. Amer. Math. Soc. 131 (8) (2003), 2573–2576.
- J. KIM: Some doubly-warped product gradient Ricci solitons. Commun. Korean Math. Soc. 31(3) (2016), 625–635.
- 14. R. MÜLLER: The Ricci flow coupled with harmonic map heat flow. Ph. D. Thesis, ETH Zürich, 2009.
- R. MÜLLER: Ricci flow coupled with harmonic map flow. Ann. Sci. Éc. Norm. Supér. (4) 45(1) (2012), 101–142.
- 16. B. O'NEILL: Semi-Riemannian Geometry with Applications to Relativity. Academic Press, London, 1983.
- M. L. SOUSA, and R. PINA: Gradient Ricci solitons with structure of warped product. Results Math. 71(3-4), (2017), 825–840.
- H. TADANO: Gap theorems for Ricci-harmonic solitons. Ann. Glob. Anal. Geom. 49(2) (2016), 165–175.
- 19. W. TOKURA, L. ADRIANO, R. PINA, and M. BARBOZA: On warped product gradient Yamabe solitons. J. Math. Anal. Appl. 473(1) (2019), 201–214.
- L. F. WANG: *Ricci-harmonic metrics*. Ann. Acad. Sci. Fenn. Math. **41(1)** (2016), 417–437.
- L. F. WANG: On f-non-parabolic ends for Ricci-harmonic metrics. Ann. Glob. Anal. Geom. 51(1) (2017), 91–107.
- F. ZENG: Rigid properties of generalized τ-quasi Ricci-harmonic metrics. Results Math. 75(4) (2020), Paper No. 165, 24 pp.
- M. ZHU: On the relation between Ricci-harmonic solitons and Ricci solitons. J. Math. Anal. Appl. 447(2) (2017), 882–889.