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INTERSECTIONS OF SURFACES OF REVOLUTION

Vesna I. Veličković

University of Nǐs, Faculty of Sciences and Mathematics

Department of Computer Science, Vǐsegradska 33, 18000 Nǐs, Serbia

Abstract. In this paper, we deal with surfaces of revolution and their intersections. We
start with the surfaces of revolution RS that have their axis along the x

3–axis and find
intersections with a line, a plane, and then intersection of two such RS. Furthermore,
we apply formulas for the intersection with a line to determine the visibility of RS.
Later we develop formulas for the intersection of two surfaces of revolution that have
their axis along different arbitrary straight lines, and, as a special case, the intersections
of two spheres and intersections of general surface of revolution with a sphere and a
surface given by an equation. We apply our own software to the graphical representation
of all the results we present.
Keywords: intersections, surfaces of revolution, visualization, visibility.

1. Introduction

Surfaces of revolution are created by rotating a planar curve about an axis in the
plane. They are easy to understand and deal with, so they play important role and
are widely used in various fields of mathematics, physics and engineering.

Nevertheless, they are still interesting for research. Some papers that explore
their properties are [1, 2, 3, 6]. Some of the papers study the intersections of surfaces
of revolution are [8, 9, 21]. Some problems related to finding the intersection of two
surfaces are discussed in [7]. Determining surfaces of revolution from some of their
properties is considered in the papers [10, 11, 22].
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Visualization strongly supports the understanding of mathematical concepts.
We developed our own software for the visualization of mathematical objects and
relations between them. We use the approach of vector graphics, perform calcula-
tions analytically, display the surfaces by families of curves on them without any
approximating body of the polygon mesh type, so we get figures of high precision.
We use a small number of curves on the surfaces, so that our figures look clean,
without unnecessary details, so the parametrization of surfaces and the lines of in-
tersection can be easily recognized. In order to emphasize the lines of intersection,
which are most important in this paper, we emphasize them with thicker lines.

The basic version of our software is covered in detail in the book [13]. Later, the
software was much improved and applied for the visualization in various fields of
mathematics, for example in topology [18] and functional analysis [15, 16, 17, 20],
but also in other sciences such as physics [12] and crystallography [14, 19].

In this paper we study intersections of surfaces of revolution RS, first of those
which have their axis along the x3–axis, and later of those with an arbitrary axis.
In Section 2. we start with the intersection of RS with a straight line and apply it
to the solution of the visibility problem for RS. In the special cases of a sphere,
cylinder and cone, the solution of the visibility problem reduces considerably. The
special conditions for the intersection of RS with a plane are determined. This
section concludes with the intersection of two RS with their axes along the x3–axis.
Section 3. is dedicated to the surfaces of revolution with arbitrary axes, so we refer
to them as general surfaces of revolution. The solutions of the problems of visibility
and contour line that arise in the graphical representation can be reduced to the
methods described in detail in the previous section. For the intersections, first we
study special cases of the intersection of two spheres, then intersections of general
RS with a sphere, intersections of RS and a surface given by an equation and, in
the end, intersections of two general surfaces of revolution.

We developed our own software to visualize all the presented results. All the
geometrical figures in this paper have been created by our software package.

2. Surface of Revolution with Axis Along x3–axis

A surface of revolution is generated by rotating a planar curve γ about an axis
in the plane. As far as the study of geometrical properties is concerned, we may
assume that the curve γ is in the x1x3–plane and the axis of rotation is the x3–axis.
Later, we will consider surfaces of revolution generated by rotations about arbitrary
axes in three–dimensional space.

Let I ⊂ R be an interval, r, h ∈ Cr(I), where r ∈ N is chosen to need. We
assume that γ is given by a parametric representation

~x(t) = (r(t), 0, h(t)) for t ∈ I where r(t) > 0 and |r′(t)|+ |h′(t)| 6= 0 on I.

Writing u1 = t and u2 for the polar angle in the x1x2–plane, we obtain

(2.1) ~x(ui) = (r(u1) cosu2, r(u1) sinu2, h(u1)) ((u1, u2) ∈ D ⊂ I × (0, 2π))
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as a parametric representation for the surface of revolution RS(γ) generated by the
curve γ.

2.1. The Intersection with a Line

We start by finding the intersection of surface of revolution RS with a parametric
representation (2.1) where D = I1 × I2 and I2 ⊂ (0, 2π), and a straight line L,
given by a a parametric representation ~y = ~p+ t~v (t ∈ R), that is, we have to find
(u1, u2) ∈ D and t ∈ R such that

(2.2) x(ui) = ~p+ t~v.

Thus, writing

~u = ~u(u2) = (cos u2, sinu2, 0) and ~e 3 = (0, 0, 1),

we have to find the solutions (u1, u2) ∈ D = I1 × I2 and t ∈ R of the equations

(2.3) r(u1)~u(u2) + h(u1)~e 3 − (~p+ t~v) = ~0.

This means in particular

(2.4) h(u1)− (p3 + tv3) = 0.

Case 1. First we consider the case v3 6= 0 when L is not orthogonal to the axis of
rotation of RS. Then (2.4) implies

(2.5) t = t(u1) =
h(u1)− p3

v3
.

We put

(2.6) ~a = ~p −
p3

v3
· ~v, ~b =

1

v3
· ~v

and obtain, squaring (2.3) and substituting (2.5),

r2(u1) + h2(u1) =

(

~p −
p3

v3
· ~v + h(u1) ·

1

v3
· ~v

)2

= (~a+ h(u1) ·~b)2.

Thus we have to find the zeros u10 ∈ I1 of

(2.7) f(u1) = r2(u1) + h2(u1)− (~a+ h(u1) ·~b)2

For each zero u10 of (2.7), we compute the value t0 = t(u10) from (2.5) and finally
the values u20 ∈ I2 from

(2.8) cosu20 =
p1 + t0v

1

r(u10)
and sinu20 =

p2 + t0v
2

r(u10)
.
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We remark that since

r2(u1) = (p1 + tv1)2 + (p2 + tv2)2 > max{|p1 − tv1|, |p2 − tv2|},

and r2(u1) > 0 for all u1, the equations in (2.8) always have a unique solution in
the interval (0, 2π).

Case 2. Now we consider the case v3 = 0 when L is orthogonal to the axis of
rotation of RS. Then it follows from (2.4) that

(2.9) f(u1) = h(u1)− p3 = 0.

Now we find the solutions u10 ∈ I1 of (2.9). Furthermore, squaring (2.3) leads to the
quadratic equation

(2.10) t2~v 2 + 2t~p • ~v + ~p 2 − (r2(u10) + h2(u10)) = 0.

For each such u10 there are at most two points of intersection with the corresponding
u2–line and we obtain the t–parameters t0 = t(u10) of these points of intersection
from (2.10). Finally we find the values u20 ∈ I2 in the same way as in the Case 1,
from (2.8).

Figure 2.1 shows intersections of a surface of revolution with straight lines; the
figure on the right hand side shows its intersection with its axis, a case which
mathematically cannot happen since r(u1) > 0.

Fig. 2.1: Intersections of a surface of revolution and straight lines

2.1.1. Visibility of Surfaces of Revolution

The visibility of points on a surface of revolution is determined analytically. To
check the visibility of a point P we choose the straight line L to be the projection
ray. Let C be the centre of projection and ~p denote the position vector of a point P

then we put ~v =
−−→
PC in the equations above. Now P is hidden by RS if and only if

there is a solution u10 ∈ I1, for v
3 6= 0 of (2.7) with corresponding t0 from (2.5), or
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for v3 = 0 of (2.9) with corresponding t0 > 0 from (2.10), and u20 ∈ I2 from (2.8).
The same argument applies for the visibility of a point P on RS with respect to
RS itself; now we observe that P ∈ RS implies ~p 2 − (r2(u1) + h2(u1)) = 0 and the
quadratic equation (2.10) reduces to t = −(2~p • ~v)/~v 2.

We have seen above that intersecting a surface of revolution and a straight line
involves finding the zeros of the real valued function f in (2.7) or (2.9). An algorithm
for this and its implementation can be found in [13, Section 6.1, pp. 502–511].

2.1.2. Visibility in Special Cases: Sphere, Cylinder and Cone

Finally we consider the special cases when the surface of revolution is a sphere,
cylinder or cone. Then the solution of the visibility problem reduces considerably.

A sphere Sph with radius r and its centre in the origin has a parametric rep-
resentation (2.1) with r(u1) = r cosu1 and h(u1) = r sinu1, and is given by the
equation

(2.11) (x1)2 + (x2)2 + (x3)2 = r2.

Substituting the parametric representation (2.2) of a straight line L in (2.11), we
obtain

(t~v + ~p)2 = t2~v 2 + 2t~v • ~p+ ~p 2 = r2.

Thus the t–parameters along L of the points of intersection are the solutions of the
quadratic equation

(2.12) at2 + bt+ c = 0 with a = ~v 2, b = 2~v • ~p and c = ~p 2 − r2.

We observe that if we check the visibility of a point P on Sph with respect to Sph
itself then ~p = r2, and the quadratic equation (2.12) reduces to at = b.

A circular cylinder Cyl with radius r and its axis along the x3–axis has a para-
metric representation (2.1) with r(u1) = r and h(u1) = u1, and is given by the
equation

(2.13) (x1)2 + (x2)2 = r2.

Now the t–parameters along L of the points of intersection are the solutions of the
quadratic equation (2.12) with

a = (v1)2 + (v2)2, b = 2(v1p1 + v2p2) and c = (p1)2 + (p2)2 − r2

which again reduces to at = b when we check the visibility of a point P on Cyl with
respect to Cyl itself.

A cone Cone with its axis along the x3-axis, its vertex in the origin and an
angle of 2β ∈ (0, π) at its vertex has a parametric representation (2.1) with r(u1) =
u1 sinβ and h(u1) = u1 cosβ, and is given by the equation

(2.14) (x1)2 + (x2)2 − tan2 β = 0.
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Now the t–parameters along L of the points of intersection are the solutions of the
quadratic equation (2.12) with

a = (v1)2 + (v2)2 − (v3 tanβ)2, b = 2
(

v1p1 + v2p2 − βv3p3 tanβ
)

and c = (p1)2 + (p2)2 − (p3 tanβ)2

which again reduces to at = b when we check the visibility of a point P on Cone
with respect to Cone itself.

2.2. The Intersections of Surfaces of Revolution and Planes

Let RS be a surface of revolution given by a parametric representation (2.1) and

Pl be a plane through a point P and orthogonal to a vector ~NPl = {n1
Pl, n

2
Pl, n

3
Pl}.

Then the intersection IS = RS ∩ Pl of RS and Pl is given by the solution of

(

r(u1)~u(u2) + h(u1)~e 3 − ~p
)

• ~NPl = 0.

In view of the symmetry of rotation, we may assume n2
Pl = 0 and apply the same

argument as in Subsection 2.1.2. to treat the general case. Writing a0 = ~p • ~NPl,
we have to solve

(2.15) n1
Plr(u

1) cosu2 + n3
Plh(u

1)− a0 = 0.

If g2(u
1) = n1

Plr(u
1) = 0 then r(u1) 6= 0 implies n1

Pl = 0 and consequently ~NPl is
parallel to the axis of rotation. Now lines of intersection are the parts u2 ∈ I2 of
the u2–lines that correspond to solutions u10 ∈ I1 of g1(u

1) = n3
Plh(u

1)− a0 = 0.
If g2(u

1) 6= 0 then we can solve (2.15) to obtain

(2.16) cosu2 = cosu2(u1) = −
g1(u

1)

g2(u2)
,

and the intersection is given by u2(u1) ∈ I2 from (2.16) for those values u1 ∈ I2
that satisfy

∣

∣

∣

∣

g1(u
1)

g2(u1)

∣

∣

∣

∣

6 1.

2.3. The Intersections of Surfaces of Revolution

Let RS and RS∗ be surfaces of revolution given by the parametric representations
(2.1) and

~x ∗(u∗i) = (r∗(u∗1) cosu∗2, r∗(u∗1) sinu∗2, h∗(u∗1))

with domains D = I1 × I2 and D∗ = I∗1 × I∗2 . We also assume that r(u1) > 0 on I1
and r∗(u∗1) > 0 on I∗1 , and

(2.17) |r′(u1)|+ |h′(u1)| > 0 on I1 and |r∗
′

(u∗1)|+ |h∗
′

(u1)| > 0 on I∗1 .
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Fig. 2.2: The intersection of a plane and a surface of revolution

The lines of intersection of RS and RS∗ are given by

(2.18) ~x(ui) = ~x ∗(u∗i) for (u1, u2), (u∗1, u∗2) ∈ D ∩D∗.

Squaring the equations for the first two components in (2.18), adding them and
taking into account that r(u1), r∗(u∗1) > 0, we obtain together with the third
equation

(2.19) r(u1) = r∗(u∗1) and h(u1) = h∗(u∗1) for u1, u∗1 ∈ J1 = I1 ∩ I
∗
1 ,

and then cosu2 = cosu∗2 and sinu2 = sinu∗2 from the first two equations. Since
the map u 7→ (cos u, sinu) is one–to-one on (0, 2π), we obtain u2 = u∗2 for u2, u∗2 ∈
J2 = I2 ∩ I∗2 . Now, by (2.17), at least one of the functions r, r∗, h and h∗ has
a local inverse. We assume that there exists an interval J ⊂ J1 and a function
ϕ : r∗(J) → R with ϕ(r∗(u∗1)) = u∗1 for all u∗1 ∈ J . The other cases are treated
similarly. Then we obtain from the first equation in (2.19) that u∗1 = ϕ(r(u1) and
substituting this in the second equation in (2.19), we get h(u1) = h∗(ϕ(r(u1))),
hence the corresponding parts of the lines of intersection are given by the equation

h(u1)− h∗(ϕ(r(u1))) = 0 for u1 ∈ J.
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Fig. 2.3: Surfaces of revolution and their intersections

3. Surface of Revolution with Axis Along an Arbitrary Axis

Now we consider general surfaces of revolution generated by the rotation of a planar
curve about an arbitrary axis. It turns out that the solutions of the problems that
arise in the graphical representation can be reduced to the methods described in
detail in Subsection 2.1.

Fig. 3.1: Catenoids and tori and their lines of intersections

We observe that the geometry of a surface is independent of the choice of the
coordinate system, in particular, the curves on a surface are determined in terms
of the parameters of the surface. Thus we can use the methods in Section 2. to
determine them. We make a transformation of the coordinate system, solve the
visibility, contour and intersection problems in the new coordinate system exactly
as in Section 2., and finally return to the original coordinate system.

Now we deal with the graphical representation of some intersections of general
surfaces of revolution. First we consider some special cases.



Intersections of Surfaces of Revolution 231

Fig. 3.2: Tori, plane and sphere and their lines of intersections

Fig. 3.3: Tori and their lines of intersection

3.1. The Intersection of Spheres

Let S1 and S2 be parts of spheres with centres in C1 and C2, radii r1 > 0 and
r2 > 0, and domains D1 and D2 for their parameters. We write ~c1, ~c2 for the
position vectors of C1 and C2, ~d = ~c2 − ~c1, d = ‖~d‖ and IS = S1 ∩ S2.

First we consider the trivial cases.
If d = 0, then C1 = C2 and IS = Ø for r1 6= r2, and IS = S1 = S2 for r1 = r2.
If d > r1 + r2 then obviously IS = Ø.
Now we consider the case 0 < d < |r1 − r2|. If r1 > r2 then r2 + d < r1 and the
points X ∈ S2 satisfy

‖
−−→
OX −

−−→
OC1‖ 6 ‖

−−→
OX −

−−→
OC2‖+ ‖~d‖ = r2 + d < r1,

that is, they are in the interior of the closed ball Br1(C1) (closed ball of radius r
centered at X0 is Br(X0) = {X ∈ R

3 : d(X,X0) 6 r}), hence IS = Ø. If r2 > r1
then r1 + d < r2 and the points X ∈ S1 satisfy

‖
−−→
OX −

−−→
OC2‖ 6 ‖

−−→
OX −

−−→
OC1‖+ ‖~d‖ = r1 + d < r2,

that is they are in the interior of the closed ball Br2(C2), hence IS = Ø.
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Fig. 3.4: Left: four pseudo–spheres. Right: general surfaces of revolution

For the nontrivial case, let 0 < |r1 − r2| 6 d 6 r1 + r2. Then a point on S1 with
position vector ~x(ui) in the intersection IS has to satisfy the equation

‖~x(ui)− ~c2‖
2 = r22 .

This yields

r22 = ‖(~x(ui)− ~c1)− ~d‖2 = r21 − 2(~x(ui)− ~c1) • ~d+ ‖~d‖2

= r21 −
~d •
(

2(~x(ui)− ~c1)− ~d
)

= r21 − 2~d •

(

~x(ui)−
1

2
(~c1 + ~c2)

)

which is equivalent to

~d •

(

~x(ui)−
1

2
(~c1 + ~c2) +

(r22 − r21)
~d

2d2

)

= 0.

The points with position vectors ~x(ui) that satisfy this equation are in a plane PL

orthogonal to the vector ~d and through the point P0 with position vector

−−→
OP0 =

1

2d2

(

d2(~c2 + ~c1) + (r21 − r22)
~d
)

= ~c1 +
1

2d2
(

r21 + d2 − r22
)

• ~d

= ~c2 −
1

2d2
(

r22 + d2 − r21
)

• ~d.

We observe that |r1 − r2| 6 d 6 r1 + r2 implies −d 6 r1 − r2 6 d 6 r1 + r2,
hence −r2 6 r1 − d 6 r2, r2 6 r1 + d, −r1 6 r2 − d 6 r1 and r1 6 r2 + d, that is
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|r1 − d| 6 r2, r2 6 r1 + d, |r2 − d| 6 r1 and r1 6 r2 + d. Thus we have

−2r1d = r21 + d2 − (r1 + d)2 6 r21 + d2 − r22 = (r1 − d)2 − r22 + 2r1d

6 r22 − r22 + 2r1d = 2r1d,

that is, |r21 + d2 − r22 | 6 2r1d. Similarly we obtain |r22 + d2 − r21 | 6 2r2d, and
consequently

‖
−−→
OP0 − ~c1‖ =

1

2d

∣

∣r21 + d2 − r22
∣

∣ 6 r1 and ‖
−−→
OP0 − ~c2‖ =

1

2d

∣

∣r22 + d2 − r21
∣

∣ 6 r2

that is, P0 ∈ B(C1, r1) ∩B(C2, r2). Thus IS = PL ∩ S1 = PL ∩ S2.

Fig. 3.5: General spheres and their intersections

3.2. The Intersection of a General Surface of Revolution and a Sphere

Let RS be a general surface of revolution with a local coordinate system with origin
in C1 and unit vectors ~e k

L (k = 1, 2, 3) along its coordinate axes, such that RS may
be given by a parametric representation

(3.1) ~x(ui) = r(u1) cosu2~e 1
L + r(u1) sinu2~e 2

L + h(u1)~e 3
L + ~c1 for (u1, u2) ∈ D1.

Furthermore, let S2 be a part of a sphere given by D2 ⊂ (−π/2, π/2)× (0, 2π), with

its centre in C2 and radius r2 > 0. Again we write ~d = ~c2 − ~c1. Then a point with
the position vector ~x(ui) on RS in the intersection IS = RS ∩S2 has to satisfy the
equation

‖(~x(ui)− ~c1)− ~d‖2 = r22 .

If ~d has the components dL,k (k = 1, 2, 3) with respect to the local coordinate system
of RS, that is, if

~d = dL,1~e
1
L + dL,2~e

2
L + dL,3~e

3
L where dL,k = ~d • ~e k

L (k = 1, 2, 3),
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then we must have

(3.2) r22 = r2(u1) + h2(u1)− 2~d • (~x(ui)− ~c1) + ‖~d‖2

= r2(u1) + h2(u1) + ‖~d‖2−

− 2
(

dL,1r(u
1) cosu2 + dL,2r(u

1) sinu2 + dL,3h(u
1)
)

.

First we consider the case dL,1 = dL,2 = 0 when C2 is on the axis of rotation of RS.
Then we must find the zeros of

f(u1) = r2(u1) + h2(u1) + ‖~d‖2 − r22 − 2dL,3h(u
1).

Now the intersection IS is given by the parts of the u2–lines on RS that correspond
to the zeros of f with parameters belonging to both D1 and D2.

Now we assume that ~dPL = dL,1~e
1
L + dL,2~e

2
L 6= ~0. Let φ denote the polar angle

of ~dPL in the plane spanned by the vectors ~e 1
L and ~e 2

L. Then we first consider the

case where ~dPL = ‖~dPL‖~e
1
L. Now equation (3.2) reduces to

r2(u1) + h2(u1) + ‖~d‖2 − r22 − 2dL,3h(u
1)− 2‖~dPL‖r(u

1) cosu2 = 0

or

cosu2 = a(u1) =
r2(u1) + h2(u2) + ‖~d‖2 − r22 − 2dL,3h(u

1)

2‖~dPL‖r(u1)
.

If |a(u1)| 6 1 then we can solve for u2 and obtain

u21 = u21(u
1) = arccos(a(u1)) and u22 = u22(u

1) = 2π − arccos(a(u1)).

In the general case, we have to add the angle φ to the values u21 and u22. Now a
point P is in the intersection IS if and only if its parameters satisfy (u1, u2) ∈ D1

with respect to RS and (v1, v2) ∈ D2 with respect to S2.

Fig. 3.6: Intersection of a catenoid and a sphere
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Fig. 3.7: Lines of intersection of a catenoid with spheres

Fig. 3.8: Intersections of a catenoid and spheres

3.3. The Intersection of a General Surface of Revolution and a Surface

Given by an Equation

Let RS be a general surface of revolution given by a parametric representation (3.1)
with respect to its local coordinate system and S be a surface that can be given by
an equation

(3.3) F (x1L,S , x
2
L,S , x

3
L,S) = 0,

where xkL,S (k = 1, 2, 3) denote the coordinates of the points of S in the local
coordinate system of S.
If CS with position vector ~c2 is the origin of the local coordinate system of S and
~e k
L,S (k = 1, 2, 3) denote the unit vectors along the coordinate axes of the local

coordinate system of S then a point P = P (ui) of RS with its position vector
satisfying (3.1) in the intersection of RS and S has to satisfy equation (3.3) with

xkL,S = (~x(ui)− ~c2) • ~e
k
L,S for k = 1, 2, 3.

This involves finding the zeros of a real–valued function of two variables and drawing
a curve given by an equation. The algorithms and methods needed for this task
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and their implementations are described in detail in [4, 5].

Two simple examples are the intersections of a general surface of revolution with
a cone with vertex in C2 and an angle 2β (β ∈ (0, π/2) at its vertex, and with a
circular cylinder of radius r > 0. Then equation (3.3) reduces to

(

x1L,S

)2
+
(

x2L,S

)2
− tan2 β

(

x3L,S

)2
= 0

and
(

x1L,S

)2
+
(

x2L,S

)2
− r2

for a cone and a cylinder, respectively.

Fig. 3.9: Intersections of a torus, cone and cylinder

3.4. The Intersection of General Surfaces of Revolution

Finally we consider the intersection IS of general surfaces of revolution RS(1) and
RS(2) given by the parametric representations

~x(1)(ui) = r1(u
1) cosu2~e 1

L,1 + r1(u
1) sinu2~e 2

L,1 + h1(u
1)~e 3

L,1

and
~x(2)(vi) = r2(v

1) cos v2~e 1
L,2 + r2(v

1) sin v2~e 2
L,2 + h2(v

1)~e 3
L,2.

Since the functions r1, r2, h1 and h2 satisfy the conditions in (2.17), at each ui or vi

at least one of them has a local inverse. Here we treat the case that h2 has a local
inverse ψ in some interval I

(2)
1 . The other cases are similar. Writing ~d = ~c2 −~c1 we

see that a point of intersection must satisfy

r2(v
1) cos v2 =

(

~x(1)(ui)− ~d
)

• ~e 1
L,2,

r2(v
1) sin v2 =

(

~x(1)(ui)− ~d
)

• ~e 2
L,2 and and and

h2(v
1) =

(

~x(1)(ui)− ~d
)

• ~e 3
L,2.
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Since

(3.4) v1 = v1(ui) = ψ
(

(~x(1)(ui)− ~d) • ~e 3
L,2

)

for v1 ∈ I
(2)
1 ,

we have to find the zeros of the function Φ with

Φ(u1, u2) = r22(v
1(ui))−

(

((

~x(1)(ui)− ~d
)

• ~e 1
L,2

)2

+
((

~x(1)(ui)− ~d
)

• ~e 2
L,2

)2
)

.

Then we have to compute the values v10 = v1(u10, u
1
0) from (3.4) that correspond

to the zeros u10 and u20 of thefunction Φ and finally find the corresponding values
v20 = v2(u10, u

2
0) from

cos v20 =
(~x1(ui0)−

~d) • ~e 1
L,2

r2(v10)
and sin v20 =

(~x1(ui0)−
~d) • ~e 2

L,2

r2(v10)
.

Fig. 3.10: Intersections of a catenoid and a torus
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Filomat, 31:4 (2017), 1079-1098.
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