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Abstract. In this article, we prove some common fixed point theorems for generalized
integral type F -contractions in the setting of complete partial metric spaces and give
some consequences of the main result. Also we give an example in support of the result.
Our result extends and generalizes several results from the existing literature.
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1. Introduction

Banach contraction principle [7] is one of the milestones in the development of
fixed point theory. Its significance lies in the vast applicability to a great number
of branches of mathematical sciences, for example, theory of existence of f solutions
for nonlinear differential, integral and functional equations, variational inequalities
and optimization and approximation theory. There are many generalizations of
this principle. These generalizations are made either by using different contractive
conditions or by imposing some additional condition on the ambient spaces.

A mapping S:U → U , where U is a nonempty set and (U , d) is a metric space,
is said to be a contraction if there exists c ∈ [0, 1) such that for all y, z ∈ U ,

d(S(y), S(z)) ≤ c d(y, z).(1.1)

If the metric space (U , d) is complete then the mapping satisfying (1.1) has a unique
fixed point. Inequality (1.1) implies continuity of S. Many authors generalized this
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famous result in different ways. Indeed, one of those ways is integral type contrac-
tion which was introduced by Branciari [8] in 2002 and proved a fixed point result
for mappings defined on a complete metric space satisfying a general contractive
type condition of integral type.

Matthews [14] introduced the concept of partial metric space as a part of the
study of denotational semantics of dataflow networks [13, 14, 16, 23]. It is widely
recognized that partial metric spaces play an important role in constructing models
in the theory of computation. In partial metric spaces the distance of a point in
the self may not be zero. Introducing partial metric space, Matthews extended the
Banach contraction principle [7] and proved the fixed point theorem in this space.

Wardowski [22] (Fixed Point Theory Appl. 2012, Article ID 94(2012)) intro-
duced a new type of contraction called F -contraction and proved a new fixed point
theorem related to F -contraction and gave an example showing that the obtained
extension is significant. Later, a large number of researchers have proved many
results in this direction (for more details see, [2], [3], [4], [5], [10], [12], [17], [18],
[19], [20] and many others).

In this paper, we establish a common fixed point theorem for generalized integral
type F -contraction in partial metric spaces and give some consequences of main
result as corollaries. We also give an example in support of the result. Our result
extends and generalizes many comparable results in the existing literature.

2. Preliminaries

Now, we give some basic properties and auxiliary results on the concept of partial
metric space (PMS) and F -contraction.

Definition 2.1. ([14]) Let U be a nonempty set and p:U × U → R+ be such that
for all y, z, w ∈ U the followings are satisfied:

(P1) y = z ⇔ p(y, y) = p(y, z) = p(z, z),

(P2) p(y, y) ≤ p(y, z),
(P3) p(y, z) = p(z, y),

(P4) p(y, z) ≤ p(y, w) + p(w, z)− p(w,w).

Then p is called partial metric on U and the pair (U , p) is called partial metric
space (in short PMS).

Remark 2.1. It is clear that if p(y, y) = 0, then y = z. But, on the contrary p(y, y)
need not be zero.

Example 2.1. ([6]) Let U = R+ and p:U ×U → R+ given by p(y, z) = max{y, z} for all
y, z ∈ R+. Then (R+, p) is a partial metric space.

Example 2.2. ([6]) Let U = {[a, b] : a, b ∈ R, a ≤ b}. Then p

(
[a, b], [c, d]

)
= max{b, d}−

min{a, c} defines a partial metric p on U .
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Various applications of this space has been extensively investigated by many
authors (see [11], [21] for details).

Remark 2.2. ([9]) Let (U , p) be a partial metric space.

(1) The function dw:U × U → R+ defined as dw(y, z) = 2p(y, z)− p(y, y)− p(z, z) is a
(usual) metric on U and (U , dw) is a (usual) metric space.

(2) The function ds:U × U → R+ defined as ds(y, z) = max{p(y, z)− p(y, y), p(y, z)−
p(z, z)} is a (usual) metric on U and (U , ds) is a (usual) metric space.

Note also that each partial metric p on U generates a T0 topology τp on U , whose
base is a family of open p-balls {Bp(y, ε) : y ∈ U , ε > 0} where Bp(y, ε) = {z ∈ U :
p(y, z) ≤ p(y, y) + ε} for all y ∈ U and ε > 0.

On a partial metric space the notions of convergence, the Cauchy sequence,
completeness and continuity are defined as follows [13].

Definition 2.2. ([13]) Let (U , p) be a partial metric space. Then

(a) a sequence {yn} in (U , p) is said to be convergent to a point y ∈ U if and
only if p(y, y) = limn→∞ p(yn, y);

(b) a sequence {yn} is called a Cauchy sequence if limm,n→∞ p(ym, yn) exists
and finite;

(c) (U , p) is said to be complete if every Cauchy sequence {yn} in U converges
to a point y ∈ U with respect to τp. Furthermore,

lim
m,n→∞

p(ym, yn) = lim
n→∞

p(yn, y) = p(y, y).

(d) A mapping R:U → U is said to be continuous at z0 ∈ U if for every ε > 0,

there exists δ > 0 such that R
(
Bp(z0, δ)

)
⊂ Bp

(
R(z0), ε

)
.

Definition 2.3. ([15]) Let (U , p) be a partial metric space. Then

(e1) a sequence {yn} in (U , p) is called 0-Cauchy if limm,n→∞ p(ym, yn) = 0;

(e2) (U , p) is said to be 0-complete if every 0-Cauchy sequence {yn} in U con-
verges to a point y ∈ U , such that p(y, y) = 0.

Lemma 2.1. ([13, 14]) Let (U , p) be a partial metric space. Then
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(f1) a sequence {yn} in (U , p) is a Cauchy sequence if and only if it is a Cauchy
sequence in the metric space (U , dw);

(f2) (U , p) is complete if and only if the metric space (U , dw) is complete;

(f3) a subset E of a partial metric space (U , p) is closed if a sequence {yn} in E
such that {yn} converges to some y ∈ U , then y ∈ E.

Lemma 2.2. ([1]) Assume that yn → u as n→∞ in a partial metric space (U , p)
such that p(u, u) = 0. Then limn→∞ p(yn, y) = p(u, y) for every y ∈ U .

Remark 2.3. (see [9]) Let (U , p) be a PMS. Therefore, for all y, z ∈ U
(i) if p(y, z) = 0, then y = z;

(ii) if y 6= z, then p(y, z) > 0.

The definition of F -contraction is due to Wardowski [22], which can be stated
as follows.

Let F be the family of all functions F : [0,∞) → R satisfying the following
conditions:

(F1.) F is strictly increasing, i.e., for all α, β ∈ [0,∞) such that α < β, F (α) <
F (β).

(F2.) For each sequence {αn}n∈N of positive numbers, limn→∞ αn = 0 if and
only if limn→∞ F (αn) = −∞.

(F3.) There exists k ∈ (0, 1) such that limα→ 0+ α
kF (α) = 0.

Let F1(α) = ln (α), F2(α) = − 1√
α

and F3(α) = α + ln (α) for α > 0, then

F1, F2, F3 ∈ F .

Definition 2.4. ([22]) A mapping T :U → U is said to be an F -contraction if there
exists τ > 0 such that

∀ y, z ∈ U ,
{

(d(T y, T z)) > 0⇒ τ + F (d(T y, T z)) ≤ F (d(y, z))
}
.(2.1)

Example 2.3. ([22]) Let F : [0,∞) → R be given by F (α) = ln α. Then F satisfies
(F1)-(F3). Each mapping satisfying (2.1) is an F -contraction such that

d(T y, T z) ≤ e−τ d(y, z),(2.2)

for all y, z ∈ U and T y 6= T z.
It is clear that for y, z ∈ U such that T y = T z the inequality d(T y, T z) ≤ e−τ d(y, z)

also holds, i.e., T is a Banach contraction [7].

Example 2.4. ([22]) Let F : [0,∞) → R be given by F (α) = α + ln α for α > 0. From
(2.1) we get

d(T y, T z)
d(y, z)

ed(T y,T z)−d(y,z) ≤ e−τ ,

for all y, z ∈ U and T y 6= T z, i.e., d(T y, T z) > 0.
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Wardowski [22] proved the following fixed point theorem.

Theorem 2.1. ([22]) Let (U , d) be a complete metric space and let T :U → U be
an F -contraction. Then T has a unique fixed point in U .

3. Main Results

In this section, we shall prove some unique common fixed point theorems in
the setting of complete partial metric spaces through generalized integral type F -
contractions.

Theorem 3.1. Let (U , p) be a complete partial metric space and let S1,S2:U → U
be two self-mappings. Suppose that there exist F ∈ F and τ > 0 such that for all
y, z ∈ U satisfying p(S1y,S2z) > 0, the following holds:

τ + F
(∫ p(S1y,S2z)

0

ψ(t)dt
)
≤ F

(∫ µ(y,z)

0

ψ(t)dt
)
,(3.1)

where

µ(y, z) = max
{
p(y, z),

1

3
[p(y, z) + p(z,S1y) + p(y,S2z)],

1

3
[p(y, z) + p(y,S1y) + p(z,S2z)]

}
(3.2)

and ψ: [0,∞)→ [0,∞) is a Lebesgue-integrable mapping which is summable on each
compact subset of [0,∞), nonnegative and for each ε > 0∫ ε

0

ψ(t)dt > 0,(3.3)

and if F is continuous. Then S1 and S2 have a unique common fixed point in U .

Proof. Let z0 ∈ U be an arbitrary point. Define a sequence {zn} for n ≥ 0 by

z2n+1 = S1z2n and z2n+2 = S2z2n+1.(3.4)

Step I. Now, we have to prove that p(zn+1, zn)→ 0 as n→∞. By equation (3.1),
we have

τ + F
(∫ p(z2n+1,z2n)

0

ψ(t)dt
)

= τ + F
(∫ p(S1z2n,S2z2n−1)

0

ψ(t)dt
)

≤ F
(∫ µ(z2n,z2n−1)

0

ψ(t)dt
)
,(3.5)
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where

µ(z2n, z2n−1) = max
{
p(z2n, z2n−1),

1

3
[p(z2n, z2n−1) + p(z2n,S2z2n−1) + p(z2n−1,S1z2n)],

1

3
[p(z2n, z2n−1) + p(z2n,S1z2n) + p(z2n−1,S2z2n−1)]

}
= max

{
p(z2n, z2n−1),

1

3
[p(z2n, z2n−1) + p(z2n, z2n) + p(z2n−1, z2n+1)],

1

3
[p(z2n, z2n−1) + p(z2n, z2n+1) + p(z2n−1, z2n)]

}
≤ max

{
p(z2n−1, z2n),

1

3
[p(z2n−1, z2n) + p(z2n−1, z2n) + p(z2n+1, z2n)],

1

3
[p(z2n−1, z2n) + p(z2n+1, z2n) + p(z2n−1, z2n)]

}
(by(P3) and (P4))

= max
{
p(z2n−1, z2n), p(z2n+1, z2n)

}
.(3.6)

If max
{
p(z2n−1, z2n), p(z2n+1, z2n)

}
= p(z2n+1, z2n), then it follows from (3.5)

τ + F
(∫ p(z2n+1,z2n)

0

ψ(t)dt
)
≤ F

(∫ p(z2n+1,z2n)

0

ψ(t)dt
)
,(3.7)

which is a contradiction (as τ > 0). Thus,

max
{
p(z2n−1, z2n), p(z2n+1, z2n)

}
= p(z2n−1, z2n).(3.8)

From equation (3.5), we have

F
(∫ p(z2n+1,z2n)

0

ψ(t)dt
)
≤ F

(∫ p(z2n−1,z2n)

0

ψ(t)dt
)
− τ.(3.9)

Continuing in the same fashion, we obtain

F
(∫ p(z2n−1,z2n)

0

ψ(t)dt
)
≤ F

(∫ p(z2n−2,z2n−1)

0

ψ(t)dt
)
− τ.(3.10)

Using (3.9) and (3.10), we get

F
(∫ p(z2n+1,z2n)

0

ψ(t)dt
)
≤ F

(∫ p(z2n,z2n−1)

0

ψ(t)dt
)
− τ

≤ F
(∫ p(z2n−1,z2n−2)

0

ψ(t)dt
)
− 2τ

≤ · · ·

≤ F
(∫ p(z1,z0)

0

ψ(t)dt
)
− (2n)τ.(3.11)
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Then, it follows limn→∞ F
( ∫ p(zn+1,zn)

0
ψ(t)dt

)
= −∞. By F ∈ F and (F2), we

have

lim
n→∞

p(zn+1, zn) = 0.(3.12)

Step II. Now, we show that {zn} is a p-Cauchy sequence. Put bn = p(zn+1, zn), n =
0, 1, 2, . . .. By F ∈ F and (F3), there exists k ∈ (0, 1) such that

lim
n→∞

(bn)kF (bn) = 0.(3.13)

By (3.11), we have(
p(z2n+1, z2n)

)k
F
(∫ p(z2n+1,z2n)

0

ψ(t)dt
)
− F

(∫ p(z1,z0)

0

ψ(t)dt
)

≤ −(2n)
(
p(z2n+1, z2n)

)k
τ ≤ 0.(3.14)

Using the above inequality and (3.13), we get

lim
n→∞

n
(
p(zn+1, zn)

)k
= 0.(3.15)

Therefore, there exists a positive integer N1 ∈ N such that n
(
p(zn+1, zn)

)k
< 1 for

all n > N1, or

p(zn+1, zn) <
1

n1/k
.(3.16)

Let m,n ∈ N with m > n > N1, using (P4) (triangular inequality), we have

p(zn, zm) ≤ p(zn, zn+1) + p(zn+1, zn+2) + . . .+ p(zm−1, zm)

−[p(zn+1, zn+1) + p(zn+2, zn+2) + . . .+ p(zm−1, zm−1)]

≤ p(zn, zn+1) + p(zn+1, zn+2) + . . .+ p(zm−1, zm)

=

m−1∑
r=n

p(zr+1, zr) ≤
∞∑
r=n

p(zr+1, zr)

≤
∞∑
r=n

1

r1/k
.(3.17)

As k ∈ (0, 1), the series
∑∞
r=n

(
1

r1/k

)
is convergent, so

lim
n,m→∞

p(zn, zm) = 0.(3.18)

Thus {zn} is a Cauchy sequence in (U , p). Therefore, {zn} is a Cauchy sequence
in (U , dw). Since (U , p) is a complete partial metric space, then by Lemma 2.1,
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(U , dw) is also complete. Thus, there exists a v ∈ U such that limn→∞ zn = v and
limn→∞ dw(zn, v) = 0. Moreover, by Definition 2.2 (3’) and equation (3.18), we
have

p(v, v) = lim
n→∞

p(zn, v) = lim
n,m→∞

p(zn, zm) = 0.(3.19)

Step III. Now, we shall show that v is a common fixed point of S1 and S2. Using
given contractive condition (3.1) for y = z2n and z = v, we have

τ + F
(∫ p(z2n+1,S2v)

0

ψ(t)dt
)

= τ + F
(∫ p(S1z2n,S2v)

0

ψ(t)dt
)

≤ F
(∫ µ(z2n,v)

0

ψ(t)dt
)
,(3.20)

where

µ(z2n, v) = max
{
p(z2n, v),

1

3
[p(z2n, v) + p(z2n,S2v) + p(v,S1z2n)],

1

3
[p(z2n, v) + p(z2n,S1z2n) + p(v,S2v)]

}
= max

{
p(z2n, v),

1

3
[p(z2n, v) + p(z2n,S2v) + p(v, z2n+1)],

1

3
[p(z2n, v) + p(z2n, z2n+1) + p(v,S2v)]

}
.(3.21)

Passing to limit as n→∞ in (3.21) and using (3.19), we obtain

µ(z2n, v)→ max
{

0,
p(v,S2v)

3
,
p(v,S2v)

3

}
=

p(v,S2v)

3
< p(v,S2v).

(3.22)

Now, using (3.20) and (3.22), we get

τ + F
(∫ p(z2n+1,S2v)

0

ψ(t)dt
)
≤ F

(∫ p(v,S2v)

0

ψ(t)dt
)
.(3.23)

Passing to limit as n→∞ in (3.23) and using continuity of F , we obtain

τ + F
(∫ p(v,S2v)

0

ψ(t)dt
)
≤ F

(∫ p(v,S2v)

0

ψ(t)dt
)
,

which is a contradiction since τ > 0. Thus, we have S2v = v. This shows that v is
a fixed point of S2. Similar, we can show that S1v = v. Hence v is a common fixed
point of S1 and S2.

Step IV. Now, we shall show the uniqueness of the common fixed point. Assume
that v′ is another common fixed point of S1 and S2, that is, S1v′ = v′ = S2v′ with
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v 6= v′. From the given contractive condition (3.1), we have

τ + F
(∫ p(v,v′)

0

ψ(t)dt
)

= F
(∫ p(S1v,S2v′)

0

ψ(t)dt
)

≤ F
(∫ µ(v,v′)

0

ψ(t)dt
)
,(3.24)

where

µ(v, v′) = max
{
p(v, v′),

1

3
[p(v, v′) + p(v′,S1v) + p(v,S2v′)],

1

3
[p(v, v′) + p(v,S1v) + p(v′,S2v′)]

}
= max

{
p(v, v′),

1

3
[p(v, v′) + p(v′, v) + p(v, v′)],

1

3
[p(v, v′) + p(v, v) + p(v′, v′)]

}
.(3.25)

Using condition (P3) and (3.19), we get

µ(v, v′)→ max
{
p(v, v′), p(v, v′),

p(v, v′)

3

}
= p(v, v′).(3.26)

From (3.24) and (3.26), we obtain

τ + F
(∫ p(v,v′)

0

ψ(t)dt
)
≤ F

(∫ p(v,v′)

0

ψ(t)dt
)
,

which is a contradiction since τ > 0. Thus, we have v = v′. This shows that the
common fixed point of S1 and S2 is unique. This completes the proof.

Theorem 3.2. Let (U , p) be a complete partial metric space and let R1,R2:U → U
be two self-mappings. Suppose that there exist F ∈ F and τ > 0 such that for all
y, z ∈ U satisfying p(R1y,R2z) > 0, the following holds:

τ + F
(∫ p(R1y,R2z)

0

ψ(t)dt
)
≤ F

(∫ ν(y,z)

0

ψ(t)dt
)
,(3.27)

where

ν(y, z) = max
{
p(y, z),

1

2
[p(z,R1y) + (y,R2z)],

p(y,R1y)p(z,R2z)

1 + p(y, z)
,
p(y,R1y)p(z,R2z)

1 + p(R1y,R2z)

}
,(3.28)

and F , ψ are as in Theorem 3.1. Then R1 and R2 have a unique common fixed
point in U .
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Proof. Let r0 ∈ U be an arbitrary point. Define a sequence {rn} for n ≥ 0 by

r2n+1 = R1r2n and r2n+2 = R2r2n+1.(3.29)

Step I. Now, we have to prove that p(rn+1, rn)→ 0 as n→∞. By equation (3.27),
we have

τ + F
(∫ p(r2n+1,r2n)

0

ψ(t)dt
)

= τ + F
(∫ p(R1r2n,R2r2n−1)

0

ψ(t)dt
)

≤ F
(∫ ν(r2n,r2n−1)

0

ψ(t)dt
)
,(3.30)

where

ν(r2n, r2n−1) = max
{
p(r2n, r2n−1),

1

2
[p(r2n,R2r2n−1) + p(r2n−1,R1r2n)],

p(r2n,R1r2n)p(r2n−1,R2r2n−1)

1 + p(r2n, r2n−1)
,
p(r2n,R1r2n)p(r2n−1,R2r2n−1)

1 + p(R1r2n,R2r2n−1)

}
= max

{
p(r2n, r2n−1),

1

2
[p(r2n, r2n) + p(r2n−1, r2n+1)],

p(r2n, r2n+1)p(r2n−1, r2n)

1 + p(r2n, r2n−1)
,
p(r2n, r2n+1)p(r2n−1, r2n)

1 + p(r2n+1, r2n)

}
≤ max

{
p(r2n, r2n−1),

1

2
[p(r2n−1, r2n) + p(r2n+1, r2n)],

p(r2n+1, r2n)p(r2n−1, r2n)

1 + p(r2n−1, r2n)
,
p(r2n−1, r2n)p(r2n−1, r2n)

1 + p(r2n+1, r2n)

}
(by (P3) and (P4))

= max
{
p(r2n−1, r2n), p(r2n+1, r2n)

}
.(3.31)

If max
{
p(r2n−1, r2n), p(r2n+1, r2n)

}
= p(r2n+1, r2n), then it follows from (3.30)

τ + F
(∫ p(r2n+1,r2n)

0

ψ(t)dt
)
≤ F

(∫ p(r2n+1,r2n)

0

ψ(t)dt
)
,(3.32)

which is a contradiction (as τ > 0). Thus,

max
{
p(r2n−1, r2n), p(r2n+1, r2n)

}
= p(r2n−1, r2n).(3.33)

From equation (3.30), we have

F
(∫ p(r2n+1,r2n)

0

ψ(t)dt
)
≤ F

(∫ p(r2n−1,r2n)

0

ψ(t)dt
)
− τ.(3.34)

Continuing in the same manner, we obtain

F
(∫ p(r2n−1,r2n)

0

ψ(t)dt
)
≤ F

(∫ p(r2n−2,r2n−1)

0

ψ(t)dt
)
− τ.(3.35)
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Using (3.34) and (3.35), we get

F
(∫ p(r2n+1,r2n)

0

ψ(t)dt
)
≤ F

(∫ p(r2n,r2n−1)

0

ψ(t)dt
)
− τ

≤ F
(∫ p(r2n−1,r2n−2)

0

ψ(t)dt
)
− 2τ

≤ · · ·

≤ F
(∫ p(r1,r0)

0

ψ(t)dt
)
− (2n)τ.(3.36)

Then, it follows limn→∞ F
( ∫ p(rn+1,rn)

0
ψ(t)dt

)
= −∞. By F ∈ F and (F2), we

have

lim
n→∞

p(rn+1, rn) = 0.(3.37)

Step II. Now, we show that {rn} is a p-Cauchy sequence. Put qn = p(rn+1, rn), n =
0, 1, 2, . . .. By F ∈ F and (F3), there exists k ∈ (0, 1) such that

lim
n→∞

(qn)kF (qn) = 0.(3.38)

By (3.36), we have(
p(r2n+1, r2n)

)k
F
(∫ p(r2n+1,r2n)

0

ψ(t)dt
)
− F

(∫ p(r1,r0)

0

ψ(t)dt
)

≤ −(2n)
(
p(r2n+1, r2n)

)k
τ ≤ 0.(3.39)

Using the above inequality and (3.38), we get

lim
n→∞

n
(
p(rn+1, rn)

)k
= 0.(3.40)

Therefore, there exists a positive integer Np ∈ N such that n
(
p(rn+1, rn)

)k
< 1 for

all n > Np, or

p(rn+1, rn) <
1

n1/k
.(3.41)

Let m,n ∈ N with m > n > Np, using (P4) (triangular inequality), we have

p(rn, rm) ≤ p(rn, rn+1) + p(rn+1, rn+2) + . . .+ p(rm−1, rm)

−[p(rn+1, rn+1) + p(rn+2, rn+2) + . . .+ p(rm−1, rm−1)]

≤ p(rn, rn+1) + p(rn+1, rn+2) + . . .+ p(rm−1, rm)

=

m−1∑
x=n

p(rx+1, rx) ≤
∞∑
x=n

p(rx+1, rx)

≤
∞∑
x=n

1

x1/k
.(3.42)
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As k ∈ (0, 1), the series
∑∞
x=n

(
1

x1/k

)
is convergent, so

lim
n,m→∞

p(rn, rm) = 0.(3.43)

Thus {rn} is a Cauchy sequence in (U , p). Therefore, {rn} is a Cauchy sequence
in (U , dw). Since (U , p) is a complete partial metric space, then by Lemma 2.1,
(U , dw) is also complete. Thus, there exists an s ∈ U such that limn→∞ rn = s
and limn→∞ dw(rn, s) = 0. Moreover, by Definition 2.2 (3’) and equation (3.43),
we have

p(s, s) = lim
n→∞

p(rn, s) = lim
n,m→∞

p(rn, rm) = 0.(3.44)

Step III. Now, we shall show that s is a common fixed point of R1 and R2. Using
given contractive condition (3.27) for y = r2n and z = s, we have

τ + F
(∫ p(r2n+1,R2s)

0

ψ(t)dt
)

= τ + F
(∫ p(R1r2n,R2s)

0

ψ(t)dt
)

≤ F
(∫ ν(r2n,s)

0

φ(t)dt
)
,(3.45)

where

ν(r2n, s) = max
{
p(r2n, s),

1

2
[p(r2n,R2s) + p(s,R1r2n)],

p(r2n,R1r2n)p(s,R2s)

1 + p(r2n, s)
,
p(r2n,R1r2n)p(s,R2s)

1 + p(R1r2n,R2s)

}
= max

{
p(r2n, s),

1

2
[p(r2n,R2s) + p(s, r2n+1)],

p(r2n, r2n+1)p(s,R2s)

1 + p(r2n, s)
,
p(r2n, r2n+1)p(s,R2s)

1 + p(r2n+1,R2s)

}
.(3.46)

Passing to limit as n→∞ in (3.46) and using (3.44), we obtain

ν(r2n, s)→ max
{

0,
p(s,R2s)

2
, 0, 0

}
=
p(s,R2s)

2
< p(s,R2s).(3.47)

Now, using (3.45) and (3.47), we get

τ + F
(∫ p(r2n+1,R2s))

0

ψ(t)dt
)
≤ F

(∫ p(s,R2s)

0

ψ(t)dt
)
.(3.48)

Passing to limit as n→∞ in (3.48) and using continuity of F , we obtain

τ + F
(∫ p(s,R2s)

0

ψ(t)dt
)
≤ F

(∫ p(s,R2s)

0

ψ(t)dt
)
,
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which is a contradiction since τ > 0. Thus, we have R2s = s. This shows that s
is a fixed point of R2. By similar fashion we can show that R1s = s. Hence s is a
common fixed point of R1 and R2.

Step IV. Now, we show the uniqueness of the common fixed point. Assume
that s′ is another common fixed point of R1 and R2, that is, R1s

′ = s′ = R2s
′ with

s 6= s′. From the given contractive condition (3.27), we have

τ + F
(∫ p(s,s′)

0

ψ(t)dt
)

= F
(∫ p(R1s,R2s

′)

0

ψ(t)dt
)
≤ F

(∫ ν(s,s′)

0

ψ(t)dt
)
,

where

ν(s, s′) = max
{
p(s, s′),

1

2
[p(s,R2s

′) + p(s′,R1s)],

p(s,R1s)p(s
′,R2s

′)

1 + p(s, s′)
,
p(s,R1s)p(s

′,R2s
′)

1 + p(R1s,R2s′)

}
= max

{
p(s, s′),

1

2
[p(s, s′) + p(s′, s)],

p(s, s)p(s′, s′)

1 + p(s, s′)
,
p(s, s)p(s′, s′)

1 + p(s, s′)

}
.(3.49)

Using condition (P3) and (3.44) in (3.49), we get

ν(s, s′)→ max
{
p(s, s′), p(s, s′), 0, 0

}
= p(s, s′).(3.50)

From (3.49) and (3.50), we obtain

τ + F
(∫ p(s,s′)

0

ψ(t)dt
)
≤ F

(∫ p(s,s′)

0

ψ(t)dt
)
,

which is a contradiction since τ > 0. Thus, we have s = s′. This shows that the
common fixed point of R1 and R2 is unique. This completes the proof.

4. Consequences of Theorem 3.1

Corollary 4.1. Let (U , p) be a complete partial metric space and let S:U → U be
a self-mapping. Suppose that there exist F ∈ F and τ > 0 such that for all y, z ∈ U
satisfying p(Sy,Sz) > 0, the following holds:

τ + F
(∫ p(Sy,Sz)

0

ψ(t)dt
)
≤ F

(∫ µ(y,z)

0

ψ(t)dt
)
,

where

µ(y, z) = max
{
p(y, z),

1

3
[p(y, z) + p(z,Sy) + (y,Sz)],

1

3
[p(y, z) + p(y,Sy) + p(z,Sz)]

}
,



680 G. S. Saluja

and ψ: [0,∞)→ [0,∞) is a Lebesque-integrable mapping which is summable on each
compact subset of [0,∞) nonnegative and for each ε > 0∫ ε

0

ψ(t)dt > 0,

and if F is continuous. Then S has a unique fixed point in U .

Corollary 4.2. Let (U , p) be a complete partial metric space and let S:U → U be
a self-mapping. Suppose that there exist F ∈ F and τ > 0 such that for all y, z ∈ U
satisfying p(Sy,Sz) > 0, the following holds:

τ + F
(∫ p(Sy,Sz)

0

ψ(t)dt
)
≤ F

(∫ p(y,z)

0

ψ(t)dt
)
,

where F and ψ are as in Corollary 4.1. Then S has a unique fixed point in U .

Let (U , p) be a complete partial metric space and let S:U → U be a self-mapping.
Suppose that there exist F ∈ F and τ > 0 such that for all y, z ∈ U satisfying
p(Sy,Sz) > 0, the following holds:

τ + F
(∫ p(Sy,Sz)

0

ψ(t)dt
)
≤ F

(∫ 1
3 [p(y,z)+p(z,Sy)+(y,Sz)]

0

ψ(t)dt
)
,

where F and ψ are as in Corollary 4.1. Then S has a unique fixed point in U .

Corollary 4.3. Let (U , p) be a complete partial metric space and let S:U → U be
a self-mapping. Suppose that there exist F ∈ F and τ > 0 such that for all y, z ∈ U
satisfying p(Sy,Sz) > 0, the following holds:

τ + F
(∫ p(Sy,Sz)

0

ψ(t)dt
)
≤ F

(∫ 1
3 [p(y,z)+p(y,Sy)+(z,Sz)]

0

ψ(t)dt
)
,

where F and ψ are as in Corollary 4.1. Then S has a unique fixed point in U .

We give an example to validate the result.

Example 4.1. Let U = [0, 1] and p(y, z) = max{y, z} for all y, z ∈ U . Then (U , p) is
a complete partial metric space. Let R1,R2:U → U and ψ: (0,∞) → (0,∞) be defined
by R1(y) = y

8
, R2(y) = 0 and ψ(t) = 2t for all t ≥ 0. If F : [0,∞) → R be given by

F (β) = ln β. Then all conditions of Theorem 3.1 and the contractive condition (3.1) are
satisfied for some τ > 0 and for p(y, z) > 0.

If y > z, then we have

τ + F

(∫ p(R1(y),R2(z))

0

ψ(t)dt

)
= τ + ln

(
y2

64

)
≤ ln (y2)

= F

(∫ ν(y,z)

0

ψ(t)dt

)
.
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If y < z, then we have

τ + F

(∫ p(R1(y),R2(z))

0

ψ(t)dt

)
= τ + ln

(
y2

64

)
< τ + ln

(
z2

64

)
≤ ln (z2)

= F

(∫ ν(y,z)

0

ψ(t)dt

)
.

Hence 0 ∈ U is a common fixed point of R1 and R2.

5. Conclusion

In this paper, we prove some unique common fixed point theorems for generalized
integral type F -contraction in the set up of complete partial metric spaces and give
some consequences as corollaries of the main results. Also, an illustrated example is
provided to validate the result. The results presented in this paper generalize and
extend several results from the existing literature.
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3. Ö. Acar: Fixed point theorems for rational type F -contraction. Carpathian Math.
Publ. 13(1) (2021), 39–47.

4. J. Ahmad, Al-Rawashdeh and A. Azam: New fixed point theorems for general-
ized F -contractions in complete metric spaces. Fixed Point Theory Appl. (2015),
no. 1, Article ID 80, 2015.

5. A. Asif, M. Nazam, M. Arshad and S. O. Kim: F -metric, F -contraction and
common fixed point theorems with applications. Mathematics 7(7) (2019), 586,
1–13.

6. H. Aydi, M. Abbas and C. Vetro: Partial Hausdorff metric and Nadler’s fixed
point theorem on partial metric spaces. Topology and Its Appl. 159 (2012), No.
14, 3234–3242.

7. S. Banach: Sur les operation dans les ensembles abstraits et leur application aux
equation integrals. Fund. Math. 3 (1922), 133–181.



682 G. S. Saluja

8. A. Branciari: A fixed point theorem for mappings satisfying a general contractive
condition of integral type. International J. Math. Math. Sci. 29(9) (2002), 531–
536.
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