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Abstract. We derive a general differential equation satisfied by the distance function
for quaternionic curves in Euclidean 4−space. By using this differential equation, we
express characterizations of some special quaternionic curves such as spherical curves
and rectifying curves. Lastly, we reconsider the characterization of a quaternionic gen-
eral helix.
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1. Introduction

As it is known, quaternions were discovered Irish mathematician William Rowan
Hamilton (1805− 1865) in 1843 to generalize complex numbers. He discovered that
the appropriate generalization is one in which the scalar (real) axis is left unchanged
whereas the vector (imaginary) axis is supplemented by adding two further vector
axes. It is therefore helpful to think of the scalar axis as representing ”time” and
the three vector axes as representing ”space”. In this case, the (real) quaternions
have the algebraic form denoted by q0 + q1i + q2j + q3k, where q0, q1, q2 and q3
are real numbers. The vector space is regarded as the usual 3−dimensional vector
space with ”unit vectors” i, j and k. So, the set of (real) quaternions is identified
with the 4−dimensional Euclidean space [11].
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It is possible to encounter quaternions in many branches of science. Espe-
cially in applied mathematics, quaternions are used in calculations involving three-
dimensional rotations such as in 3−dimensional computer graphics, computer vision,
and crystallographic texture analysis [8].

In differential geometry, the study of quaternionic curves begins with Bharathi
and Nagaraj [2] obtaining the Frenet (Serret-Frenet) formulas for these curves.
Since then, many articles have been made on quaternionic curves. Among these
articles, articles about the characterization of some special quaternionic curves such
as spherical, rectifying, and general helix (see [10], [1], [3] and [4] for these types
of curves) have great interest. Güngör and Tosun [7] investigated quaternionic
rectifying curves and given the characterizations of these curves. Sağlam [9] studied
some characterizations of the osculating sphere of quaternionic curves and obtained
the necessary sufficient condition for quaternionic curves to be spherical. And, Yoon
[12] gave some characterizations for a quaternionic general helix.

In the present article, we give characterizations of some special quaternionic
curves such as spherical, rectifying and general helix, inspired by [5] and [6]. In
accordance with this purpose, we first derive a general differential equation that
includes the distance function of quaternionic curves and its derivatives. Then,
with the help of this differential equation, we can easily see the necessary and
sufficient conditions for a quaternionic curve to be spherical or rectifying. We
also give an example characterizing the spherical curve. Finally, we reconsider the
characterization of a quaternionic general helix by considering [5].

2. Preliminaries

In this section, we recall the basic concepts about quaternions and quaternionic
curves.

A quaternion q is of an expression of the form

q = q0 + q1i+ q2j + q3k,

such that qA, A ∈ {1, 2, 3, 4} are real numbers and the basis {1, i, j, k} has the
following properties:

i× i = j × j = k × k = −1,

i× j = −j × i = k,

j × k = −k × j = i,

and
k × i = −i× k = j,

where × is the quaternion product in the 4−dimensional Euclidean space R4. Then
a quaternion q can be given by

q = sq + vq,
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where sq = q0 and vq = q1i + q2j + q3k are the scalar part and vector part of q,
respectively. The set of all quaternions is denoted by H.

For p and q are two quaternions in H, the quaternion product of p and q is
defined by

p× q = spsq− < vp, vq > +spvq + sqvp + vp ∧ vq,
where <,> and ∧ denote the inner product and vector product of 3−dimensional
Euclidean space R3, respectively.

The conjugate of q = sq + vq ∈ H is defined by q = sq − vq ∈ H. Then the
quaternion inner product can be defined as follows:

h : H×H → R
(p, q) → h(p, q) = 1

2 (p× q + q × p).

The norm of a quaternion q = q0 + q1i+ q2j + q3k is defined by

‖q‖ =
√
h(q, q) =

√
q20 + q21 + q22 + q23 .

If ‖q‖ = 1, then q is called unit quaternion.

A quaternion q is called a spatial quaternion whenever q + q = 0 and the set of
spatial quaternions denoted by HS is identified with the 3−dimensional Euclidean
space R3. On the other hand, if q − q = 0, then q is called a temporal quaternion.
Therefore, any quaternion q can be written as the form q = 1

2 (q + q) + 1
2 (q − q).

While 1
2 (q + q) is the spatial part of q, 1

2 (q − q) is the temporal part of q.

Let I = [0, 1] be an interval in the real line R. Then

γ : I ⊂ R → HS
s → γ(s) = γ1(s)i+ γ2(s)j + γ3(s)k

is called a spatial quaternionic curve with the arclength parameter s ∈ I. The
tangent vector t(s) = γ

′
(s) = dγ

ds has unit length ||t(s)|| = 1 for all s. It follows

t
′
(s)× t(s)+ t(s)× t

′

(s) = 0 which implies t
′
(s) is orthogonal to t(s) and t

′
(s)× t(s)

is a spatial quaternion. Since t
′
(s) and t

′
(s)× t(s) are spatial quaternions, the unit

spatial quaternions n1(s) = γ
′′
(s))

‖γ′′ (s))‖ and n2(s) = t(s)×n1(s) can be defined. Then

{t(s), n1(s), n2(s)} are the Frenet frame of γ(s) and it is note that

t(s)× t(s) = n1(s)× n1(s) = n2(s)× n2(s) = −1.

The Frenet formulas are given by t
′
(s)

n
′

1(s)

n
′

2(s)

 =

 0 κ(s) 0
−κ(s) 0 τ(s)
0 −τ(s) 0

 t(s)
n1(s)
n2(s)


where κ(s) =

∥∥∥t′(s)∥∥∥ and τ(s) are the principal curvature and the torsion of γ,

respectively.
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As we mentioned above, the set of quaternions H is identical to 4−dimensional
Euclidean space R4. Then

β : I ⊂ R → H
s → β (s) = β0(s) + β1(s)i+ β2(s)j + β3(s)k,

is called a quaternionic curve with the arclength parameter s ∈ I. The tangent
vector T (s) = β

′
(s) has unit magnitude because s is the arclength parameter. So,

{T,N1, N2, N3} forms the Frenet frame with the unit normal vectors N1(s), N2(s)
and N3(s) perpendicular to T (s). The Frenet formulas of β are given by

T ′ (s)
N ′1 (s)
N ′2 (s)
N ′3 (s)

 =


0 K(s) 0 0

−K(s) 0 κ(s) 0
0 −κ(s) 0 τ(s)−K(s)
0 0 −(τ(s)−K(s)) 0




T (s)
N1 (s)
N2 (s)
N3 (s)

 ,

(2.1)
where K(s), κ(s) and τ(s)−K(s) are the principal curvature, the torsion and the
bitorsion of β, respectively [2].

Note that we only examine quaternionic curves in the present article. However,
we studied spatial quaternionic curves in [13].

3. A Differential Equation for Quaternionic Curves

In this section, we derive a general differential equation including the distance
function and its derivatives for quaternionic curve with the non-zero curvatures.
Then, with the help of this differential equation, we give characterizations for the
quaternionic curve lying on the 3−sphere (spherical curve) and the rectifying quater-
nionic curve.

Proposition 3.1. β : I → H is a unit speed quaternionic curve parameterized by
the arc length parameter s ∈ I with non-zero curvatures and d(s) = ‖β(s)‖ is the
distance function of β. Then the function f(s) = d(s)d

′
(s) satisfies the differential

equation

ρσω2

ω−σ f
(iv)

(s) +
(

(ρσω
2

ω−σ )
′
+
(

2ρω
′
+ ρ

′
ω
)

ωσ
ω−σ

)
f

′′′
(s)

+

(
(3(ρω

′
)
′
+
(
ρ

′
ω
)′

+ ρ
ω + ω

ρ ) ωσ
ω−σ +

(
2ρω

′
+ ρ

′
ω
)

( ωσ
ω−σ )

′
+ ρ(ω−σ)

σ

)
f

′′
(s)

+
(

((ρω
′
)
′′

+ 2( ρω )
′
+ (ωρ )

′
) ωσ
ω−σ +

(
(ρω

′
)
′
+ ρ

ω + ω
ρ

)
( ωσ
ω−σ )

′
+ ρω

′ ω−σ
ωσ

)
f

′
(s)

+(
(

( ρω )
′ ωσ
ω−σ

)′

+ ρ(ω−σ)
ω2σ )f (s)−

((
(ρω

′
)
′
+ ω

ρ

)
ωσ
ω−σ

)′

− ρω′ (ω−σ)
ωσ = 0

(3.1)

where ρ = 1
κ(s) , σ = 1

τ(s) and ω = 1
K(s) .

Proof. Let β : I → H be the unit speed quaternionic curve parameterized by the
arc length parameter s ∈ I with non-zero curvatures. If we take the derivative of
d2 (s) = ‖β (s)‖2 = h(β (s) , β(s)), we get

f (s) = h (β (s) , T (s)) ,(3.2)
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where f(s) = d(s)d
′
(s). By differentiating (3.2) and using (2.1), we obtain

ωf
′
(s)− ω = h (β (s) , N1 (s)) .(3.3)

Taking derivative of (3.3) and using (2.1) and (3.2), we find

ρωf
′′

(s) + ρω
′
f

′
(s) +

ρ

ω
f (s)− ρω

′
= h (β (s) , N2 (s)) .(3.4)

By differentiating (3.4) and using (2.1) and (3.3), we arrive

ρσω2

ω−σ f
′′′

(s) +
(

2ρω
′
+ ρ

′
ω
)

ωσ
ω−σf

′′
(s) +

(
(ρω

′
)
′
+ ρ

ω + ω
ρ

)
ωσ
ω−σf

′
(s)

+( ρω )
′ ωσ
ω−σf (s)−

(
(ρω

′
)
′
+ ω

ρ

)
ωσ
ω−σ

= h (β (s) , N3 (s)) .

(3.5)

Lastly, taking derivative of (3.5) and using (2.1) and (3.4), we have

ρσω2

ω−σ f
(iv)

(s) +
(

(ρσω
2

ω−σ )
′
+
(

2ρω
′
+ ρ

′
ω
)

ωσ
ω−σ

)
f

′′′
(s)

+

((
2ρω

′
+ ρ

′
ω
)′

ωσ
ω−σ +

(
2ρω

′
+ ρ

′
ω
)

( ωσ
ω−σ )

′
+
(

(ρω
′
)
′
+ ρ

ω + ω
ρ

)
ωσ
ω−σ

)
f

′′
(s)

+

((
(ρω

′
)
′
+ ρ

ω + ω
ρ

)′
ωσ
ω−σ +

(
(ρω

′
)
′
+ ρ

ω + ω
ρ

)
( ωσ
ω−σ )

′
+ ( ρω )

′ ωσ
ω−σ

)
f

′
(s)

+
(

( ρω )
′ ωσ
ω−σ

)′

f (s)−
(

(ρω
′
)
′
+ ω

ρ

)′
ωσ
ω−σ −

(
(ρω

′
)
′
+ ω

ρ

)
( ωσ
ω−σ )

′

= −(ω−σσω )
(
ρωf

′′
(s) + ρω

′
f

′
(s) + ρ

ωf (s)− ρω′
)

and thus we obtain (3.1).

Now, we can give below the known characterizations for spherical and quater-
nionic rectifying curves as consequences of Proposition 3.1.

Corollary 3.1. [9] A unit speed quaternionic curve β : I → H is a spherical if and
only if (

ωσ

ω − σ

(
(ρω

′
)
′
+
ω

ρ

))2

+ (ρω
′
)2 + ω2 = r2,(3.6)

where r > 0 is a constant.

Proof. Let β (s) be a spherical curve that is a quaternionic curve lying on 3−sphere
with radius r. Then the distance function of β (s) satisfies d (s) = r which implies
f = dd

′
= 0. The differential equation (3.1) reduces to((

(ρω
′
)
′
+
ω

ρ

)
ωσ

ω − σ

)′

+ ρω
′ (ω − σ)

ωσ
= 0.(3.7)
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Multiplying both sides of (3.7) by

2
ωσ

ω − σ

(
(ρω

′
)
′
+
ω

ρ

)
gives

2
ωσ

ω − σ

(
(ρω

′
)
′
+
ω

ρ

)((
(ρω

′
)
′
+
ω

ρ

)
ωσ

ω − σ

)′

+ 2ρω
′
(ρω

′
)
′
+ 2ωω

′
= 0.(3.8)

By integrating (3.8) we get (3.6).

Conversely, we assume that β(s) is a unit speed quaternionic curve with non-zero
curvatures satisfies (3.6). From (2.1) and (3.7), we have(

β(s) + ωN1 + (ω
′
ρ)N2 +

ωσ

ω − σ

(
(ρω

′
)
′
+
ω

ρ

)
N3

)′

= 0.

Thus, we obtain

h(β(s)−M,β(s)−M) = r2

which implies β(s) lies on 3−sphere with center M and radius r > 0 that is β(s) is
a spherical curve.

Corollary 3.2. [7] A unit speed quaternionic curve β : I → H is a rectifying if and
only if (

ρσ

ω − σ
+

ωσ

ω − σ
(s+ c)

( ρ
ω

)′)′

+
ρ(ω − σ)

σω2
(s+ c) = 0,(3.9)

where c is a constant.

Proof. Assume that β (s) is a quaternionic rectifying curve. Then the distance
function d (s) = ‖β (s)‖ is given by

d (s) =
√
s2 + c1s+ c2,

where c1 and c2 are constants. Hence, from f (s) = d (s) d
′
(s) we get

f (s) =
√
s2 + c1s+ c2

2s+ c1

2
√
s2 + c1s+ c2

= s+ c,

where c = c1/2. Substituting f (s) = s + c, f
′
(s) = 1 and f

′′
(s) = f

′′′
(s) =

f (iv) (s) = 0 into (3.1), we obtain

((ρω
′
)
′′

+ 2( ρω )
′
+ (ωρ )

′
) ωσ
ω−σ +

(
(ρω

′
)
′
+ ρ

ω + ω
ρ

)
( ωσ
ω−σ )

′
+ ρω

′ ω−σ
ωσ

+(
(

( ρω )
′ ωσ
ω−σ

)′

+ ρ(ω−σ)
ω2σ ) (s+ c)−

((
(ρω

′
)
′
+ ω

ρ

)
ωσ
ω−σ

)′

− ρω′ (ω−σ)
ωσ = 0



Characterizations of some special quaternionic curves 715

or

2( ρω )
′ ωσ
ω−σ + ρ

ω ( ωσ
ω−σ )

′
+ (
(

( ρω )
′ ωσ
ω−σ

)′

+ ρ(ω−σ)
ω2σ ) (s+ c) = 0.(3.10)

If (3.10) is arranged, then we get (3.9).

Conversely, we suppose that Equation (3.9) satisfies and we consider

X (s) = β (s)− (s+ c)T (s)− ρ

ω
(s+ c)N2 (s)− σω

ω − σ

(
(s+ c)

( ρ
ω

)′

+
ρ

ω

)
N3 (s) .

(3.11)
Differentiating (3.11) and using (2.1) and (3.9), we find

X
′
(s) = − (s+ c) 1

ωN1 (s)−
(
ρ
ω

)′
(s+ c)N2 (s)

− ρ
ωN2 (s)− ρ

ω (s+ c)
(
− 1
ρN1 (s) + ω−σ

σω N3 (s)
)

−( σω
ω−σ )

′
(

(s+ c)
(
ρ
ω

)′
+ ρ

ω

)
N3 (s)− σω

ω−σ

(
(s+ c)

(
ρ
ω

)′
+ ρ

ω

)′

N3 (s)

+
(

(s+ c)
(
ρ
ω

)′
+ ρ

ω

)
N2 (s)

= 0

which implies that X is a constant vector. Therefore, β(s) is a quaternionic recti-
fying curve.

Corollary 3.3. Let β : I → H be a unit speed quaternionic curve. Then for a
constant c

h2 (β (s) , N1 (s)) + h2 (β (s) , N2 (s)) + h2 (β (s) , N3 (s)) = c2(3.12)

holds if and only if either β(s) is a spherical curve or a rectifying curve.

Proof. Assume that β (s) is a unit speed quaternionic curve satisfying the equation
(3.12). By differentiating (3.12) and using (2.1), we get

1

ω
h (β (s) , T (s))h (β (s) , N1 (s)) = 0.(3.13)

On the other hand, since β(s) can be written as

β (s) = h (β (s) , T (s))T (s) + h (β (s) , N1 (s))N1 (s)
+h (β (s) , N2 (s))N2 (s) + h (β (s) , N3 (s))N3 (s) ,

the distance functional becomes

d (s) =
√
h2 (β (s) , T (s)) + h2 (β (s) , N1 (s)) + h2 (β (s) , N2 (s)) + h2 (β (s) , N3 (s)).

(3.14)
Substituting (3.12) into (3.14), we obtain

d2 (s) = h2 (β (s) , T (s)) + c2.(3.15)
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After differentiating (3.15) and using (2.1), (3.13) and (3.2), we arrive

d (s) d
′
(s) = h (β (s) , T (s))

(
h (T (s) , T (s)) + 1

ωh (β (s) , N1 (s))
)

= h (β (s) , T (s)) + 1
ωh (β (s) , T (s))h (β (s) , N1 (s))

= f (s) .
(3.16)

Also, from (3.2) and (3.15) we have

d2 (s) = f2 (s) + c2.(3.17)

If we take the derivative of (3.17) and use (3.16), we find

d (s) d
′
(s) = f (s) f

′
(s) = f (s) .

Hence, either f (s) = 0 or f
′
(s) = 1 that is f (s) = s + c, where c is a constant.

Therefore, either β is a spherical curve or a rectifying curve.

Conversely, it is clear that if either unit quaternionic curve β(s) is a spherical
or a rectifying curve, then it is clear that (3.12) holds.

We now give an example for the results. For example, let’s take the following
example for Corollary 3.1 and Corollary 3.3.

Example 3.1. Let β(s) = cos(
√

2
3
s)+sin(

√
2
3
s)i+cos( 1√

3
s)j+sin( 1√

3
s)k be a unit speed

quaternionic curve in H (see, [5]). Then we have ρ = 3
√
10

2
, σ = 3

√
5

3
√
2+5

and w = 3
√
5

5
.

So, we see that the differential equation (3.6) satisfies and β lies on 3−sphere with radius
r =
√

2, that is, it is a spherical curve. Also, we obtain

T = −
√

2

3
sin(

√
2

3
s) +

√
2

3
cos(

√
2

3
s)i− 1√

3
sin(

1√
3
s)j +

1√
3

cos(
1√
3
s)k,

N1 = − 2√
5

cos(

√
2

3
s)− 2√

5
sin(

√
2

3
s)i− 1√

5
cos(

1√
3
s)j − 1√

5
sin(

1√
3
s)k,

N2 =
1√
3

sin(

√
2

3
s)− 1√

3
cos(

√
2

3
s)i−

√
2

3
sin(

1√
3
s)j +

√
2

3
cos(

1√
3
s)k,

and

N3 =
1√
5

cos(

√
2

3
s) +

1√
5

sin(

√
2

3
s)i− 2√

5
cos(

1√
3
s)j − 2√

5
sin(

1√
3
s)k.

For c =
√

2, we see that Equation (3.12) is confirmed.

4. Characterization of Quaternionic General Helices

Helices are the simplest geometric shapes that can be observed in the molec-
ular structures of nature. Also, helices arise in nanosprings, carbon nanotubes,
DNA double, bacterial flagella, aerial hyphae in actynomycetes, bacterial shape in
spirochetes, horns, tendrils, vines, screws, springs, and helical stairs [4]. Due to
the presence of helices in these structures, it becomes very attractive to examine
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helices by scientists in different fields. From the view of differential geometry, a
general helix is defined by the property that its tangent vector makes a constant
angle with a fixed straight line (the axis of the general helix) and a general helix is
characterized by its curvature and torsion by means of a moving frame along the
curve. Lancret’s theorem states that a space curve is a general helix if and only if
its torsion τ and its curvature κ satisfy τ = cκ for some c ∈ R [1]. The general helix
concept for quaternionic curves was studied by Yoon [12]. Yoon gave characteri-
zations for quaternionic general helices with three interrelated theorems. Inspired
by [5], we rearrange the characterization of a quaternionic general helix with the
following theorem.

Theorem 4.1. Let β : I → H be a unit speed quaternionic curve with non-zero
curvatures. Then β(s) is a general helix if and only if

ρ

ω
= δC sin(

s∫
0

ω − σ
σω

ds),(4.1)

for C is a non-zero constant and δ is 1 or −1.

Proof. Let β (s) be a unit speed quaternionic curve with non-zero curvatures and
the axis of β(s) be the unit vector U . So, for a constant a, we have

h (T,U) = cos θ = a(4.2)

along β(s). By differentiating (4.2) and using (2.1), we get

h (N1, U) = 0.(4.3)

Again, by differentiating (4.3) and using (2.1), we obtain

h(N2, U) =
ρ

ω
a.(4.4)

Finally, if we take the derivative of (4.4) and use (2.1), then we have

h(N3, U) =
σω

ω − σ

( ρ
ω

)′

a.

Then, we can write the unit vector U as follows

U = aT (s) +
ρ

ω
aN2 (s) +

σω

ω − σ

( ρ
ω

)′

aN3 (s) .(4.5)

The differentiation of (4.5) and in view of the equation (2.1) gives[
(
ρ

ω
)
ω − σ
ωσ

+

(
σω

ω − σ

( ρ
ω

)′)′]
aN3 = 0
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which implies either a = 0 or

(
ρ

ω
)
ω − σ
ωσ

+

(
σω

ω − σ

( ρ
ω

)′)′

= 0.(4.6)

a = 0 means U = 0 which is a contradiction. Hence, only the equation (4.6) holds.
Multiplying both sides of (4.6) by

2 σω
ω−σ

(
ρ
ω

)′
gives

(
ρ

ω
)2 +

(
σω

ω − σ

( ρ
ω

)′)2

= C2,(4.7)

where C is a constant. If we arrange (4.7), then we get( ρ
ω

)′

= ∓ω − σ
σω

√
C2 − (

ρ

ω
)2.(4.8)

Integrating (4.8), we obtain (4.1).

Conversely, we suppose that β (s) is a quaternionic curve satisfying (4.1). We
take

U =
1√

1 + C2
T (s)+

δC√
1 + C2

sin(

s∫
0

ω − σ
σω

ds)N2(s)+
δC√

1 + C2
cos(

s∫
0

ω − σ
σω

ds)N3 (s) .

(4.9)
By differentiating (4.9) and using (2.1) and (4.1), we get

U
′

= 1
ρ
√
1+C2

(
ρ
ω − δC sin(

s∫
0

ω−σ
σω ds)

)
N1 (s) = 0.

This means that U is a constant vector that satisfies

h(T,U) = 1√
1+C2

= constant.

Therefore, β(s) is a quaternionic general helix.
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5. S. Deshmukh, I. Al-Dayel, K. İlarslan: Frenet curves in Euclidean 4-space.
Int. Electron. J. Geom. 10(2) (2017), 56–66.

6. S. Deshmukh, B. Y. Chen, N. B. Turki: A differential equation for Frenet
curves in Euclidean 3-space and its applications: Rom. J. Math. Comput. Sci.
8(1) (2018), 1–6.

7. M. A. Gungor and M. Tosun: Some characterizations of quaternionic rectifying
curves. Differ. Geom. Dyn. Syst. 13 (2011), 89–100.

8. K. Kunze and H. Schaeben: The bingham distribution of quaternions and its
spherical radon transform in texture analysis. Math. Geol. 36(8) (2004), 917–943.
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