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Abstract. We give some characterizations for submanifolds admitting almost η-Ricci-
Bourguignon solitons whose potential vector field is the tangential component of a
concurrent vector field on the ambient manifold. We describe the particular cases of
umbilical submanifolds and of hypersurfaces in a space with constant curvature.
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1. Introduction

Starting with Hamilton’s paper, who introduced the Ricci flow around 1990s
[7], the theory of Ricci solitons has been developed continuously. The Ricci flow is
an evolution equation for a Riemannian metric, whose stationary solutions are the
Ricci solitons. Their study is totally justified by the fact that their properties can
provide useful information about the flow. Different notions of geometric solitons
have recently been considered in the Riemannian setting, on manifolds carrying
various structures or having certain types of potential vector fields. Throughout,
almost η-Ricci solitons and almost η-Yamabe solitons with torse-forming potential
vector field have been treated by the authors in [1]. Another generalization of Ricci
soliton, namely, η-Ricci-Bourguignon soliton, will be further considered. Precisely,
if (M, g) is a Riemannian manifold of dimension n, V is a vector field and η is a

Received March 18, 2022. accepted April 29, 2022.
Communicated by Uday Chand De
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1-form on M , then the data (g, V, α, β, γ) define an η-Ricci-Yamabe soliton (which
we shall call, η-Ricci-Bourguignon soliton and will denote it by η-RBS) if [8]

1

2
£V g +Ric = (α+ βscal)g + γη ⊗ η,(1.1)

where £V g stands for the Lie derivative of g in the direction of V , Ric is the Ricci
curvature, scal is the scalar curvature and α, β, γ are real numbers. If α, β, γ are
smooth functions on M , then we talk about an almost η-RBS. In particular, if
γ = 0, (1.1) defines a β-Einstein soliton [2].

In this short paper, we point out some properties of almost η-RBS solitons whose
potential vector field is concurrent, with a special view towards submanifolds. We
prove that, under certain assumptions, if the manifold is Ricci symmetric, then its
scalar curvature is constant. For the 3-dimensional case, we obtain some conditions
on the defining functions α, β, γ. Also, we discuss the case when we have such type
of soliton on a submanifold isometrically immersed into a Riemannian manifold,
and whose potential vector field is the tangential component of a concurrent vector
field on the ambient manifold. For the particular cases of an umbilical submanifold,
of a pseudosymmetric hypersurface or isometrically immersed into a space of con-
stant curvature, we formulate some conclusions. Also, we provide a necessary and
sufficient condition for an orientable hypersurface immersed into the unit sphere to
admit such type of soliton whose potential vector field is the tangential component
of a concurrent vector field on the Euclidean space.

2. Solitons with concurrent vector field

Assume further that V is a concurrent vector field [10], that is, ∇V = I, where ∇
is the Levi-Civita connection of g and I is the identity map. Then £V g = 2g, hence
V is a conformal vector field, and from (1.1), we derive

Ric = (α+ βscal − 1)g + γη ⊗ η,(2.1)

hence
Q = (α+ βscal − 1)I + γη ⊗ τ,(2.2)

where g(QX1, X2) := Ric(X1, X2) and iτg = η, and also

scal =
1

1− nβ
[
n(α− 1) + γ|τ |2

]
,(2.3)

provided β 6= 1
n .

Therefore, in particular cases, the soliton equation is very similar to the equation
that defines a quasi-Einstein manifold. Recall that a non-flat Riemannian manifold
(M, g) (n ≥ 3) is said to be a quasi-Einstein manifold [3], if Ric is not identically
zero and satisfies

Ric = a1g + a2A⊗A,
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for a1 and a2 non-zero smooth functions and A a non-zero 1-form. The functions
a1 and a2 are called associated functions.

Now, using (2.1), we obtain

Proposition 2.1. If (g, V, α, β, γ) defines an almost η-RBS on M with concurrent
vector field V , then M is a quasi-Einstein manifold and the associated functions are
(α+ βscal − 1) and γ.

Now from ∇V = I, we also obtain

R(X1, X2)V = 0(2.4)

for any X1, X2 ∈ χ(M). Differentiating covariantly (2.1), we infer

(∇X1
Ric)(X2, X3) = [X1(α) +X1(β)scal + βX1(scal)]g(X2, X3)(2.5)

+γ[η(X3)(∇X1
η)X2 + η(X2)(∇X1

η)X3] +X1(γ)η(X2)η(X3),

for any X1, X2, X3 ∈ χ(M) and we obtain

Proposition 2.2. Let (g, V, α, β, γ) define an η-RBS on M (α, β, γ ∈ R, β 6= 0)
with concurrent potential vector field V and ∇η = 0. Then

(a) R(X1, X2)V = 0, for any X1, X2 ∈ χ(M), in particular, V ∈ kerQ;

(b) M is Ricci symmetric (that is, ∇Ric = 0) if and only if M has constant
scalar curvature;

(c) Ric is a Codazzi tensor field (that is, (∇X1
Ric)(X2, X3) = (∇X2

Ric)(X1, X3),
for any X1, X2, X3 ∈ χ(M)) if and only if d(scal)⊗ I = I ⊗ d(scal).

Proof. If V is concurrent and α, β, γ are constant, from (2.4) follows (a). From
(2.5), we deduce

(∇X1
Ric)(X2, X3) = βX1(scal)g(X2, X3),

for any X1, X2, X3 ∈ χ(M) and we find (b) and (c).

Next we shall make some remarks on the 3-dimensional case. It is known that
the Riemann curvature tensor of a 3-dimensional Riemannian manifold (M, g) is
given by

R(X1, X2)X3 = Ric(X2, X3)X1 −Ric(X1, X3)X2(2.6)

+g(X2, X3)QX1 − g(X1, X3)QX2 −
scal

2
[g(X2, X3)X1 − g(X1, X3)X2],

for any X1, X2, X3 ∈ χ(M).

For ∇V = I, (2.1), (2.2) and (2.6) imply

R(X1, X2)X3 =

[(
2(α− 1) +

4β − 1

2
scal

)
g(X2, X3) + γη(X2)η(X3)

]
X1(2.7)
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−
[(

2(α− 1) +
4β − 1

2
scal

)
g(X1, X3) + γη(X1)η(X3)

]
X2

+γ[η(X1)g(X2, X3)− η(X2)g(X1, X3)]V.

Therefore, by means of (2.4) and (2.7), we infer[(
2(α− 1) +

4β − 1

2
scal

)
+ γ|V |2

]
η(X2)X1

=

[(
2(α− 1) +

4β − 1

2
scal

)
+ γ|V |2

]
η(X1)X2,

for any X1, X2 ∈ χ(M), which implies(
2(α− 1) +

4β − 1

2
scal

)
+ γ|V |2 = 0(2.8)

and we can state:

Proposition 2.3. Let (g, V, α, β, γ) define an η-RBS on a 3-dimensional manifold
M with concurrent potential vector field V .

(a) If β = 1
2 , then α = 1, γ = − 1

2|V |2 scal.

(b) If β 6= 1
2 , then the scalar curvature equals to 2(α−1)

1−2β .

Proof. From (2.3) we have

γ|V |2 = (1− 3β)scal − 3(α− 1).(2.9)

Combining (2.9) with (2.8), we find

(1− 2β)scal = 2(α− 1).(2.10)

For β = 1
2 , (2.10) implies α = 1 and we get (a) by means of (2.9).

Remark 2.1. From the previous proposition, we deduce that if β = 1
2
, then γscal ≤ 0

and if β 6= 1
2
, then (α− 1)(2β − 1)γ ≥ 0.

Also, differentiating covariantly (2.10) and (2.9) with respect to X1, we conse-
quently obtain

βX1(scal) +X1(β)scal = −X1(α)(2.11)

and

γX1(|V |2) +X1(γ)|V |2 = −3[βX1(scal) +X1(β)scal +X1(α)](2.12)

and we can state:
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Proposition 2.4. Let (g, V, α, β, γ) define an η-RBS on a 3-dimensional manifold
M with concurrent potential vector field V .

(a) If M is connected and α, β are constant, then the scalar curvature of M is
constant provided β 6= 1

2 .

(b) If α, β and γ are constants, then the vector field V is collinear with grad(scal)
provided γ 6= 0.

Proof. (a) follows from (2.11) and for (b), notice that, if α, β and γ are constants,
then, for any X1 ∈ χ(M), we get

γX1(|V |2) = −3βX1(scal),

from (2.12), which is equivalent to

2γg(X1, V ) = −3βg(X1, grad(scal)),

hence the conclusion.

3. Submanifolds as almost η-RBS

Let
(
M̃, g̃

)
be a Riemannian manifold, let M be an n-dimensional isometrically

immersed submanifold and denote by g the induced Riemannian metric on M .

Then the two Levi-Civita connections, ∇ and ∇̃, on (M, g) and
(
M̃, g̃

)
, respectively,

satisfy the Gauss and Weingarten equations:

∇̃X1
X2 = ∇X1

X2 + h(X1, X2),

∇̃X1
N = −BN (X1) +∇⊥X1

N,

where h is the second fundamental form and BN is the shape operator in the
direction of the normal vector field N , that is, g̃(BN (X1), X2) = g̃(h(X1, X2), N)
for X1, X2 ∈ χ(M).

The submanifold M is said to be N -umbilical [4] (with respect to a normal
vector field N), if its shape operator satisfies BN = ϕI, for ϕ a function on M and
I is the identity map.

Now we shall describe almost η-RBS on a submanifold M having as potential
vector field the tangential component of a concurrent vector field V on M̃ , that is,
∇̃V = I.

Let X1, X2 ∈ χ(M). Then

X1 = ∇̃X1
V = ∇X1

V T + h(X1, V
T )−BV ⊥(X1) +∇⊥X1

V ⊥
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and we infer
∇X1V

T = X1 +BV ⊥(X1).

Then we get

1

2
(£V T g)(X1, X2) =

1

2
[g(∇X1

V T , X2) + g(∇X2
V T , X1)]

= g(X1, X2) + g̃(h(X1, X2), V ⊥)

and we can state:

Theorem 3.1. If V is a concurrent vector field on
(
M̃, g̃

)
, then (g, V T , α, β, γ)

defines an almost η-RBS on M if and only if

Ric(X1, X2) = (α+ βscal − 1)g(X1, X2) + γη(X1)η(X2)(3.1)

−g̃(h(X1, X2), V ⊥),

for any X1, X2 ∈ χ(M), where Ric is the Ricci curvature tensor of M .

Contracting now (3.1), if we denote by ρ−→
H

the restriction of g̃(
−→
H,V ⊥) to M ,

we get the expression of the scalar curvature of M

scal =
n(α− 1− ρ−→

H
) + γ|τ |2

1− nβ
,

provided β 6= 1
n .

Now, for a V ⊥-umbilical submanifold, by means of (3.1), we state:

Corollary 3.1. If V is a concurrent vector field on
(
M̃, g̃

)
and M is V ⊥-umbilical,

then (g, V T , α, β, γ) defines an almost η-RBS on M if and only if M is a quasi-
Einstein manifold with associated functions (α+ βscal − 1− ϕ) and γ.

In the particular case of a hypersurface, since

g̃
(
h(X1, X2), V ⊥

)
= g(B(X1), X2)g̃(N,V ⊥) = H(X1, X2)g̃(N,V ⊥),

where N is the unit normal vector field of M and H is the second fundamental
tensor field, if we denote by ρ the restriction of g̃(N,V ⊥) to M , then we obtain:

Corollary 3.2. If V is a concurrent vector field on
(
M̃, g̃

)
and M is a hypersur-

face of M̃ , then (g, V T , α, β, γ) defines an almost η-RBS on M if and only if the
equality

Ric = (α+ βscal − 1)g − ρH + γη ⊗ η(3.2)

holds on M .
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If the ambient space is of constant curvature, we prove the next result.

Theorem 3.2. If V is a concurrent vector field on an (n + 1)-dimensional Rie-

mannian manifold
(
M̃(c), g̃

)
of constant curvature c, M is a hypersurface of M̃

and (g, V T , α, β, γ) defines an almost η-RBS on M , then the second fundamental
tensor field H of M satisfies

H2 = [ρ+ trace(H)]H − γη ⊗ η(3.3)

+
[
(n− 1)c− α− β

(
(trace(H))

2 − trace
(
H2
)

+ n(n− 1)c
)
− 1)

]
g.

Proof. From the Gauss equation, we have

Ric(X1, X2) = trace(H)H(X1, X2)−H2(X1, X2) + (n− 1)cg(X1, X2)(3.4)

and
scal = (trace(H))

2 − trace
(
H2
)

+ n(n− 1)c.

Comparing the right hand sides of (3.2) and (3.4), we find[
α+ β

(
(trace(H))

2 − trace
(
H2
)

+ n(n− 1)c
)
− 1
]
g(X1, X2)

−ρH(X1, X2) + γη(X1)η(X2)

= trace(H)H(X1, X2)−H2(X1, X2) + (n− 1)cg(X1, X2),

thus we obtain (3.3).

It is known that the position vector field of a hypersurface isometrically im-
mersed into an Euclidean space is a concurrent vector field. Therefore, Theorem
3.2 can be given, in this case, like follows.

Proposition 3.1. If V is the position vector field of an isometrically immersed
hypersurface M in an Euclidean space and (g, V T , α, β, γ) defines an almost η-RBS
on M , then the second fundamental tensor field H of M satisfies

H2 = [ρ+ trace(H)]H − γη ⊗ η −
[
α+ β

(
(trace(H))

2 − trace
(
H2
))
− 1)

]
g.

Moreover, it is a gradient soliton with the potential vector field V T = grad(f), for
f := 1

2 (|V T |2 + ρ2).

Proof. Just remark that, since for any vector field X1 on M , we have

∇X1V
T = X1 + ρBN (X1) and grad(ρ) = −BN (V T ),

we infer

X1(f) =
1

2

(
X1(|V T |2) +X1(ρ2)

)
= g(∇X1

V T , V T ) + ρX1(ρ) = g(X1, V
T ).
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Now we will look at pseudosymmetric hypersurfaces of a Riemannian manifold of
constant curvature and prove that, under certain assumptions, if the hypersurface
admits an η-RBS having as potential vector field the tangential component of a
concurrent vector field on the ambient space, then it must be a β-Einstein soliton.
Let (M, g) be a Riemannian manifold and let R be its Riemann curvature tensor
field. Then the tensor fields R ·R and Q(g,R) are defined by

(R(X1, X2) ·R) (U1, U2, U3, U4) := −R(R(X1, X2)U1, U2, U3, U4)

−...−R(U1, U2, U3, R(X1, X2)U4)

and
Q(g,R)(U1, U2, U3, U4;X1, X2) := −R((X1 ∧X2)U1, U2, U3, U4)

−...−R(U1, U2, U3, (X1 ∧X2)U4),

respectively, where X1 ∧X2 is given by

(X1 ∧X2)X3 := g(X2, X3)X1 − g(X1, X3)X2,

for X1, X2, X3, U1, U2, U3, U4 ∈ χ(M) [5].

An n-dimensional Riemannian manifold (M, g) is said to be pseudosymmetric,
if the condition

R ·R = fQ(g,R)

holds on the set U defined by

U :=

{
p ∈M :

(
R− scal

n(n− 1)
G

)
6= 0 at p

}
,

where f is some smooth function on U and the (0, 4)-tensor field G is defined by

G(U1, U2, U3, U4) := g((U1 ∧ U2)U3, U4),

for U1, U2, U3, U4 ∈ χ(M) [5]. In [6], it was proved the following:

Lemma 3.1. Let
(
M̃(c), g̃

)
be an (n + 1)-dimensional Riemannian manifold of

constant curvature c (n ≥ 3) and let M be a hypersurface of M̃ . If at a point
p ∈ U ⊂M, the second fundamental tensor field H satisfies

H2 = αH + βg,

with α, β smooth functions, then the relation

R ·R =

(
s̃cal

n(n− 1)
− β

)
Q(g,R),

holds at p, where s̃cal is the scalar curvature of M̃ restricted to M .
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Then we can state the following result:

Theorem 3.3. Let
(
M̃(c), g̃

)
be an (n + 1)-dimensional Riemannian manifold

of constant curvature c (n ≥ 3), let M be a pseudosymmetric hypersurface of M̃ ,
whose second fundamental tensor field H satisfies

H2 = [ρ+ trace(H)]H(3.5)

+
[
(n− 1)c− α− β

(
(trace(H))

2 − trace
(
H2
)

+ n(n− 1)c
)
− 1
]
g

and let V be a concurrent vector field on M̃ . If (g, V T , α, β, γ) defines an almost
η-RBS on M , then it is a β-Einstein soliton.

Proof. Notice that (3.3) combined with (3.5) implies

γη ⊗ η = 0,

hence γ = 0, which means that the soliton is a β-Einstein soliton.

Further, a similar result as the one obtained in Theorem 3.3 given in [9], can be
formulated in our setting.

Let M be an immersed hypersurface of the sphere Sn+1(1). Denote by 〈·, ·〉 the
Euclidean metric on the Euclidean space En+2 and by g the induced metric on M ,
as well as, on Sn+1(1). Consider a concurrent vector field V on En+2. If N and B
are the unit normal vector field and the shape operator of M in Sn+1(1), and NS
is the unit normal vector field of Sn+1(1) in En+2, then we define the functions δ, %
on M by δ = 〈V,N〉 |M and % = 〈V,NS〉 |M and the restriction of V to M can be
represented as V |M= U + δN+ %NS, for U ∈ χ(M). Then we prove the following
result:

Theorem 3.4. Let V be a concurrent vector field on the Euclidean space En+2

and let M be an orientable hypersurface of the unit sphere Sn+1(1). Denote by ξ
the component of V tangent to Sn+1(1) and by U the component of ξ tangent to M.
Then (g, U, α, β, γ) defines an almost η-RBS on M if and only if the equality

H2 = [trace(H) + δ]H(3.6)

+
[
n− %− α− β

(
n(n− 1) + (trace(H))2 − trace(H2)

)]
g − γη ⊗ η

holds on M .

Proof. Let ∇,∇ and D be the Levi-Civita connections on M , Sn+1(1) and En+2,
respectively. We have

V |Sn+1(1)= ξ + %NS,
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and for any X1 ∈ χ(M), by taking the covariant derivative with respect to X1, we
obtain

X1 = DX1
V = DX1

ξ +X1(%)NS + %DX1
NS.

By means of Gauss and Weingarten formulas, we get

X1 = ∇X1ξ − g(X1, ξ)NS +X1(%)NS + %X1.

Looking at the tangential and the normal components, we deduce

∇X1
ξ + (%− 1)X1 = 0(3.7)

and
X1(%)− g(X1, ξ) = 0.

The vector field ξ on Sn+1(1) can be written as

ξ = U + δN

which combined with (3.7), gives

∇X1 (U + δN) + (%− 1)X1 = 0.

Again, from Gauss and Weingarten formulas, we infer

−(%− 1)X1 = ∇X1
U + g(B(X1), U)N +X1(δ)N − δB(X1).

Looking again at the tangential and the normal components, we deduce

∇X1
U = −(%− 1)X1 + δB(X1)(3.8)

and
0 = g(B(X1), U) +X1(δ).

Therefore, for any X1, X2 ∈ χ(M), we have

(£Ug) (X1, X2) = g(∇X1
U,X2) + g(∇X2

U,X1)(3.9)

= −2(%− 1)g(X1, X2) + 2δH(X1, X2).

Since the Gauss equation for a hypersurface M in Sn+1(1) gives

Ric(X1, X2) = (n− 1)g(X1, X2) + trace(H)H(X1, X2)−H2(X1, X2),(3.10)

by means of (3.9) and (3.10), we infer

1

2
(£Ug) (X1, X2) +Ric(X1, X2) = (n− %) g(X1, X2)

+ [trace(H) + δ]H(X1, X2)−H2(X1, X2).
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Contracting now (3.10), we get

scal = n(n− 1) + (trace(H))2 − trace(H2).(3.11)

If there exist smooth functions α, β, γ on M such that (3.6) holds, then we get

1

2
(£Ug) (X1, X2) +Ric(X1, X2)

=
[
α+ β

(
n(n− 1) + (trace(H))2 − trace(H2)

)]
g (X1, X2) + γη(X1)η(X2),

hence (M, g) is an almost η-RBS. The other implication immediately follows.
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