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Abstract. This research study the k-Nearest Neighbors (k-NN) of the conditional mode
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1. Introduction

In the last decade, functional data has emerged as one of the primary areas
in the field of statisticalo analysis, which is due to the development of modern
measuring devices that allow for more extensive data to be collected. The evidence
of this interest is the numerous practical applications in medicine, econometrics,
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chemometrics, etc., as well as the publication of numerous scientific papers on this
area. Here we refer to Dauxois et al. [18] , Silverman [33], Bosq [11] for parametric
models and Ferraty and Vieu [23] for functional nonparametric models.

The estimation of the non parametric conditional mode is an alternative method
to estimate the conditional regression and has been extensively used in forecasting
field. In view of this, several authors have dealt with this model in their investiga-
tions (see Ferraty et al. [22], Ould-Säıd and Tatachak [27] and Khardani et al. [25]
and more recently Dabo-Niang et al. [16], for more discussion and motivation).

On the other hand, the Single functional index model (SFIM) is the subject of
numerous studies on nonparametric functional data (NFDA), particularly in the
field of econometrics. This statistical model is a very simple approach as it reduces
the dimension of space (Curse of dimensionality) ensuring some flexibility. The first
work in this topic was introduced by Ferraty et al. [21] for regression problems. For
more results in this context (see for instance, Ait-Säıdi et al. [1], Attaoui and Ling
[7], Goia and Vieu [24], Ling and Xu [30], Sang and Cao [35].)

The novelty of this paper stems from the combination of two approaches, LLE
and k-NN, which we will refer to as k-NN-LLE. Furthermore, this method allows us
to construct an attractive, robust estimator that converges quickly and is extremely
easy to be implemented in practice.

Note that the first technique that we are going to call local linear estimator
(LLE) is an alternative to local constant estimator (LCE) (classical kernel estimate
or Nadaraya Watson’s estimator NWE). However, the latter approach contains some
anomalies and this is due to the lack of local variations of the smoothing, which
gives us the problem of large bias term at the boundaries of data (boundary effects).
(see for instance, Ruppert and Wand [34] and Fan and Gijbels [20] in the multi-
variate case, and more recently, see Laksaci et al. [29] in the FDA setup among
others). For these reasons, the use of the local polynomial method is preferable to
the constant local approach. In fact, the variance term of the two methods are the
same, however in the infinite-dimensional case, the dispersion term depends on the
probability measure of the functionally explanatory variable φx(h) and this func-
tion plays an important role in the convergence rate. However, the bias term at
the boundaries of the data by using local linear estimation of k-nearest neighbors
is of order O

(
φ−1
x (k/n)2

)
), while by Nadaraya Watson’s estimator it is of order

O
(
φ−1
x (k/n)

)
) and this comparison indicates that the bais term by (k-NN-LLE) is

smaller than the kernel method.

Notice that the local linear smoothing in functional data analysis (FDA) has
only recently been discussed. In fact, the almost-complete convergence of the local
linear estimator of the conditional mode for independent and identically distributed
(i.i.d.) data was obtained by Demongeot et al. [17].However, Bouanani et al. [9],
they established the asymptotic normality of the conditional mode and this last
study was extended to the dependent functional data case (under strong mixing
conditions) by Bouanani et al. [10].

The second technique, that we are going to call k-NN, is an attractive method for
nonparametric estimation in infinite dimensional contexts and can take into account
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the local structure of the data. The motivation to use this method of k-NN is that
the local bandwidth of the k-NN is random and depends on the data, and the user
has only one parameter to control and take its values in a finite set. The initiator
of this approach goes back to [15] in a finite-dimensional, and is generalized in the
functional data framework by [12], [13], [32] and [8]. The most recent references are
listed in the citations: Chikr Elmezouar et al. [14], Almanjahie et al. [2], [3], [4],
[5] Alshahrani et al. [6], Mohammedi et al. [31].

The paper is organized as follows. In the following section, we introduce the
model and the k-NN Local Linear Estimator (k-NN-LLE) of the conditional mode.
The notations and hypotheses are given in the section 3. Under some conditions, we
establish the asymptotic normality of the k-NN-LLE in Section 4. The implemen-
tation of this model in practice is given in Section 5. where we compare between
the k-nn-LLE and the local constant estimator (LCE) (classical kernel estimate) by
simulation data. Finally, the last section 6. is dedicated to the proofs of the results.

2. Model and estimator

Consider n independent pairs of random variables (Xi, Yi) for i = 1, ..., n, we
assume that they are drawn from the pair (X,Y ). The latter is valued in F × R,
where F is a seperable Hilbert space with the norm || . || generated by an inner
product < ., . > . We consider the semi-metric dθ , associated to the single-index
θ ∈ F defined by ∀u, v ∈ F : dθ(u, v) :=|< u − v, θ >|. Under such topological
structure and for a fixed functional θ, we suppose that the conditional cumulative
distribution function(CDF) of Y givenX = x has a single-index structure θ ∈ F
denoted by F x

θ (.) exists and is given by :

for all y ∈ R, F x
θ (y) = P(Y ≤ y |< X = x, θ >).

This distribution is absolutely continuous with respect to the Lebesgue measure on
R and has bounded density, denoted by gxθ .
We consider the conditional distribution function (CDF) F x

θ (y) as a regression
model with the response variable δ(h−1

δ (y − Yi)), where δ is some cumulative dis-
tribution function and (hδ = hδ,n),is a sequence of positive real numbers. (See for
instance, Fan [19] in the finite dimensional case, and Rachid et al. [26] in functional
setting) ), i.e.,

E
(
δ(h−1

δ (y − Yi)) |< Xi = x, θ >
)
−→ F x

θ (y) as hδ −→ 0.

In the following part, we define the local linear estimator denoted by F̂ x
θ (y) of

F x
θ (y) obtained by the k-Nearest Neighbors (k-NN) approach based on the single-
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index model by

F̂ x
θ (y) =

n∑
i=1

n∑
i�=j,j=1

ωθ,ijδ(h
−1
δ (y − Yj))

n∑
i=1

n∑
i�=j,j=1

ωθ,ij

=

n∑
j=1

Ωθ,jKjΓj

n∑
j=1

Ωθ,jKj

,(2.1)

where wθ,ij = βθ,i (βθ,i − βθ,j)KiKj , Ωθ,j = K−1
j

(
n∑

i=1

wθ,ij

)
=

n∑
i=1

β2
θ,iKi −

(
n∑

i=1

βθ,iKi

)
βθ,j , with Ki = K

(
H−1

k (dθ(x,Xi))
)
and δj = δ

(
h−1

δ (y − Yj)
)
.

βθ,i = βθ(Xi, x) is a known bi-functional operator from F × F into R+, K is a
kernel, δ is a distribution function and (Hk = Hk,n) is a positive random variable,
defined as follows:

Hk(x) = min

{
h ∈ R+/

n∑
i=1

11B(x,h)(Xi) = k

}
.(2.2)

with
B(x, h) =

{
x

′
∈ F, dθ(x, x

′
) < h

}
.

Moreover, the estimation of the the conditional density function of Y given X
has a single-index structure θ ∈ F, is defined by:

∀y ∈ R, gxθ (y) = g(y |< X = x, θ >).

According to the same conditions used by Ferraty et al.[21], we suppose that
this model is differentiable with respect to x and θ such that < θ, e1 >= 1, where
e1 is the first vector of an orthonormal basis of F, then under this condition, the
identifiability of this model is assured . In other ways , for all ∀x ∈ F , we have :

g1(y |< ., θ1 >) = g2(y |< ., θ2 >) implies that g1 = g2 and θ1 ≡ θ2.

From Eq 2.1, we deduce an estimator for the conditional density with (LMM-kNN)
approach, defined by:

ĝxθ (y) =

n∑
i=1

n∑
i�=j,j=1

wθ,ijδ
(1)(h−1

δ (y − Yj))

hδ

n∑
i=1

n∑
i�=j,j=1

wθ,ij

=

n∑
j=1

Ωθ,jKjδ
(1)
j

hδ

n∑
j=1

ΩθjKj

,(2.3)

where δ(1) denotes the first derivative of δ.
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In our context, we focus on the estimation of the conditional mode in the func-
tional single index model denoted by µθ. Note that this estimate is not necessarily
unique, then for a given x, we chosen the compact set S = [µθ(x)−ξ, µθ(x)+ξ] such
that the conditional density of Y at X = x has a unique mode µθ(x) in S, which is
defined by

µθ(x) = sup
y∈S

gxθ (y)

A local linear estimator of µθ(x) based on the k-Nearest Neighbors approach is
defined by

µ̂θ(x) = sup
y∈S

ĝxθ (y).(2.4)

3. Hypotheses and notations

Let x (resp. y) be a fixed point in F (resp. in R), Nx (resp. Ny) denotes
a fixed neighborhood of x (resp. of y,) and φθ,x(h) = P(| µ(x) |≤ h), where
|µ(x)| = dθ(x,X). Morever, we denote the closed-ball the ball of center x and
radius r by Bθ(x, h) := {x′ ∈ F : | < θ, x− x′ > | ≤ h},
We will denote by C and C ′ some strictly positive constants.
The first condition is focused on the distribution of the functional variables and the
regularity of the model.

(H1) (i) For any h > 0, φθ,x(h) := P (X ∈ Bθ(x, h)) > 0, is an invertible function
and there exists a function Ψθ,x(·) such that:

∀t ∈ [0, 1], lim
h→0

φθ,x(th)

φθ,x(h)
= Ψθ,x(t).

(ii) For j = {0, 1, 2}, g
x(j)
θ (y) satisfies that there exist some positive con-

stants b1 and b2, such that:

| gx1(j)
θ (y1)− g

x2(j)
θ (y2) |≤ Cθ,x

(
db1θ (x1, x2)+ | y1 − y2 |b2

)
.

(H2) On the flatness of the conditional density g
(x)
θ

(i) There exists some integer j > 0, such that, gxθ is j-times continuously
differentiable with respect to y on (µθ(x)− ξ, µθ(x) + ξ) for ξ > 0.

(ii)




g
x(l)
θ (µθ(x)) = 0 if 1 ≤ l < j,

|gx(j)θ (µθ(x))| > 0.
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(H3) On the locating function βθ(., .).





for all z ∈ F, C | dθ(x, z) |≤| βθ(x, z) |≤ C ′ | dθ(x, z) |,

sup
v∈Bθ(x,r)

|βθ(v, x)− dθ(x, v)| = o(r),

h
∫
Bθ(x,h)

βθ(v, x)dPX(v) = o
(∫

Bθ(x,h)
β2
θ (v, x) dPC(v)

)
,

where dP (v) is the probability distribution of X.

(H4) On the kernels K and δ.

(i) The kernel K is a positive bounded kernel of class C1 over its support
[0, 1] and for which the first derivative K ′ satisfies: K(1) > 0, K ′(t) < 0,
for t ∈ [0, 1].

(ii) The kernel function δ is a 3-times continuously differentiable function
which is monotonous on its compact support and such that

∫
δ(1)(t) = 1,

∫
tδ(1)(t) = 0 and

∫
| t |b2 δ(1)(t)dt < ∞.

(H5) On the bandwidth hδ = hδ,n

lim
n→∞

hδ = 0, lim
n→∞

nhδφθ,x(h) = ∞ and lim
n→∞

log(n)

nhδφθ,x(h)
= 0.

(H6) On the parameter k = kn of neighbors:
The sequence of positive real numbers k satisfies,

lim
n→∞

φ−1
θ,x

(
k

n

)
= 0, lim

n→∞
nφ−1

θ,x

(
k

n

)
= ∞ and lim

n→∞

log(n)

nφ−1
θ,x (k/n)

= 0.

4. Main Results

Theorem 4.1. Under assumptions (H1)-(H6) and if the k-NN parameter k satis-

fies lim
n→∞

√
kh3

δ

(
φ−1
x

(
k

n

)b1

+ hb2
δ

)
= 0, we have

(
k h3

δ (g
x(2)
θ (µθ(x)))

2

σ2
θ(x, µθ(x))

)1/2

(µ̂θ(x)− µθ(x))
D−→N (0, 1),(4.1)
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where

σ2
θ(x, µθ(x)) =

M2 g
x
θ (µθ(x))

M2
1

∫
(δ(2)(t))2)2dt,

withe Mj = Kj(1)−
∫ 1

0

(Kj(u))′Ψ(θ,x)(u)du, for j = 1, 2,

A = {x ∈ F, g
x(2)
θ (µθ(x))g

x
θ (µθ(x)) �= 0},

D−→ denoting the convergence in distribution.

Proof. To simplify the proofs of our results let us note

ĝxθ,N (y) =
1

nhδ E(Ωθ,1K1)

n∑
j=1

Ωθ,jKjδ
(1)
j , ĝxθ,D =

1

nE(Ωθ,1K1)

n∑
j=1

Ωθ,jKj ,

where

ĝxθ (y) =
ĝxθ,N (y)

ĝxθ,D
.

Based on the Taylor expansion of ĝ
x(1)
θ (.) in the neighborhood of µθ(x) and according

to the assumptions (H2), we have

µ̂θ(x)− µθ(x) = −
ĝ
x(1)
θ (µθ(x))

ĝ
x(2)
θ (µ̄θ(x))

= −
ĝ
x(1)
θ,N (µθ(x))

ĝ
x(2)
θ,N (µ̄θ(x))

,(4.2)

where µ̄θ(x) is between µ̂θ(x) and µθ(x). Then, we can write :

√
k h3

δ (µ̂θ(x)− µθ(x)) = −

√
k h3

H

(
ĝ
x(1)
θ,N (µθ(x))− E

(
ĝ
x(1)
θ,N (µθ(x))

))
+
√
k h3

HE
(
ĝ
x(1)
θ,N (µθ(x))

)

ĝ
x(2)
θ,N (µ̄θ(x))

.

Then, the rest of the proof of this theorem is based on the following lemmas for
which proofs are given in the appendix 6.

Lemma 4.1. Under the condition of Theorem 4.1 and by assumptions (H2)-(H4),
we have: √

k h3
HE

(
ĝ
x(1)
θ,N (µθ(x))

)
P−→0, as n �−→ ∞,

Lemma 4.2. Under the assumptions of Theorem 4.1, we have

√
k h3

H

(
ĝ
x(1)
θ,N (µθ(x))− E

(
ĝ
x(1)
θ,N (µθ(x))

))
D−→N (0, σ2

θ(x, µθ(x)), as n �−→ ∞,

Lemma 4.3. Under the conditions of Theorem 4.1, we have:

ĝ
x(2)
θ,N (µ̄θ(x))

P−→g
x(2)
θ (µθ(x)), as n �−→ ∞,
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5. Simulation

Our main goal of this application is to display the usefulness of the conditional
mode in the functional single index model of Y given < x, θ > in a prediction
context. More precisely, we illustrate the performance and the superiority of our
estimator by using the criteria the mean square error (MSE). For this aim we
compare the (MSE) of the kNN local linear approach (the k-NN-LLE) is defined in
2.1 , over the local constant estimator (L.C.E) ( classical kernel method) is defined
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δ
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i=1

K(H−1
k,nd(x,Xi))δ
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K(H−1
k,nd(x,Xi))
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5.1. On the smoothing parameters (hΓ and k)

The bandwidth parameters are very crucial in nonparametric estimation be-
cause, as in the case we are studying, these parameters interfere with all asymptotic
properties, especially in improving the convergence rate. In this application, we use
the cross-validation (CV) method to select the h and k bandwidths. For the similar
technique used by Rachdi et al.[19] is used. We consider minimizing the squared
error in the local linear estimation of the conditional density for functional data
defined by the following criterion

1

n

n∑
i=1

W1(Xi)

∫ [
µ̂
(−i)
θ (y|Xi)

]2
W2(y)dy −

2

n

n∑
i=1

[
µ̂
(−i)
θ (y|Xi)

]
W1(Xi)W2(Yi),

where, µ̂
(−l)
θ (x) = supy∈S ĝ

(−l)
θ (y | x) is called the leave-one-out curve estimator,

which is expressed as the following

ĝ
(−l)
θ (y|Xl) =

h−1
δ

n∑
j=1,j �=l

n∑
i=1,i�=l

ωθ,ij(Xl)δ
(1)(h−1

Γ (y − Yj))

n∑
j=1,j �=l

n∑
i=1,i�=l

ωθ,ij(Xk)

.(5.2)

In our simulation study, we takeW1() = 1 andW2(y) = I[0.9×mini=1,..,n(Yi);1.1×mini=1,..,n(Yi)],
(see, for instance, Laksaci et al. [28]) for more discussions on the choice about weight
function.)

5.2. On the the single functional index model

The single functional index can be found in many areas of applied science, par-
ticularly econometrics, where it has demonstrated advantages such as reducing the
dimension of space (curse of dimensionality) and proposing an interpretation of the
results by estimating this function parameter. In practice, this parameter is un-
known, then by following the same idea as those in Attaoui et al. [7], we select the
single functional index model θ as follows :

• Step 1. We compute the mean curve of (Xi)i=1,..,100 by the routine func.mean
of the R-package fda.usc.

• Step 2. We Compute the covariance operator E[(X−E(X) < X, . >F] by using
the empirical covariance operator in the sample  = {1, ...., 100} and || =
100.

1

||
∑
i∈Λ

(Xi(s)−X(s))t(Xi(s)−X(s)), where X(s) =
1

||
∑
i∈Λ

Xi(s),(5.3)
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• Step 3. We calculate the eigenvectors of (5.3) ( empirical covariance operator).

The obtained results are shown in the following graphs 5.2

Fig. 5.2: The curve on the left represents the eigenfunctions θi(tj), tj ∈ [0, π], for
i = 7, 8.., 15, (resp. fori = 1, 2, .., 6)

To illustrate the performance of our estimator, we proceed the following algo-
rithm

• Step 1. We choose θ∗ the first eigenfunction corresponding to the first higher
eigenvalue.

• Step 2. We Compute the inner product

< θ∗, X1 >,< θ∗, X2 >, ..., < θ∗, X100 >

.

• Step 3. We generate the response variables Yi by the following relation

Yi = r (< θ∗, Xi >) + εi, where r (< θ∗, Xi >) = e(<θ∗,Xi>),

and εi simulate independently and follow the normal distribution N (0, 0.1).

• Step 4. Because of the nature of the data (the shape of the curves.(5.1), we
chose the following family of locating function βθ
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βθ(x1, x2) =

√∫ 1

0

θ∗(t)(x1(t)− x2(t))
2dt,

and

d(x1, x2) =

√∫ 1

0

(x1(t)− x2(t))
2dt.

• Step 5. We divide our observations into two subsets :

– (Xi, Yi)i=1,..,80, training sample.

– (Xj , Yj)j=81,..,100, test sample.

• Step 6. We choose a quadratic kernel K on [0, 1] and take K = δ(1).

• Step 7. For each j in the test sample, we compute Ŷj = µ̂θ∗(Xj) by using the
two approach (L.C.E) and (k-NN-LLE.

• Step 8. We present our results by plotting the boxplot of the prediction error
are represented in (Figure 5.3) and we compute the empirical mean square
error with k-NN-LLE (resp. L.C.E) :

– MSE=
1

20

20∑
i=1

(Yi − µ̂Xi

θ∗ (Yi))
2 = 0.007.

– MSE =
1

20

20∑
i=1

(Yi − µ̂Xi

LCE(Yi))
2 = 0.074.

Based on the Figure (5.3), the kernel method results are given on the center,
while the right part of Figure (5.3) presents the kNN local linear method (k-NN-
LLE). Then, we remark that the performance of the prediction is controlled by the
continuous line, in the sense that the efficiency of the prediction method is quantified
by the closeness of the dark point to this continuous line. Clearly, the comparison
results in (5.3) indicate that the method based on the local linear polynomial esti-
mation is much better and more efficient than the kernel method (LCE) . This is
confirmed by the mean squared error MSE(LCE) = 0.074 whereas MSE(k-NN-LLE)
= 0.007.
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Fig. 5.3: Comparison results betwenn the k-NN-local linear estimator and the
classical estimator (LCE)

6. Appendix

In our context, the smoothing parameter Hk is a random variable, which com-
plicates the proofs of our results. To solve this problem, the idea is to frame Hk

meaningfully by two non-random bandwidth parameters.

Proof. of Lemma 4.1

By applying lemma (3.2) of burba et al. [12], we denote:

Cn,θ(Dn) = ĝ
x(1)
θ (y), c = g

x(1)
θ (y) and Dn = Hn,k,

then we can write:

Cn,θ(Dn) =
C1

n,θ(Dn)

C0
n,θ(Dn)

,

where

Cr
n,θ(Dn) =

1

nh2r
δ E(Ωθ,1K1)

n∑
j=1

Ωθ,jKj

(
δ
(2)
j

)r

, for r ∈ {0, 1}

By using the fact that 11D−
n ≤Dn≤D+

a.co.−→1 when
k

n
−→ 0 (see [12]), we have:

Cj
n,θ(D

+
n ) ≤ Cj

n,θ(x,Dn) ≤ Cj
n,θ(D

−
n ), for j ∈ {0, 1}.(6.1)
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Then

E(C1
θ,n(D

+
n )) ≤ E(C1

θ,n(Dn)) ≤ E(C1
θ,n(D

−
n ))

For the expectation term we obtain:

E(C1
θ,n(D

−
n )) =

1

E(Ωθ,1K1)
E
(
Ωθ,1K1

(
E
(
h−2

δ δ(2)(y) |< X = x, θ >
)))

.

Morever, by using an integration by parts and by a change of variable t =
µθ(x)− u

hδ

,

we obtain:

E
(
δ(2)

(
µµµθ

(x)− Y1

hδ

) ∣∣ < X1, θ >

)
=

∫

R
δ(2)

(
θ(x)− u

hδ

)
gxθ (u)du

= h2
δ

∫

R
δ(1)(t)g

x(1)
θ (µθ(x)− thδ)dt.

Now, by using a two order Taylor expansion of g
x(1)
θ around θ(x) we can deduce

that √
kh3

δE(g
x(1)
N (µθ(x))) =

√
kh3

δ

∫
R δ(2)(t)

[
g
x(1)
θ (µθ(x))dt

]

−
√
kh3

δ

∫
R δ(2)(t)

[
thδg

x(2)
θ (µθ(x))dt

]

+
√
kh3

δ

∫
R h2

δ t
2δ(2)(t)g

x(3)
θ (µ̄θ(x))dt.

Then 4.1 is a simple consequence of this last result with the condition of Theorem
4.1 and under assumptions (H2) and (H4).

Proof. of Lemma 4.2.

√
kh3

δ

(
ĝ
x(1)
θ,N (µθ(x))− E(ĝx(1)θ,N (µθ(x)))

)
=

√
kh3

δ

(
C1

n,θ(Dn)− E(C1
n,θ(Dn))

)

=
√
kh3

δ

(
C1

n,θ(D
+
n )− E(C1

n,θ(D
+
n ))

)
︸ ︷︷ ︸

I1,θ

(6.2)

−
√
khΓ

(
E(C1

n,θ(Dn)− E(C1
n,θ(D

+
n ))

)
︸ ︷︷ ︸

I2,θ

+
√
kh3

δ

(
C1

n,θ(Dn)− C1
n,θ(D

+
n )

)
︸ ︷︷ ︸

I3,θ

.

Then, the decomposition (6.2) becomes:

√
kh3

δ

(
ĝ
x(1)
θ,N (µθ(x))− E(ĝx(1)θ,N (µθ(x)))

)
= I1,θ + I2,θ + I3,θ.
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In order to establish the asymptotic normality of formula (6.2), we apply Slut-
sky’s Theorem which gives us the following formulas

I1,θ
D−→N (0, σθ(x, µθ(x))), as n −→ ∞.(6.3)

I2,θ
P−→0, , as n −→ ∞.(6.4)

I3,θ
P−→0, as n −→ ∞.(6.5)

Proof. of Eq 6.3

Was proven in Corollary 4.1 of Bouanani et al . [9] by choosing the bandwidth
parameters as as hK = D+

n .

Proof. of Eq 6.4

For the term Iθ,2 with Dn = Hn,k, we use again equation 6.1. This leads:

√
kh3

δ |E(C1
n,θ(Dn))− E(C1

n,θ(D
+
n ))| ≤

√
kh3

δ |E(C1
n,θ(D

−
n ))− E(C1

n,θ(D
+
n ))|

≤
√

kh3
δ |E(C1

n,θ(D
−
n ))− c |︸ ︷︷ ︸

E1

+
√

khΓ|E(C1
n,θ(D

+
n ))− c|︸ ︷︷ ︸

E2

.

Morever, by applynig Lemma1 of Laksaci et al. [29], we have

| gx(1)θ (y)− E(ĝx(1)θ,N (y)) |= O(hb1
K ) +O(hb2

δ )

By chossing the bandwidth parameter as hK = D+
n , where (D

−
n ) and (D+

n ) such
that:




φθ,x((D
+
n )) =

√
ζnφθ,x(h) =

√
ζn

k

n

φθ,x((D
−
n )) =

1√
ζn

φθ,x(h) =
1√
ζn

k

n

(6.6)

besides that ζn ∈]0, 1[ is bounded by 1, we get:

| gx(1)θ (µθ(x))− E(ĝx(1)θ,N (µθ(x)) |= O

(
φ−1
θ,x

(
k

n

)b1

+ hb2
δ

)
.

Thus, we get

√
kh3

δ (E1 + E2) = 2
√

kh3
δ O

(
φ−1
θ,x

(
k

n

)b1

+ hb2
δ

)
.
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Consequently , by using the condition of Theorem 4.1, we get

√
kh3

δ E(C1
n,θ(Dn))− E(C1

n,θ(D
+
n )) −→ 0 as n −→ ∞.

The proof of Claim2 is therefore complete.

To show the required result of Eq 6.5 , we following the same ideas as those used
in Eq 6.4.

Proof. of Lemma 4.3

we have µ̄θ(x) between µ̂θ(x) and µθ(x), then it suffices to prove that

µ̂θ(x)
P−→µθ(x), as n −→ ∞.

Due to gxθ is a continuous function, we have that: for all ξ > 0, there exists η(ξ) > 0
such that ∀y ∈ [µθ(x)− ξ, µθ(x) + ξ], we get

| gxθ (µθ(x))− gxθ (y) |≤ η(ξ) ⇒| µθ(x)− y |≤ ξ,

which implies that

P (| µθ(x)− y |> ξ) ≤ P (| gxθ (µθ(x))− gxθ (y) |> η(ξ)) .

By following the same ideas as those used in lemma burba et al. [12], we denot:

Cn,θ(Dn) = g
x(2)
θ,N (µθ(x)) and c = g

x(2)
θ (µθ(x)).

By using again the relationship 6.1, we get

| Cn,θ(Dn)− c | ≤ | Cn,θ(D
−
n )− c |(6.7)

≤ | Cn,θ(D
−
n )− E(Cn,θ(D

−
n )) |︸ ︷︷ ︸

E′
1

+ | c− E(Cn,θ(D
−
n ) |︸ ︷︷ ︸

E′
2

.

Then, by applying Lemma 6 and 7 of Laksaci et al. [29] and under condition of
theorme and assumption (H6), that the term E′

1 and E′
2 converges in probability

to 0.

7. Conclusion and Perspectives

In this research paper, we have investigated the k-NN method in a single index
of the nonparametric estimation of the conditional mode function using the local
linear method. Under mild regularity conditions, we establish asymptotic normality
of the k-NN single index of our estimator by giving an explicit expression of the
terms of bias and its the variance.
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The advantage of our method is double. On one hand, the functional local linear
estimator can improve the estimation accuracy of the conditional mode function by
using a high-order kernel. On the other hand, the k-nearest neighbor estimator
takes into account the local structure of the data and gives better predictions when
the functional data are heterogeneously concentrated.

The current research opens some crucial tracks for the future. In particular, it
would be interesting to extend our work to: the local polynomial setting, α−mixing
or ergodic data, the response and the covariate are both of functional structure,
censored, truncated or missing data in the case of censored data.
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