FACTA UNIVERSITATIS (NIŠ) Ser. Math. Inform. Vol. 39, No 1 (2024), 21-31 https://doi.org/10.22190/FUMI220322001E Original Scientific Paper # ONE-SIDED GENERALIZED (α, β) -REVERSE DERIVATIONS OF ASSOCIATIVE RINGS #### Ayşe Engin and Neşet Aydın Department of Mathematics, Faculty of Science Canakkale Onsekiz Mart University, 17100 Canakkale, Turkiye **Abstract.** In this paper, we introduce the notion of the one-sided generalized (α, β) -reverse derivation of a ring R. Let R be a semiprime ring, ϱ be a non-zero ideal of R, α be an epimorphism of ϱ , β be a homomorphism of ϱ (α be a homomorphism of ϱ , β be an epimorphism of ϱ) and $\gamma: \varrho \to R$ be a non-zero (α, β) -reverse derivation. We show that there exists $F: \varrho \to R$, an l-generalized (α, β) -reverse derivation (an r-generalized (α, β) -reverse derivation) associated with γ iff $F(\varrho), \gamma(\varrho) \subset C_R(\varrho)$ and F is an r-generalized (β, α) -derivation (an l-generalized (β, α) -derivation) associated with (β, α) -derivation γ on ϱ . This theorem generalized the results of A. Aboubakr and S. Gonzalez proved in [1, Theorem 3.1, and Theorem 3.2]. **Keywords**: Semiprime ring, prime ring, one-sided generalized (α, β) -reverse derivation, (α, β) -reverse derivation. #### 1. Introduction Throughout the paper, R is an associative ring with Z, which the center of R denotes. Recall that a ring R is prime if for any $r_1, r_2 \in R$, $r_1Rr_2 = (0)$ implies $r_1 = 0$ or $r_2 = 0$, and is a semiprime in case $r_1 \in R$, $r_1Rr_1 = (0)$ implies $r_1 = 0$. For $r_1, r_2 \in R$, $[r_1, r_2]$ denotes the element $r_1r_2 - r_2r_1$. The symbol $[r_1, r_2]$ stands for Lie commutator of r_1 and r_2 and it satisfies the basic commutator identities: for each $r_1, r_2, r_3 \in R$, $[r_1 + r_2, r_3] = [r_1, r_3] + [r_2, r_3]$, $[r_1, r_2 + r_3] = [r_1, r_2] + [r_1, r_3]$, $[r_1r_2, r_3] = r_1[r_2, r_3] + [r_1, r_3]r_2$, $[r_1, r_2r_3] = [r_1, r_2]r_3 + r_2[r_1, r_3]$. We denote the Received March 22, 2022, revised: July 11, 2023, accepted: September 04, 2023 Communicated by Dijana Mosić Corresponding Author: Ayşe Engin. E-mail addresses: ayseayraan@gmail.com (A. Engin), ne-seta@comu.edu.tr (N. Aydın) $2010\ Mathematics\ Subject\ Classification.$ Primary 16N60; Secondary 16W30 © 2024 BY UNIVERSITY OF NIŠ, SERBIA | CREATIVE COMMONS LICENSE: CC BY-NC-ND identity mapping of R by id_R ; that is, the mapping $id_R : R \to R$ is defined as $id_R(r_1) = r_1$, for all $r_1 \in R$. For a non-empty subset A of R, $C_R(A)$ is defined as $C_R(A) = \{r \in R : [r, x] = 0$, for all $x \in A\}$. Let α, β be any two mapping of R. An additive mapping $\delta: R \to R$ is called an (α, β) -derivation if $\delta(r_1r_2) = \delta(r_1)\alpha(r_2) + \beta(r_1)\delta(r_2)$ holds, for all $r_1, r_2 \in R$. An additive mapping $\varphi: R \to R$ is called a right generalized (α, β) –derivation (a left generalized (α, β) –derivation) of R associated with δ , if $\varphi(r_1r_2) = \delta(r_1)\alpha(r_2) + \beta(r_1)\varphi(r_2)$ ($\varphi(r_1r_2) = \varphi(r_1)\alpha(r_2) + \beta(r_1)\delta(r_2)$), for all $r_1, r_2 \in R$ and φ is said to be a generalized (α, β) -derivation of R with δ if it is both a right and a left generalized (α, β) -derivation of R associated with δ . Many authors have investigated the relationship between the commutativity of a ring and the act of derivation $((\alpha, \beta)$ -derivation, reverse derivation, (α, β) -reverse derivation, generalized reverse derivation, etc.) defined on the ring. Herstein (1957) was the first to introduce the concept of reverse derivation. An additive mapping $g: R \to R$ is a reverse derivation if $g(r_1r_2) = g(r_2)r_1 + r_2g(r_1)$, for all $r_1, r_2 \in R$. In [4], it is shown that if a prime ring R with a characteristic different from two admits non-zero reverse derivation g, then g is a derivation of R. An additive mapping $d: R \to R$ is an (α, β) -reverse derivation if $d(r_1r_2) = d(r_2)\alpha(r_1) + \beta(r_2)d(r_1)$, for all $r_1, r_2 \in R$. In [8], Chaudhry and Thaheem shown that if a semiprime ring R admits non-zero (α, β) -reverse derivation d, then d is (α, β) -reverse derivation of R. Here, α and β are automorphism of R. An additive mapping $H: R \to R$ is called *l*-generalized reverse derivation (*r*-generalized reverse derivation) In [1], A. Aboubakr and S. Gonzalez (2015) introduced one-sided generalized reverse derivation. An additive mapping $H: R \to R$ is called an l-generalized reverse derivation (r-generalized reverse derivation) if there exists a reverse derivation $g:R\to R$ such that $H(r_1r_2) = H(r_2)r_1 + r_2g(r_1)$ $(H(r_1r_2) = g(r_2)r_1 + r_2H(r_1))$, for all $r_1, r_2 \in R$. In [1], they have indicated that if a semiprime ring R admits nonzero one-sided generalized reverse derivation H associated with reverse derivation q, then H is a one-sided generalized derivation with associated derivation q. Reverse derivation, generalized reverse derivation, (α, β) -reverse derivation, generalized (α, β) -reverse derivation, multiplicative reverse derivation, multiplicative generalized reverse derivation, multiplicative (α, β) -reverse derivation, and multiplicative generalized (α, β) -reverse derivation of prime or semiprime rings have been studied by a lot of scholars in the literature. (see [2],[3],[4], [9],[10],[12],[13],[14],[15],[16].) This paper extends the notion of one-sided reverse derivation to one-sided generalized (α, β) -reverse derivation. **Definition 1.1.** Let R be a ring, α , β be a mapping of R, and γ be an (α, β) -reverse derivation of R. An additive mapping $F: R \to R$ is said to be an r-generalized (α, β) -reverse derivation of R associated with γ if $$F(r_1r_2) = \gamma(r_2)\alpha(r_1) + \beta(r_2)F(r_1)$$ for all $r_1, r_2 \in R$, F is said to be an l-generalized (α, β) -reverse derivation of R associated with γ if $$F(r_1r_2) = F(r_2)\alpha(r_1) + \beta(r_2)\gamma(r_1)$$ for all $r_1, r_2 \in R$ and F said to be a generalized (α, β) —reverse derivation of R associated with γ if it is both an r-generalized and l-generalized (α, β) -reverse derivation of R associated with γ . When $\alpha = \beta = id_R$, an r-generalized (l-generalized) (α, β)-reverse derivation is a r-generalized (l-generalized) reverse derivation. Thus, the one-sided generalized reverse derivation is a special case of one-sided generalized (α, β)-reverse derivation. This study consists of 2 parts. In the first part, we show that If R is a 2-torsion free semiprime ring, α, β are automorphisms of R, and $\gamma: R \to R$ is a non-zero (α, β) -reverse derivation, then γ is an (α, β) -derivation on R. With this result, we will show that the concepts of (α, β) -reverse derivation and (α, β) -derivation overlap in 2 torsion-free semiprime rings in which α and β are automorphisms of the ring. In the second part, we give a generalization of [1, Theorem 3.1, Theorem 3.2, and Corollary 3.3], which is the main result of the article. In that case, one-sided generalized (α, β) -reverse derivation and one-sided generalized (β, α) -derivation overlap in a semiprime ring where only one of α and β is an epimorphism of the ring. Thus we will show that the intersection of the set of all generalized (α, β) -derivation and the set of all generalized (α, β) -reverse derivation is different from the empty set. At the end of the paper, we showed that in case α is a homomorphism of R and β is an epimorphism of R; there is no non-zero generalized (α, β) -reverse derivation associated with (α, β) -reverse derivation of noncommutative prime ring R. From now on, R is an associative ring, Z is the center of R, and $\alpha, \beta : R \to R$ are homomorphisms. # 2. Preliminary In this section, we give some auxiliary results that will need later. We begin our discussion with several examples related to (α, β) -reverse derivation and one-sided generalized (α, β) -reverse derivation. **Lemma 2.1.** [7, Lemma 3] If the prime ring R contains a commutative non-zero right ideal I, then R is commutative. **Lemma 2.2.** [7, Lemma 4] Let b and ab be in the center of a prime ring R. If b is not zero, then a is in Z, the center of R. **Lemma 2.3.** [11, Corollary 2.1] Let R be a 2-torsion free semiprime ring, α, β be automorphisms of R and $L \nsubseteq Z(R)$ be a non-zero square-closed Lie ideal of R. If $\delta: R \to L$ satisfying (2.1) $$\left(a^2\right)^{\delta} = a^{\delta}\alpha(a) + \beta(a)a^{\delta}, \text{ for all } a \in L$$ and $a^{\delta}, \beta(a) \in L$, then δ is a (α, β) -derivation on L. **Example 2.1.** Consider the ring $R = \left\{ \begin{bmatrix} a_{11} & a_{12} \\ 0 & a_{22} \end{bmatrix} : a_{11}, a_{12}, a_{22} \in \mathbb{Z} \right\}$, where \mathbb{Z} the ring of integers. Let us define $\alpha : R \to R$, $\beta : R \to R$, and $d : R \to R$ as follows: $$\alpha \left(\left[\begin{array}{cc} a_{11} & a_{12} \\ 0 & a_{22} \end{array} \right] \right) = \left[\begin{array}{cc} 0 & 0 \\ 0 & a_{11} \end{array} \right]$$ $$\beta \left(\left[\begin{array}{cc} a_{11} & a_{12} \\ 0 & a_{22} \end{array} \right] \right) = \left[\begin{array}{cc} a_{22} & 0 \\ 0 & 0 \end{array} \right]$$ $$d \left(\left[\begin{array}{cc} a_{11} & a_{12} \\ 0 & a_{22} \end{array} \right] \right) = \left[\begin{array}{cc} 0 & a_{11} - a_{22} \\ 0 & 0 \end{array} \right].$$ It is easy to check that d is both an (α, β) -reverse derivation and an (α, β) -derivation. **Example 2.2.** Consider the ring $R = \left\{ \begin{bmatrix} a_{11} & a_{12} \\ 0 & a_{22} \end{bmatrix} : a_{11}, a_{12}, a_{22} \in \mathbb{Z} \right\}$, where \mathbb{Z} the ring of integers. Define the mappings $\alpha : R \to R$, $\beta : R \to R$, and $d : R \to R$ as follows: $$\alpha \left(\begin{bmatrix} a_{11} & a_{12} \\ 0 & a_{22} \end{bmatrix} \right) = \begin{bmatrix} 0 & 0 \\ 0 & a_{11} \end{bmatrix}$$ $$\beta \left(\begin{bmatrix} a_{11} & a_{12} \\ 0 & a_{22} \end{bmatrix} \right) = \begin{bmatrix} a_{22} & 0 \\ 0 & 0 \end{bmatrix}$$ $$d \left(\begin{bmatrix} a_{11} & a_{12} \\ 0 & a_{22} \end{bmatrix} \right) = \begin{bmatrix} 0 & -a_{12} \\ 0 & 0 \end{bmatrix}.$$ It is easy to check that d is an (α, β) -reverse derivation. But d is not an (α, β) -derivation. **Example 2.3.** Consider the ring $R = \left\{ \begin{bmatrix} a_{11} & a_{12} \\ 0 & a_{22} \end{bmatrix} : a_{11}, a_{12}, a_{22} \in \mathbb{Z} \right\}$, where \mathbb{Z} the ring of integers. Define the mappings $\alpha : R \to R$, $\beta : R \to R$, and $d : R \to R$ as follows: $$\alpha \left(\left[\begin{array}{cc} a_{11} & a_{12} \\ 0 & a_{22} \end{array} \right] \right) = \left[\begin{array}{cc} 0 & 0 \\ 0 & a_{22} \end{array} \right]$$ $$\beta \left(\left[\begin{array}{cc} a_{11} & a_{12} \\ 0 & a_{22} \end{array} \right] \right) = \left[\begin{array}{cc} a_{11} & 0 \\ 0 & 0 \end{array} \right]$$ $$d \left(\left[\begin{array}{cc} a_{11} & a_{12} \\ 0 & a_{22} \end{array} \right] \right) = \left[\begin{array}{cc} 0 & a_{12} \\ 0 & 0 \end{array} \right].$$ It is easy to check that d is an (α, β) -derivation. But d is not an (α, β) -reverse derivation. **Example 2.4.** Let $(R_1,+,*)$ be a commutative ring and (R_2,\oplus,\circledast) be a noncommutative ring. Let's consider operation $\otimes: R_2 \times R_2 \to R_2, \ r \otimes s = s \circledast r$. With these operations (R_2,\oplus,\otimes) called opposite ring and it is shown R_2^{op} . α,β are homomorphisms of $R_2,\ \delta: R_2 \to R_2^{op}$ is an (β,α) -derivation, and $\varphi: R_2 \to R_2^{op}$ is a left generalized (β,α) -derivation with δ . Define the mappings $\widetilde{\alpha},\widetilde{\beta}: R_2 \times R_1 \to R_2 \times R_1$, and $\widetilde{\delta},\widetilde{\varphi}: R_2 \times R_1 \to R_2^{op} \times R_1$ as follows: $$\begin{array}{lcl} \widetilde{\alpha}(r,s) & = & (\alpha(r),s) \\ \widetilde{\beta}(r,s) & = & (\beta(r),s) \\ \widetilde{\delta}\left(r,s\right) & = & (\delta(r),s) \\ \widetilde{\varphi}(r,s) & = & (\varphi(r),s). \end{array}$$ Then it is straightforward to verify that $\widetilde{\varphi}$ is an l-generalized (α, β) -reverse derivation with (α, β) -reverse derivation $\widetilde{\delta}$ of $R_2 \times R_1$. But $\widetilde{\varphi}$ is not a generalized (α, β) -derivation with (α, β) -derivation $\widetilde{\delta}$ of $R_2 \times R_1$. **Example 2.5.** Let $(R_1, +, *)$ and (R_2, \oplus, \otimes) be a rings as defined in example 2.4. Let α, β be homomorphisms of $R_2, \delta: R_2 \to R_2^{op}$ be an (β, α) -derivation, and $\varphi: R_2 \to R_2^{op}$ be a right generalized (β, α) -derivation with δ . Define the mappings $\widetilde{\alpha}, \widetilde{\beta}: R_2 \times R_1 \to R_2 \times R_1$ and $\widetilde{\delta}, \widetilde{\varphi}: R_2 \times R_1 \to R_2^{op} \times R_1$ as follows: $$\begin{split} \widetilde{\alpha}(r,s) &= (\alpha(x),s) \\ \widetilde{\beta}(r,s) &= (\beta(x),s) \\ \widetilde{\delta}(r,s) &= (\delta(x),s) \\ \widetilde{\varphi}(r,s) &= (\varphi(x),s) \,. \end{split}$$ Then it is straightforward to verify that $\widetilde{\varphi}$ is an r-generalized (α, β) -reverse derivation with (α, β) -reverse derivation $\widetilde{\delta}$ of $R_2 \times R_1$. But $\widetilde{\varphi}$ is not a generalized (α, β) -derivation with (α, β) -derivation $\widetilde{\delta}$ of $R_2 \times R_1$. # 3. (α, β) -Reverse Derivation **Theorem 3.1.** Let R be a 2-torsion free semiprime ring, α, β be automorphisms of R. If $\gamma: R \to R$ is a non-zero (α, β) -reverse derivation, then γ is an (α, β) -derivation on R. *Proof.* Suppose that R is non-commutative ring. Let $r_1 \in R$. From the hypothesis, we get $$\gamma(r_1^2) = \gamma(r_1)\alpha(r_1) + \beta(r_1)\gamma(r_1).$$ This equation ensures equality of (2.1). We know that the ring R is a square closed Lie ideal of R. So, we can think of R instead of L in Lemma 2.3. Thus, γ is an (α, β) -derivation on R because of Lemma 2.3. While R is a commutative ring, (α, β) -reverse derivation of R is (α, β) -derivation of R. So, the proof ends. \square **Theorem 3.2.** Let R be a semiprime ring, ϱ is a non-zero two-sided ideal of R, α be an epimorphism of ϱ and β be a homomorphism of ϱ (or α be a homomorphism of ϱ and β be an epimorphism of ϱ). There exists $\gamma: \varrho \to R$ a non-zero (α, β) -reverse derivation iff $\gamma(\varrho) \subset C_R(\varrho)$ and γ is (β, α) -derivation on ϱ . *Proof.* We only prove case of no parenthesis. The another one has the same argument. Let $x_1, x_2, x_3 \in \varrho$. Since γ is (α, β) -reverse derivation on ϱ , we have (3.1) $$\gamma(x_1x_2x_3) = \gamma(x_1(x_2x_3)) = \gamma(x_3)\alpha(x_2)\alpha(x_1) + \beta(x_3)\gamma(x_2)\alpha(x_1) + \beta(x_2)\beta(x_3)\gamma(x_1)$$ and (3.2) $$\gamma(x_1x_2x_3) = \gamma((x_1x_2)x_3) = \gamma(x_3)\alpha(x_1)\alpha(x_2) + \beta(x_3)\gamma(x_2)\alpha(x_1) + \beta(x_3)\beta(x_2)\gamma(x_1).$$ From (3.1) and (3.2), (3.3) $$\gamma(x_3) [\alpha(x_1), \alpha(x_2)] = [\beta(x_3), \beta(x_2)] \gamma(x_1).$$ Replacing x_3 by x_2 in (3.3), $$\gamma(x_2) \left[\alpha(x_1), \alpha(x_2) \right] = 0$$ for all $x_1, x_2 \in \varrho$. Because α is an epimorphism of ϱ , for each $x_1, x_2 \in \varrho$, we get (3.4) $$\gamma(x_2) [x_1, \alpha(x_2)] = 0.$$ Take $r \in R$. Substituting x_1x_3r for x_1 in (3.4), we obtain $\gamma(x_2)x_1x_3[r,\alpha(x_2)] = 0$, for all $x_1, x_2, x_3 \in \varrho, r \in R$. So implies that (3.5) $$\gamma(x_2)\varrho\varrho\left[R,\alpha(x_2)\right] = (0)$$ for all $x_2 \in \varrho$. Because ϱ is a semiprime ring, it must contain a family ρ of prime ideals such that $\cap \rho = (0)$. Let ρ_{φ} be a typical member of this family and $x_2 \in \varrho$; by (3.5), $$\gamma(x_2)\varrho \subset \rho_{\varphi} \text{ or } [R,\alpha(x_2)] \subset \rho_{\varphi}.$$ Let $M = \{x_2 \in \varrho : \gamma(x_2)\varrho \subset \rho_{\varphi}\}$ and $N = \{x_2 \in \varrho : [R, \alpha(x_2)] \subset \rho_{\varphi}\}$. Clearly, each group M and N is additive subgroup of ϱ such that $\varrho = M \cup N$. But a group cannot be a set union of two proper subgroups. Hence, $M = \varrho$ or $N = \varrho$. Since ρ_{φ} is ideal of ϱ , it holds that $\gamma(\varrho)\varrho[R,\alpha(\varrho)] \subset \rho_{\varphi}$. Thus $\gamma(\varrho)\varrho[R,\alpha(\varrho)] \subset \cap \rho = (0)$. Because α is an epimorphism of ϱ , it provides that $\gamma(\varrho)\varrho[R,\varrho] = 0$. Let $x_1, x_2, x_3 \in \varrho, r \in R$. Means that, $$(3.6) \gamma(x_1)x_2[r, x_3] = 0.$$ Let $x_4 \in \varrho$. In (3.6), replacing r by $x_4\gamma(x_1)$ and x_3 by x_2 , we get $$(3.7) \gamma(x_1)x_2x_4 [\gamma(x_1), x_2] = 0.$$ In (3.6), substituting x_2 by x_4 , we get $\gamma(x_1)x_4[r,x_3]=0$. In this equation replacing x_3 by x_2 , r by $\gamma(x_1)$ and multiply from the left by x_2 , it holds $$(3.8) x_2 \gamma(x_1) x_4 \left[\gamma(x_1), x_2 \right] = 0.$$ From (3.7) and (3.8), $$[\gamma(x_1), x_2] x_4 [\gamma(x_1), x_2] = 0, \text{ for all } x_1, x_2, x_4 \in \varrho.$$ Since ρ is a semiprime ring, $$[\gamma(x_1), x_2] = 0$$, for all $x_1, x_2 \in \varrho$. That is $\gamma(\varrho) \subset C_R(\varrho)$. We get $$\gamma(x_1 x_2) = \gamma(x_2)\alpha(x_1) + \beta(x_2)\gamma(x_1)$$ $$= \gamma(x_1)\beta(x_2) + \alpha(x_1)\gamma(x_2)$$ for all $x_1, x_2 \in \varrho$. This means that γ is (β, α) -derivation on ϱ . The converse is trivial. \square If consider R instead of ρ in Theorem 3.2, we get Corollary 3.1. Let R be a semiprime ring, α be an epimorphism of R and β be a homomorphism of R (or α be a homomorphism of R and β be an epimorphism of R). There exists $\gamma: R \to R$ a non-zero (α, β) -reverse derivation iff central γ is (β, α) -derivation on R. Corollary 3.2. Let R be a prime ring, α be an epimorphism of R and β be a homomorphism of R (or α be a homomorphism of R and β be an epimorphism of R). There exists $\gamma: R \to R$ a non-zero (α, β) -reverse derivation iff R is commutative and γ is an (α, β) -derivation of R. *Proof.* We only prove a case in which α is an epimorphism of R and β is a homomorphism of R. Another case has the similar argument. By Corollary 3.1, γ is a central (β, α) -derivation of R. Let $r_1, r_2 \in R$. It is clear that $$[\gamma(r_1r_2), \beta(r_2)] = 0.$$ Applying Lie commutator features, we get $$\begin{aligned} [\gamma(r_2)\alpha(r_1) + \beta(r_2)\gamma(r_1), \beta(r_2)] &= [\gamma(r_2)\alpha(r_1), \beta(r_2)] + [\beta(r_2)\gamma(r_1), \beta(r_2)] \\ &= \gamma(r_2) \left[\alpha(r_1), \beta(r_2)\right] + \left[\gamma(r_2), \beta(r_2)\right] \alpha(r_1) \\ &+ \beta(r_2) \left[\gamma(r_1), \beta(r_2)\right] + \left[\beta(r_2), \beta(r_2)\right] \gamma(r_1) \end{aligned}$$ for all $r_1, r_2 \in R$. In the last equation, since $\gamma(r_1), \gamma(r_2) \in Z$, we have $$\gamma(r_2) \left[\alpha(r_1), \beta(r_2) \right] = 0$$ for all $r_1, r_2 \in R$. Let $r_3 \in R$. Since α is an epimorphism of R, we get $$\gamma(r_2)r_3[r_1,\beta(r_2)] = 0.$$ Thus, for each $r_2 \in R$, we write $$\gamma(r_2)R[R,\beta(r_2)] = (0).$$ By the primeness of R, for each $r_2 \in R$, we get $$\gamma(r_2) = 0 \text{ or } \beta(r_2) \in Z.$$ Let $M = \{r_2 \in R : \gamma(r_2) = 0\}$ and $N = \{r_2 \in R : \beta(r_2) \in Z\}$. Clearly, each group M and N is additive subgroup of R such that $R = M \cup N$. But a subgroup cannot be a set union of two proper subgroups. Hence, M = R or N = R. Since γ is a non-zero (α, β) -reverse derivation of R, it happens $\beta(R) \subset Z$. Since $\gamma(r_1r_2) \in Z$ and Z is a subring of R, we have $$\gamma(r_2)\alpha(r_1) \in \mathbb{Z}$$, for all $r_1, r_2 \in \mathbb{R}$. In view of Lemma 2.2, for each $r_1 \in R$, we have $\alpha(r_1) \in Z$. In addition, since α is an epimorphism of R, we have R is commutative. Therefore, we conclude that $$\gamma(r_1r_2) = \gamma(r_2r_1) = \gamma(r_1)\alpha(r_2) + \beta(r_1)\gamma(r_2)$$ for all $r_1, r_2 \in R$. This implies γ is an (α, β) -derivation of R. \square # 4. One-Sided Generalized (α, β) –Reverse Derivation **Theorem 4.1.** Let R be a semiprime ring, ϱ is a non-zero two-sided ideal of R, α be an epimorphism of ϱ , β be homomorphism of ϱ and $\gamma: \varrho \to R$ be a non-zero (α, β) -reverse derivation. There exists $F: \varrho \to R$, a ℓ -generalized (α, β) -reverse derivation associated with γ iff $F(\varrho), \gamma(\varrho) \subset C_R(\varrho)$ and F is r-generalized (β, α) -derivation associated with (β, α) -derivation γ on ϱ . *Proof.* Let $x_1, x_2, x_3 \in \varrho$. Using the definition of l-generalized (α, β) -reverse derivation one can easily see that (4.1) $$F(x_1(x_2x_3)) = F(x_3)\alpha(x_2)\alpha(x_1) + \beta(x_3)\gamma(x_2)\alpha(x_1) + \beta(x_2)\beta(x_3)\gamma(x_1)$$ and $$(4.2) F((x_1x_2)x_3) = F(x_3)\alpha(x_1)\alpha(x_2) + \beta(x_3)\gamma(x_2)\alpha(x_1) + \beta(x_3)\beta(x_2)\gamma(x_1)$$ Combining (4.1) and (4.2), (4.3) $$F(x_3) [\alpha(x_2), \alpha(x_1)] = [\beta(x_3), \beta(x_2)] \gamma(x_1).$$ Substituting x_3 by x_2 in (4.3), $$F(x_2)[\alpha(x_2), \alpha(x_1)] = 0$$ for all $x_1, x_2 \in \varrho$. Since α is an epimorphism of ϱ , for each $x_1, x_2 \in \varrho$, we have $$(4.4) F(x_2) [\alpha(x_2), x_1] = 0.$$ Taking $x_3 \in \varrho, r \in R$. Replacing x_1 by x_1x_3r in (4.4), $F(x_2)x_1x_3\left[\alpha(x_2), r\right] = 0$. For each $x_2 \in \varrho$, we have $F(x_2)\varrho\varrho\left[\alpha(x_2), R\right] = (0)$. Now, when similar steps are applied to the steps from equality (3.5) to equality (3.9), for each $x_1, x_2, x_3 \in \varrho$, we have $[F(x_1), x_2] x_3[F(x_1), x_2] = 0$. Since ϱ is a semiprime ring, $$[F(x_1), x_2] = 0$$ for all $x_1, x_2 \in \varrho$. That is $F(\varrho) \subset C_R(\varrho)$. Moreover, if γ is (α, β) –reverse derivation of R, then by Theorem 3.2, $\gamma(\varrho) \subset C_R(\varrho)$ and γ is an (β, α) –derivation on ϱ . Hence, $$F(x_1x_2) = F(x_2)\alpha(x_1) + \beta(x_2)\gamma(x_1)$$ = $\gamma(x_1)\beta(x_2) + \alpha(x_1)F(x_2)$ for all $x_1, x_2 \in \varrho$ and F is a r-generalized (β, α) -derivation associated with (β, α) -derivation γ on ϱ . The converse is a trivial. \square Corollary 4.1. Let R be a semiprime ring, α be an epimorphism of R, β be homomorphism of R and $\gamma: R \to R$ be a non-zero (α, β) -reverse derivation. There exists $F: R \to R$, a l-generalized (α, β) -reverse derivation associated with γ iff $F(I), \gamma(I) \subset Z$ and F is r-generalized (β, α) -derivation associated with (β, α) -derivation γ of R. **Theorem 4.2.** Let R be a semiprime ring, ϱ is a non-zero two-sided ideal of R, α be a homomorphism of ϱ , β be an epimorphism of ϱ and $\gamma: \varrho \to R$ be a non-zero (α, β) -reverse derivation. There exists $F: \varrho \to R$, a r-generalized (α, β) -reverse derivation associated with γ iff $F(\varrho), \gamma(\varrho) \subset C_R(\varrho)$ and F is l-generalized (β, α) -derivation associated with (β, α) -derivation γ on ϱ . *Proof.* By a similar proof in Theorem 4.1, desired is achieved. \Box Corollary 4.2. Let R be a semiprime ring, α be an homomorphism of R, β be an epimorphism of R and $\gamma: R \to R$ be a non-zero (α, β) -reverse derivation. There exists $F: R \to R$, a r-generalized (α, β) -reverse derivation associated with γ iff $F(R), \gamma(R) \subset Z$ and F is l-generalized (β, α) -derivation associated with (β, α) -derivation γ of R. **Theorem 4.3.** Let R be a semiprime ring, α and β be an epimorphisms of R and $\gamma: R \to R$ be a non-zero (α, β) -reverse derivation. If there exists $F: R \to R$, a non-zero l-generalized (α, β) -reverse derivation (r-generalized (α, β) -reverse derivation) associated with γ then R contains a non-zero central ideal. *Proof.* Assume that $F: R \to R$ is a l-generalized (α, β) -reverse derivation associated with non-zero (α, β) -reverse derivation γ of R. From Corollary 4.1, it holds $\gamma(R), F(R) \subset Z$. For all $r_1, r_2 \in R$, $$[F(r_1r_2), \beta(r_2)] = 0$$ is obtained. This means $$F(r_2)[\alpha(r_1), \beta(r_2)] = 0$$ for all $r_1, r_2 \in R$. Because α is an epimorphism of R, for each $r_1, r_2 \in R$, we get $F(r_2)[r_1, \beta(r_2)] = 0$. Let r_3 . Replacing r_1 by r_1r_3 in $F(r_2)[r_1, \beta(r_2)] = 0$, we get $$F(r_2)r_1[r_3,\beta(r_2)]=0.$$ Now, when similar steps are applied to the steps from equality (3.5) to equality (3.9), for each $r_1, r_2, r_3 \in R$, we have $F(r_1)[r_2, \beta(r_3)] = 0$. Because β is an epimorphism of R, we get $F(r_1)[r_2, r_3] = 0$. That is $$[F(r_1)r_2, r_3] = 0$$ for all $r_1, r_2, r_3 \in R$. This means $F(R)R \subset Z$. Since F is non-zero l-generalized (α, β) -reverse derivation and R is semiprime, $F(R)R \neq (0)$. F(R)R is obviously central ideal of R. The proof has a similar argument if F is r-generalized (α, β) -reverse derivation of R. \square Corollary 4.3. Let R be a semiprime ring, α and β be an epimorphisms of R and $\gamma: R \to R$ be a non-zero (α, β) -reverse derivation. If there exists $F: R \to R$, a non-zero generalized (α, β) -reverse derivation associated with γ then R contains a non-zero central ideal. Corollary 4.4. Let R be a prime ring, α and β be an epimorphisms of R and $\gamma: R \to R$ be a non-zero (α, β) -reverse derivation. If there exists $F: R \to R$, a non-zero generalized (α, β) -reverse derivation associated with α then α is commutative ring and α is a generalized α derivation associated with an α derivation α of α . **Theorem 4.4.** Let R be a noncommutative prime ring, α be a homomorphism of R and β be an epimorphism of R. If $F: R \to R$ is a generalized (α, β) -reverse derivation associated with non-zero (α, β) -reverse derivation γ of R then $F = \gamma$. *Proof.* Assume that $F: R \to R$ is a generalized (α, β) -reverse derivation associated with non-zero (α, β) -reverse derivation γ of R. Let $r_1, r_2 \in R$. Then, $$F(r_1r_2) = F(r_2)\alpha(r_1) + \beta(r_2)\gamma(r_1) = \gamma(r_2)\alpha(r_1) + \beta(r_2)F(r_1).$$ That is, $$(F - \gamma)(r_2)\alpha(r_1) - \beta(r_2)(F - \gamma)(r_1) = 0.$$ Let us introduce mapping $\varphi: R \to R$, $\varphi(r_1) = (F - \gamma)(r_1)$. Moreover, the last equation implies that (4.5) $$\varphi(r_2)\alpha(r_1) = \beta(r_2)\varphi(r_1).$$ Let $r_1, r_2 \in R$. Since F is an r-generalized (α, β) -reverse derivation (l- of generalized (α, β) -reverse derivation) R and γ is an (α, β) -reverse derivation of R, the mapping φ respectively ensures: $$\varphi(r_1 r_2) = (F - \gamma)(r_1 r_2) = \gamma(r_2)\alpha(r_1) + \beta(r_2)F(r_1) - \gamma(r_2)\alpha(r_1) + \beta(r_2)\gamma(r_1) = \beta(r_2)\varphi(r_1)$$ and $$\varphi(r_1 r_2) = (F - \gamma)(r_1 r_2) = F(r_2)\alpha(r_1) + \beta(r_2)\gamma(r_1) - \gamma(r_2)\alpha(r_1) + \beta(r_2)\gamma(r_1)$$ = $\varphi(r_2)\alpha(r_1)$. That is, (4.6) $$\varphi(r_1 r_2) = \beta(r_2) \varphi(r_1).$$ (4.7) $$\varphi(r_1 r_2) = \varphi(r_2) \alpha(r_1).$$ Let $r_3 \in R$. Writing r_2r_3 by r_2 in (4.5), we get $$\varphi(r_2r_3)\alpha(r_1) - \beta(r_2r_3)\varphi(r_1) = 0.$$ In the last equality, using (4.6) and (4.7), we get $$\beta([r_3, r_2])\varphi(r_1) = 0$$ for all $r_1, r_2, r_3 \in R$. Because β is an epimorphism, for each $r_1, r_2, r_3 \in R$, we have $[r_3, r_2] \varphi(r_1) = 0$. Given that R is a noncommutative prime ring, we get $\varphi = 0$. That is, $F = \gamma$. \square ### Acknowledgment This paper is derived from the first author's doctoral dissertation supervised by the second author. #### REFERENCES - 1. A. ABOUBAKR and S. GONZALEZ: (α, β) —reverse derivation on semiprime rings. Siberian Mathematical Journal **56(2)** (2015), 199–205. - 2. A. Ali and A. Bano: Multiplicative (generalized) reverse derivations on semiprime ring. European Journal of Pure and Applied Mathematics 11(3) (2018), 717–729. - 3. C. J. S. REDDY, N. SUBBARAYUDU and C. V. S. R. REDDY: A Note on multiplicative (generalized)- (α, β) -reverse derivations on left Ideals in prime rings. Global Journal of Pure and Applied Mathematics **18(2)** (2022), 425–431. - G. S. SANDHU and D. KUMAR: Annihilator conditions of multiplicative reverse derivations on prime rings. International electronic journal of algebra 25(25) (2019), 87–103. - 5. I. N. Herstein: Jordan derivations of prime rings. Proc. Amer. Math. Soc. 8(6) (1957), 1104–1110. - 6. I. N. HERSTEIN: Rings with involution. The University of Chicago Press, 1976. - J. H. MAYNE: Centralizing mappings of prime rings. Canad. Math. Bull. 27(1) (1984), 122–126. - 8. M. A. CHAUDHRY and A. B. THAHEEM: On (α, β) -derivations of semiprime rings II. Demonstratio Mathematica **37(4)** (2004), 793–802. - 9. M. S. Samman and A. B. Thaheem: *Derivations on semiprime rings*. Int. Journal of Pure and Applied Math. **2(4)** (2003), 465–472. - 10. M. S. Samman and N. Alyamani: Derivations and reverse derivations in semiprime rings. Int. Math. Forum **39(2)** (2007), 1895–1902. - 11. N. U. REHMAN and E. K. SÖĞÜTÇÜ: Lie ideals and jordan Triple (α, β) -derivations in rings. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. **69(1)** (2020), 528–539. - 12. S. K. TIWARI, R. K. SHARMA and B. DHARA: Some theorems of commutativity on semiprime rings with mappings. Southeast Asian Bull. Math 42(2) (2018), 279–292. - 13. S. Huang: Generalized reverse derivations and commutativity of prime rings. Communications in Mathematics 27 (2019), 43–50. - 14. Y. Ahmed and M. Aslam: On diversity of generalized reverse derivations in rings. Journal of Mechanics of Continua and Mathematical Sciences 15(6) (2020), 118–126. - 15. Z. Z. M. Alhaidary and A. H. Majeed: Square closed Lie ideals and multiplicative (generalized) (α, β) reverse derivation of prime rings. Journal of Discrete Mathematical Sciences & Cryptography **24(7)** (2021), 2037–2046. - 16. Z. Z. M. Alhaidary and A. H. Majeed: Commutativity results for multiplicative (generalized) (α, β) reverse derivations on prime rings. Iraqi Journal of Science **62(9)** (2021), 3102–3113.