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Abstract. In this paper, we introduce the notion of the one-sided generalized (α, β)-
reverse derivation of a ring R. Let R be a semiprime ring, ϱ be a non-zero ideal of
R, α be an epimorphism of ϱ, β be a homomorphism of ϱ (α be a homomorphism of
ϱ, β be an epimorphism of ϱ) and γ : ϱ → R be a non-zero (α, β)-reverse derivation.
We show that there exists F : ϱ → R, an l-generalized (α, β)-reverse derivation (an
r-generalized (α, β)-reverse derivation) associated with γ iff F (ϱ), γ(ϱ) ⊂ CR(ϱ) and F
is an r-generalized (β, α)-derivation (an l-generalized (β, α)-derivation) associated with
(β, α)-derivation γ on ϱ. This theorem generalized the results of A. Aboubakr and S.
Gonzalez proved in [1, Theorem 3.1, and Theorem 3.2].
Keywords: Semiprime ring, prime ring, one-sided generalized (α, β)−reverse deriva-
tion, (α, β)−reverse derivation.

1. Introduction

Throughout the paper, R is an associative ring with Z, which the center of R
denotes. Recall that a ring R is prime if for any r1, r2 ∈ R, r1Rr2 = (0) implies
r1 = 0 or r2 = 0, and is a semiprime in case r1 ∈ R, r1Rr1 = (0) implies r1 = 0.
For r1, r2 ∈ R, [r1, r2] denotes the element r1r2 − r2r1. The symbol [r1, r2] stands
for Lie commutator of r1 and r2 and it satisfies the basic commutator identities: for
each r1, r2, r3 ∈ R, [r1 + r2, r3] = [r1, r3] + [r2, r3] , [r1, r2 + r3] = [r1, r2] + [r1, r3] ,
[r1r2, r3] = r1 [r2, r3] + [r1, r3] r2, [r1, r2r3] = [r1, r2] r3 + r2 [r1, r3]. We denote the

Received March 22, 2022, revised: July 11, 2023, accepted: September 04, 2023
Communicated by Dijana Mosić
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identity mapping of R by idR; that is, the mapping idR : R → R is defined as
idR(r1) = r1, for all r1 ∈ R. For a non-empty subset A of R, CR(A) is defined as
CR(A) = {r ∈ R : [r, x] = 0, for all x ∈ A}.

Let α, β be any two mapping of R. An additive mapping δ : R → R is called
an (α, β)-derivation if δ(r1r2) = δ(r1)α(r2) + β(r1)δ(r2) holds, for all r1, r2 ∈ R.
An additive mapping φ : R → R is called a right generalized (α, β)−derivation (a
left generalized (α, β)−derivation) of R associated with δ, if φ(r1r2) = δ(r1)α(r2)+
β(r1)φ(r2) (φ(r1r2) = φ(r1)α(r2)+β(r1)δ(r2)), for all r1, r2 ∈ R and φ is said to be
a generalized (α, β)-derivation of R with δ if it is both a right and a left generalized
(α, β)-derivation of R associated with δ.

Many authors have investigated the relationship between the commutativity of
a ring and the act of derivation ((α, β)-derivation, reverse derivation, (α, β)-reverse
derivation, generalized reverse derivation, etc.) defined on the ring. Herstein (1957)
was the first to introduce the concept of reverse derivation. An additive mapping
g : R → R is a reverse derivation if g(r1r2) = g(r2)r1 + r2g(r1), for all r1, r2 ∈ R.
In [4], it is shown that if a prime ring R with a characteristic different from two
admits non-zero reverse derivation g, then g is a derivation of R. An additive map-
ping d : R → R is an (α, β)−reverse derivation if d(r1r2) = d(r2)α(r1)+β(r2)d(r1),
for all r1, r2 ∈ R. In [8], Chaudhry and Thaheem shown that if a semiprime ring
R admits non-zero (α, β)-reverse derivation d, then d is (α, β)-reverse derivation of
R. Here, α and β are automorphism of R. An additive mapping H : R → R is
called l-generalized reverse derivation (r-generalized reverse derivation) In [1], A.
Aboubakr and S. Gonzalez (2015) introduced one-sided generalized reverse deriva-
tion. An additive mapping H : R → R is called an l-generalized reverse derivation
(r-generalized reverse derivation) if there exists a reverse derivation g : R → R
such that H(r1r2) = H(r2)r1 + r2g(r1) (H(r1r2) = g(r2)r1 + r2H(r1)), for all
r1, r2 ∈ R. In [1], they have indicated that if a semiprime ring R admits non-
zero one-sided generalized reverse derivation H associated with reverse derivation
g, then H is a one-sided generalized derivation with associated derivation g. Re-
verse derivation, generalized reverse derivation, (α, β)-reverse derivation, general-
ized (α, β)-reverse derivation, multiplicative reverse derivation, multiplicative gener-
alized reverse derivation, multiplicative (α, β)-reverse derivation, and multiplicative
generalized (α, β)-reverse derivation of prime or semiprime rings have been studied
by a lot of scholars in the literature. (see [2],[3],[4], [9],[10],[12],[13],[14],[15],[16].)

This paper extends the notion of one-sided reverse derivation to one-sided gen-
eralized (α, β)-reverse derivation.

Definition 1.1. LetR be a ring, α, β be a mapping ofR, and γ be an (α, β)-reverse
derivation of R. An additive mapping F : R → R is said to be an r-generalized
(α, β)-reverse derivation of R associated with γ if

F (r1r2) = γ(r2)α(r1) + β(r2)F (r1)

for all r1, r2 ∈ R, F is said to be an l−generalized (α, β)-reverse derivation of R
associated with γ if

F (r1r2) = F (r2)α(r1) + β(r2)γ(r1)
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for all r1, r2 ∈ R and F said to be a generalized (α, β)−reverse derivation of R
associated with γ if it is both an r-generalized and l−generalized (α, β)-reverse
derivation of R associated with γ.

When α = β = idR, an r-generalized (l-generalized) (α, β)-reverse derivation is
a r-generalized (l-generalized) reverse derivation. Thus, the one-sided generalized
reverse derivation is a special case of one-sided generalized (α, β)-reverse derivation.

This study consists of 2 parts. In the first part, we show that If R is a 2-torsion
free semiprime ring, α, β are automorphisms of R, and γ : R → R is a non-zero
(α, β)-reverse derivation, then γ is an (α, β)-derivation on R. With this result, we
will show that the concepts of (α, β)-reverse derivation and (α, β)-derivation overlap
in 2 torsion-free semiprime rings in which α and β are automorphisms of the ring.
In the second part, we give a generalization of [1, Theorem 3.1, Theorem 3.2, and
Corollary 3.3], which is the main result of the article. In that case, one-sided gener-
alized (α, β)-reverse derivation and one-sided generalized (β, α)-derivation overlap
in a semiprime ring where only one of α and β is an epimorphism of the ring. Thus
we will show that the intersection of the set of all generalized (α, β)-derivation and
the set of all generalized (α, β)-reverse derivation is different from the empty set.
At the end of the paper, we showed that in case α is a homomorphism of R and β
is an epimorphism of R; there is no non-zero generalized (α, β)-reverse derivation
associated with (α, β)-reverse derivation of noncommutative prime ring R.

From now on, R is an associative ring, Z is the center of R, and α, β : R → R
are homomorphisms.

2. Preliminary

In this section, we give some auxiliary results that will need later. We begin our
discussion with several examples related to (α, β)-reverse derivation and one-sided
generalized (α, β)-reverse derivation.

Lemma 2.1. [7, Lemma 3] If the prime ring R contains a commutative non-zero
right ideal I, then R is commutative.

Lemma 2.2. [7, Lemma 4] Let b and ab be in the center of a prime ring R. If b
is not zero, then a is in Z, the center of R.

Lemma 2.3. [11, Corollary 2.1] Let R be a 2-torsion free semiprime ring, α, β be
automorphisms of R and L ⊈ Z(R) be a non-zero square-closed Lie ideal of R. If
δ : R → L satisfying

(2.1)
(
a2
)δ

= aδα(a) + β(a)aδ, for all a ∈ L

and aδ, β(a) ∈ L, then δ is a (α, β)−derivation on L.
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Example 2.1. Consider the ring R =

{[
a11 a12

0 a22

]
: a11, a12, a22 ∈ Z

}
, where Z the

ring of integers. Let us define α : R → R, β : R → R, and d : R → R as follows:

α

([
a11 a12

0 a22

])
=

[
0 0
0 a11

]
β

([
a11 a12

0 a22

])
=

[
a22 0
0 0

]
d

([
a11 a12

0 a22

])
=

[
0 a11 − a22

0 0

]
.

It is easy to check that d is both an (α, β)-reverse derivation and an (α, β)-derivation.

Example 2.2. Consider the ring R =

{[
a11 a12

0 a22

]
: a11, a12, a22 ∈ Z

}
, where Z the

ring of integers. Define the mappings α : R → R, β : R → R, and d : R → R as follows:

α

([
a11 a12

0 a22

])
=

[
0 0
0 a11

]
β

([
a11 a12

0 a22

])
=

[
a22 0
0 0

]
d

([
a11 a12

0 a22

])
=

[
0 −a12

0 0

]
.

It is easy to check that d is an (α, β)-reverse derivation. But d is not an (α, β)-derivation.

Example 2.3. Consider the ring R =

{[
a11 a12

0 a22

]
: a11, a12, a22 ∈ Z

}
, where Z the

ring of integers. Define the mappings α : R → R, β : R → R, and d : R → R as follows:

α

([
a11 a12

0 a22

])
=

[
0 0
0 a22

]
β

([
a11 a12

0 a22

])
=

[
a11 0
0 0

]
d

([
a11 a12

0 a22

])
=

[
0 a12

0 0

]
.

It is easy to check that d is an (α, β)-derivation. But d is not an (α, β)-reverse derivation.

Example 2.4. Let (R1,+, ∗) be a commutative ring and (R2,⊕,⊛) be a noncommu-
tative ring. Let’s consider operation ⊗ : R2 × R2 → R2, r ⊗ s = s ⊛ r. With these
operations (R2,⊕,⊗) called opposite ring and it is shown Rop

2 . α, β are homomorphisms
of R2, δ : R2 → Rop

2 is an (β, α)−derivation, and φ : R2 → Rop
2 is a left general-

ized (β, α)−derivation with δ. Define the mappings α̃, β̃ : R2 × R1 → R2 × R1 ,and

δ̃, φ̃ : R2 ×R1 → Rop
2 ×R1 as follows:

α̃(r, s) = (α(r), s)

β̃(r, s) = (β(r), s)

δ̃ (r, s) = (δ(r), s)

φ̃(r, s) = (φ(r), s) .
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Then it is straightforward to verify that φ̃ is an l−generalized (α, β)-reverse derivation

with (α, β)−reverse derivation δ̃ of R2 ×R1. But φ̃ is not a generalized (α, β)-derivation

with (α, β)-derivation δ̃ of R2 ×R1.

Example 2.5. Let (R1,+, ∗) and (R2,⊕,⊗) be a rings as defined in example 2.4. Let α, β
be homomorphisms of R2, δ : R2 → Rop

2 be an (β, α)−derivation, and φ : R2 → Rop
2 be a

right generalized (β, α)−derivation with δ. Define the mappings α̃, β̃ : R2×R1 → R2×R1

and δ̃, φ̃ : R2 ×R1 → Rop
2 ×R1 as follows:

α̃(r, s) = (α(x), s)

β̃(r, s) = (β(x), s)

δ̃ (r, s) = (δ(x), s)

φ̃(r, s) = (φ(x), s) .

Then it is straightforward to verify that φ̃ is an r−generalized (α, β)-reverse derivation

with (α, β)-reverse derivation δ̃ of R2 × R1. But φ̃ is not a generalized (α, β)-derivation

with (α, β)-derivation δ̃ of R2 ×R1.

3. (α, β)−Reverse Derivation

Theorem 3.1. Let R be a 2-torsion free semiprime ring, α, β be automorphisms
of R. If γ : R → R is a non-zero (α, β)-reverse derivation, then γ is an (α, β)-
derivation on R.

Proof. Suppose that R is non-commutative ring. Let r1 ∈ R. From the hypothesis,
we get

γ(r21) = γ(r1)α(r1) + β(r1)γ(r1).

This equation ensures equality of (2.1). We know that the ring R is a square closed
Lie ideal of R. So, we can think of R instead of L in Lemma 2.3. Thus, γ is an
(α, β)−derivation on R because of Lemma 2.3. While R is a commutative ring,
(α, β)-reverse derivation of R is (α, β)-derivation of R. So, the proof ends.

Theorem 3.2. Let R be a semiprime ring, ϱ is a non-zero two-sided ideal of R, α
be an epimorphism of ϱ and β be a homomorphism of ϱ(or α be a homomorphism of
ϱ and β be an epimorphism of ϱ). There exists γ : ϱ → R a non-zero (α, β)-reverse
derivation iff γ(ϱ) ⊂ CR(ϱ) and γ is (β, α)-derivation on ϱ.

Proof. We only prove case of no parenthesis. The another one has the same argu-
ment. Let x1, x2, x3 ∈ ϱ. Since γ is (α, β)−reverse derivation on ϱ, we have
(3.1)
γ(x1x2x3) = γ(x1(x2x3)) = γ(x3)α(x2)α(x1)+β(x3)γ(x2)α(x1)+β(x2)β(x3)γ(x1)

and
(3.2)
γ(x1x2x3) = γ((x1x2)x3) = γ(x3)α(x1)α(x2)+β(x3)γ(x2)α(x1)+β(x3)β(x2)γ(x1).
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From (3.1) and (3.2),

(3.3) γ(x3) [α(x1), α(x2)] = [β(x3), β(x2)] γ(x1).

Replacing x3 by x2 in (3.3),

γ(x2) [α(x1), α(x2)] = 0

for all x1, x2 ∈ ϱ. Because α is an epimorphism of ϱ, for each x1, x2 ∈ ϱ, we get

(3.4) γ(x2) [x1, α(x2)] = 0.

Take r ∈ R. Substituting x1x3r for x1 in (3.4), we obtain γ(x2)x1x3 [r, α(x2)] = 0,
for all x1, x2, x3 ∈ ϱ, r ∈ R. So implies that

(3.5) γ(x2)ϱϱ [R,α(x2)] = (0)

for all x2 ∈ ϱ. Because ϱ is a semiprime ring, it must contain a family ρ of prime
ideals such that ∩ρ = (0). Let ρφ be a typical member of this family and x2 ∈ ϱ;
by (3.5),

γ(x2)ϱ ⊂ ρφ or [R,α(x2)] ⊂ ρφ.

Let M = {x2 ∈ ϱ : γ(x2)ϱ ⊂ ρφ} and N = {x2 ∈ ϱ : [R,α(x2)] ⊂ ρφ}. Clearly, each
group M and N is additive subgroup of ϱ such that ϱ = M ∪N . But a group cannot
be a set union of two proper subgroups. Hence, M = ϱ or N = ϱ. Since ρφ is ideal
of ϱ, it holds that γ(ϱ)ϱ [R,α(ϱ)] ⊂ ρφ. Thus γ(ϱ)ϱ [R,α(ϱ)] ⊂ ∩ρ = (0). Because α
is an epimorphism of ϱ, it provides that γ(ϱ)ϱ [R, ϱ] = 0. Let x1, x2, x3 ∈ ϱ, r ∈ R.
Means that,

(3.6) γ(x1)x2 [r, x3] = 0.

Let x4 ∈ ϱ. In (3.6), replacing r by x4γ(x1) and x3 by x2,we get

(3.7) γ(x1)x2x4 [γ(x1), x2] = 0.

In (3.6), substituting x2 by x4, we get γ(x1)x4 [r, x3] = 0. In this equation replacing
x3 by x2, r by γ(x1) and multiply from the left by x2, it holds

(3.8) x2γ(x1)x4 [γ(x1), x2] = 0.

From (3.7) and (3.8),

(3.9) [γ(x1), x2]x4 [γ(x1), x2] = 0, for all x1, x2, x4 ∈ ϱ.

Since ϱ is a semiprime ring,

[γ(x1), x2] = 0, for all x1, x2 ∈ ϱ.

That is γ(ϱ) ⊂ CR(ϱ). We get

γ(x1x2) = γ(x2)α(x1) + β(x2)γ(x1)

= γ(x1)β(x2) + α(x1)γ(x2)

for all x1, x2 ∈ ϱ. This means that γ is (β, α)-derivation on ϱ. The converse is
trivial.
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If consider R instead of ϱ in Theorem 3.2, we get

Corollary 3.1. Let R be a semiprime ring, α be an epimorphism of R and β be
a homomorphism of R(or α be a homomorphism of R and β be an epimorphism
of R). There exists γ : R → R a non-zero (α, β)-reverse derivation iff central γ is
(β, α)-derivation on R.

Corollary 3.2. Let R be a prime ring, α be an epimorphism of R and β be a
homomorphism of R(or α be a homomorphism of R and β be an epimorphism of R).
There exists γ : R → R a non-zero (α, β)-reverse derivation iff R is commutative
and γ is an (α, β)-derivation of R.

Proof. We only prove a case in which α is an epimorphism of R and β is a homo-
morphism of R. Another case has the similar argument. By Corollary 3.1, γ is a
central (β, α)−derivation of R. Let r1, r2 ∈ R. It is clear that

[γ(r1r2), β(r2)] = 0.

Applying Lie commutator features, we get

[γ(r2)α(r1) + β(r2)γ(r1), β(r2)] = [γ(r2)α(r1), β(r2)] + [β(r2)γ(r1), β(r2)]

= γ(r2) [α(r1), β(r2)] + [γ(r2), β(r2)]α(r1)

+β(r2) [γ(r1), β(r2)] + [β(r2), β(r2)] γ(r1)

for all r1, r2 ∈ R. In the last equation, since γ(r1), γ(r2) ∈ Z, we have

γ(r2) [α(r1), β(r2)] = 0

for all r1, r2 ∈ R. Let r3 ∈ R. Since α is an epimorphism of R, we get

γ(r2)r3 [r1, β(r2)] = 0.

Thus, for each r2 ∈ R, we write

γ(r2)R [R, β(r2)] = (0).

By the primeness of R, for each r2 ∈ R, we get

γ(r2) = 0 or β(r2) ∈ Z.

Let M = {r2 ∈ R : γ(r2) = 0} and N = {r2 ∈ R : β(r2) ∈ Z}. Clearly, each group
M and N is additive subgroup of R such that R = M ∪N . But a subgroup cannot
be a set union of two proper subgroups. Hence, M = R or N = R. Since γ is a
non-zero (α, β)−reverse derivation of R, it happens β(R) ⊂ Z. Since γ(r1r2) ∈ Z
and Z is a subring of R, we have

γ(r2)α(r1) ∈ Z, for all r1, r2 ∈ R.

In view of Lemma 2.2, for each r1 ∈ R, we have α(r1) ∈ Z. In addition, since α is
an epimorphism of R, we have R is commutative. Therefore, we conclude that

γ(r1r2) = γ(r2r1) = γ(r1)α(r2) + β(r1)γ(r2)

for all r1, r2 ∈ R. This implies γ is an (α, β)-derivation of R.
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4. One-Sided Generalized (α, β)−Reverse Derivation

Theorem 4.1. Let R be a semiprime ring, ϱ is a non-zero two-sided ideal of R,
α be an epimorphism of ϱ, β be homomorphism of ϱ and γ : ϱ → R be a non-zero
(α, β)-reverse derivation. There exists F : ϱ → R, a l-generalized (α, β)-reverse
derivation associated with γ iff F (ϱ), γ(ϱ) ⊂ CR(ϱ) and F is r−generalized (β, α)-
derivation associated with (β, α)-derivation γ on ϱ.

Proof. Let x1, x2, x3 ∈ ϱ. Using the definition of l-generalized (α, β)-reverse deriva-
tion one can easily see that

(4.1) F (x1(x2x3)) = F (x3)α(x2)α(x1) + β(x3)γ(x2)α(x1) + β(x2)β(x3)γ(x1)

and

(4.2) F ((x1x2)x3) = F (x3)α(x1)α(x2) + β(x3)γ(x2)α(x1) + β(x3)β(x2)γ(x1)

Combining (4.1) and (4.2),

(4.3) F (x3) [α(x2), α(x1)] = [β(x3), β(x2)] γ(x1).

Substituting x3 by x2 in (4.3),

F (x2) [α(x2), α(x1)] = 0

for all x1, x2 ∈ ϱ. Since α is an epimorphism of ϱ, for each x1, x2 ∈ ϱ, we have

(4.4) F (x2) [α(x2), x1] = 0.

Taking x3 ∈ ϱ, r ∈ R. Replacing x1 by x1x3r in (4.4), F (x2)x1x3 [α(x2), r] = 0.
For each x2 ∈ ϱ, we have F (x2)ϱϱ [α(x2), R] = (0). Now, when similar steps are
applied to the steps from equality (3.5) to equality (3.9), for each x1, x2, x3 ∈ ϱ, we
have [F (x1), x2]x3 [F (x1), x2] = 0. Since ϱ is a semiprime ring,

[F (x1), x2] = 0

for all x1, x2 ∈ ϱ. That is F (ϱ) ⊂ CR(ϱ). Moreover, if γ is (α, β)−reverse derivation
of R, then by Theorem 3.2, γ(ϱ) ⊂ CR(ϱ) and γ is an (β, α)−derivation on ϱ. Hence,

F (x1x2) = F (x2)α(x1) + β(x2)γ(x1)

= γ(x1)β(x2) + α(x1)F (x2)

for all x1, x2 ∈ ϱ and F is a r−generalized (β, α)−derivation associated with
(β, α)− derivation γ on ϱ. The converse is a trivial.

Corollary 4.1. Let R be a semiprime ring, α be an epimorphism of R, β be
homomorphism of R and γ : R → R be a non-zero (α, β)-reverse derivation. There
exists F : R → R, a l-generalized (α, β)-reverse derivation associated with γ iff
F (I), γ(I) ⊂ Z and F is r-generalized (β, α)-derivation associated with (β, α)-
derivation γ of R.
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Theorem 4.2. Let R be a semiprime ring, ϱ is a non-zero two-sided ideal of R,
α be a homomorphism of ϱ, β be an epimorphism of ϱ and γ : ϱ → R be a non-zero
(α, β)-reverse derivation. There exists F : ϱ → R, a r-generalized (α, β)-reverse
derivation associated with γ iff F (ϱ), γ(ϱ) ⊂ CR(ϱ) and F is l−generalized (β, α)-
derivation associated with (β, α)-derivation γ on ϱ.

Proof. By a similar proof in Theorem 4.1, desired is achieved.

Corollary 4.2. Let R be a semiprime ring, α be an homomorphism of R, β be an
epimorphism of R and γ : R → R be a non-zero (α, β)-reverse derivation. There
exists F : R → R, a r-generalized (α, β)-reverse derivation associated with γ iff
F (R), γ(R) ⊂ Z and F is l−generalized (β, α)-derivation associated with (β, α)-
derivation γ of R.

Theorem 4.3. Let R be a semiprime ring, α and β be an epimorphisms of R
and γ : R → R be a non-zero (α, β)−reverse derivation. If there exists F : R →
R, a non-zero l-generalized (α, β)-reverse derivation (r-generalized (α, β)-reverse
derivation) associated with γ then R contains a non-zero central ideal.

Proof. Assume that F : R → R is a l-generalized (α, β)-reverse derivation associ-
ated with non-zero (α, β)-reverse derivation γ of R. From Corollary 4.1, it holds
γ(R), F (R) ⊂ Z. For all r1, r2 ∈ R,

[F (r1r2), β(r2)] = 0

is obtained. This means
F (r2) [α(r1), β(r2)] = 0

for all r1, r2 ∈ R. Because α is an epimorphism of R, for each r1, r2 ∈ R, we get
F (r2) [r1, β(r2)] = 0. Let r3. Replacing r1 by r1r3 in F (r2) [r1, β(r2)] = 0, we get

F (r2)r1 [r3, β(r2)] = 0.

Now, when similar steps are applied to the steps from equality (3.5) to equality (3.9),
for each r1, r2, r3 ∈ R, we have F (r1) [r2, β(r3)] = 0. Because β is an epimorphism
of R, we get F (r1) [r2, r3] = 0. That is

[F (r1)r2, r3] = 0

for all r1, r2, r3 ∈ R. This means F (R)R ⊂ Z. Since F is non-zero l−generalized
(α, β)−reverse derivation and R is semiprime, F (R)R ̸= (0). F (R)R is obvi-
ously central ideal of R. The proof has a similar argument if F is r−generalized
(α, β)−reverse derivation of R.

Corollary 4.3. Let R be a semiprime ring, α and β be an epimorphisms of R and
γ : R → R be a non-zero (α, β)-reverse derivation. If there exists F : R → R, a
non-zero generalized (α, β)-reverse derivation associated with γ then R contains a
non-zero central ideal.
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Corollary 4.4. Let R be a prime ring, α and β be an epimorphisms of R and
γ : R → R be a non-zero (α, β)-reverse derivation. If there exists F : R → R, a non-
zero generalized (α, β)-reverse derivation associated with d then R is commutative
ring and F is a generalized (α, β)-derivation associated with an (α, β)-derivation γ
of R.

Theorem 4.4. Let R be a noncommutative prime ring, α be a homomorphism of
R and β be an epimorphism of R. If F : R → R is a generalized (α, β)-reverse
derivation associated with non-zero (α, β)-reverse derivation γ of R then F = γ.

Proof. Assume that F : R → R is a generalized (α, β)-reverse derivation associated
with non-zero (α, β)-reverse derivation γ of R. Let r1, r2 ∈ R. Then,

F (r1r2) = F (r2)α(r1) + β(r2)γ(r1) = γ(r2)α(r1) + β(r2)F (r1).

That is,
(F − γ)(r2)α(r1)− β(r2)(F − γ)(r1) = 0.

Let us introduce mapping φ : R → R, φ(r1) = (F − γ)(r1). Moreover, the last
equation implies that

(4.5) φ(r2)α(r1) = β(r2)φ(r1).

Let r1, r2 ∈ R. Since F is an r-generalized (α, β)-reverse derivation (l- of generalized
(α, β)-reverse derivation) R and γ is an (α, β)-reverse derivation of R, the mapping
φ respectively ensures:

φ(r1r2) = (F − γ)(r1r2) = γ(r2)α(r1) + β(r2)F (r1)− γ(r2)α(r1) + β(r2)γ(r1)

= β(r2)φ(r1)

and

φ(r1r2) = (F − γ)(r1r2) = F (r2)α(r1) + β(r2)γ(r1)− γ(r2)α(r1) + β(r2)γ(r1)

= φ(r2)α(r1).

That is,

(4.6) φ(r1r2) = β(r2)φ(r1).

(4.7) φ(r1r2) = φ(r2)α(r1).

Let r3 ∈ R. Writing r2r3 by r2 in (4.5), we get

φ(r2r3)α(r1)− β(r2r3)φ(r1) = 0.

In the last equality, using (4.6) and (4.7), we get

β([r3, r2])φ(r1) = 0

for all r1, r2, r3 ∈ R. Because β is an epimorphism, for each r1, r2, r3 ∈ R, we have
[r3, r2]φ(r1) = 0. Given that R is a noncommutative prime ring, we get φ = 0.
That is, F = γ.
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