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Abstract. Our goal in this article is to construct Sobolev spaces over R∞
I . Completeness

of the Sobolev space over R∞
I are discussed. In application we have constructed the
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1. Introduction and Preliminaries

One of the most important problems of mathematical physics in the 20th century
was to find the solution to Dirichlet and Neuman problems for Laplace equation (see
for instance [14]). This problem attracted famous scientists of that period, namely
Hilbert, Courant, Weyl and many more. Russian Mathematician Sergei Sobolev in
1930 overcame the main difficulty of this problem and introduced a functional space
called Sobolev space, given by functions in Lp[Rn] whose distributional derivatives
of order upto to k exist and are in Lp[Rn]. Today there are many information about
Sobolev spaces Sk,p[Rn], where p > 1 and k = 0, 1, 2, . . ., (see [11, 13, 14, 18]).

Definition 1.1. [10, 19] Let B[Rn] be the Borel σ-algebra for Rn, I = [− 1
2 ,

1
2 ] and

In =
∏∞
i=n+1 I. For A ∈ B[Rn] the set An = A × In is called nth order box set in

R∞. We define

1. An ∪Bn = (A ∪B)× In;
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2. An ∩Bn = (A ∩B)× In;

3. Bc
n = Bc × In.

Definition 1.2. [10, 19] Define RnI = Rn × In. We denote B[RnI ] to be the Borel
σ-algebra for RnI , where the topology for RnI is defined via the class of open sets
Dn = {U× In : U is open in Rn}. For any A ∈ B[Rn], we define λ∞(An) on RnI by
product measure λ∞(An) = λn(A) × Π∞i=n+1λ1(I) = λn(A), where λn is Lebesgue
measure on Rn.

Theorem 1.1. [8, 10] λ∞(.) is a measure on B[RnI ], which is equivalent to n-
dimensional Lebesgue measure on Rn.

[8, 10] The measure λ∞(.) is both translationally and rotationally invariant on
(RnI ,B[RnI ]) for each n ∈ N.

We can construct a theory on RnI that completely parallels that on Rn. Since

RnI ⊂ Rn+1
I , we have an increasing sequence, so we define R̂∞I = lim

n→∞
RnI =

∞⋃
n=1

RnI .

In [10] it is shown that the measure λ∞(.) can be extended to R∞. Let x =
(x1, x2, . . .) ∈ R∞I . Also let In = Π∞k=n+1[−1

2 ,
1
2 ] and let hn(x̂) = χIn(x̂), where

x̂ = (xi)
∞
i=n+1. Recalling R∞I is the closure of R̂∞I in the induced topology from

R∞. From our construction, it is clear that a set of the form A = An × (Π∞k=n+1R)

is not in R̂∞I for any n. So, R̂∞I 6= R∞. The natural topology for R∞I is that induced
as a closed subspace of R∞. Thus if x = (xn), y = (yn) are sequences in R∞I , a
metric d on R∞I , is defined as

d(x, y) =

∞∑
n=1

1

2n
|xn − yn|

1 + |xn − yn|
.

Remark 1.1. R∞
I = R∞ as sets but not as topological spaces.

We call R∞I the essentially bounded version of R∞. There are certain pathologies
of R∞ that are preserved to R∞I , for example, if Ai has measure 1 + ε for all i
then λ∞(A) = Π∞i=1λ(Ai) = ∞. On the other hand, if each Ai has measure 1 − ε,
then λ∞(A) = Π∞i=1λ(Ai) = 0. Thus the class of sets A ∈ B[R∞I ] for which
0 < λ∞(A) < ∞ is relatively small. It follows that the sets of measure zero need
not be small nor sets of infinite measure be large.

1.1. Measurable function

We discuss about measurable function on R∞I as follows:
Let x = (x1, x2, . . .) ∈ R∞I , In = Π∞k=n+1[−1

2 ,
1
2 ] and let hn(x̂) = χIn(x̂), where

x̂ = (xi)
∞
i=n+1.
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Definition 1.3. [10] Let Mn be represented the class of measurable functions on
Rn. If x ∈ R∞I and fn ∈ Mn. Let x = (xi)

n
i=1 and define an essentially tame

measurable function of order n (or en−tame ) on R∞I by

f(x) = fn(x)⊗ hn(x̂).

We let Mn
I = {f(x) : f(x) = fn(x)⊗ hn(x̂), x ∈ R∞I } be the class of all en− tame

functions.

Definition 1.4. A function f : R∞I → R is said to be measurable and we write
f ∈MI , if there is a sequence {fn ∈Mn

I } of en− tame functions, such that

lim
n→∞

fn(x)→ f(x) λ∞ − (a.e.).

1.2. L1-Theory in R∞I

Let L1[RnI ] be the class of integrable functions on RnI . Since RnI ⊂ Rn+1
I we define

L1[R̂∞I ] =
∞⋃
n=1

L1[RnI ]. We say that a measurable function f ∈ L1[R∞I ] if there exists

a Cauchy sequence {fn} ⊂ L1[R̂∞I ] with fn ∈ L1[RnI ] and lim
n→∞

fn(x) = f(x) , λ∞-

(a.e.).

With the fact [9, Theorem 1.18] : L1[R̂∞I ] = L1[R∞I ]. The integral of f ∈ L1[R∞I ]
can be defined by ∫

R∞I
f(x)dλ∞(x) = lim

n→∞

∫
R∞I

fn(x)dλ∞,

where {fn} ⊂ L1[R∞I ] is any Cauchy-sequence converges to f(x)-a.e. (see [9, Defi-
nition 1.19])
Let Cc[RnI ] be the class of continuous function on RnI which vanish outside compact
sets. We say that a measurable function f ∈ Cc[R∞I ], if there exists a Cauchy-

sequence{fn} ⊂
∞⋃
n=1

Cc[RnI ] = Cc[R̂∞I ] such that lim
n→∞

||fn − f ||∞ = 0. We define

C0[R∞I ], the continuous functions that vanish at ∞, and C∞0 [R∞I ] the compactly
supported smooth functions, in similar way (see [8, page 71]).

Remark 1.2. 1. L1[R̂∞I ] = L1[R∞I ].

2. C∞0 [R̂∞I ] = C∞0 [R∞I ]

3. Cc[R∞I ] is dense in L1[R∞I ].

Theorem 1.2. C∞0 [R∞I ] is dense in L1[R∞I ].
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Proof. Since C∞0 [RnI ] ⊂ L1[RnI ] as dense. So ∪C∞0 [RnI ] ⊂ ∪L1[RnI ] as dense. This
gives C∞0 [∪RnI ] ⊂ L1[∪RnI ] as dense. Now lim

n→∞
C∞0 [∪RnI ] ⊂ lim

n→∞
L1[∪RnI ]. This

implies C∞0 [ lim
n→∞

∪RnI ] ⊂ L1[ lim
n→∞

∪RnI ]. So, C∞0 [R̂∞I ] ⊂ L1[R̂∞I ] = L1[R∞I ] as

dense.

Remark 1.3. In a similar fashion we can define the L1
loc[R∞I ].

1.3. Lp-Theory in R∞I

The Lp spaces are function spaces defined using a natural generalization of the
p-norm for finite-dimensional vector spaces. They are sometimes called Lebesgue
spaces. Lp spaces form an important class of Banach spaces in functional analysis
and topological vector spaces. They have key role in the mathematical analysis of
measure and probability spaces. Lebesgue spaces are also used in the theoretical
discussion of problems in physics, statistics, finance, engineering, and other disci-
plines. We now construct the spaces Lp[R∞I ], 1 < p <∞, using the same approach

that led to L1[R∞I ]. Since Lp[RnI ] ⊂ Lp[Rn+1
I ], we define Lp[R̂∞I ] = ∪∞n=1L

p[RnI ].
We say that a measurable function f ∈ Lp[R∞I ], if there is a Cauchy-sequence

{fn} ⊂ Lp[R̂∞I ] such that lim
n→∞

||fn − f ||p = 0.

Similar to Theorem 1.2, we have that functions in Lp[R̂∞I ] differ from functions in
its closure Lp[R∞I ], by sets of measure zero.

Theorem 1.3. Lp[R̂∞I ] = Lp[R∞I ].

Definition 1.5. If f ∈ Lp[R∞I ], we define the integral of f by∫
R∞I

f(x)dλ∞(x) = lim
n→∞

∫
R∞I

fn(x)dλ∞(x).(1.1)

where {fn} ⊂ Lp[R∞I ] is any Cauchy-sequence converging to f(x)-a.e..

Theorem 1.4. If f ∈ Lp[R∞I ], then above integral exists.

Proof. The proof follows from the fact that the sequence in the Definition 1.5 is of
Lp-Cauchy.

If f is a measurable function on R∞I and 1 < p <∞, we define

||f ||p =

[∫
R∞I
|f |pdλ∞(x)

] 1
p

.

Remark 1.4. 1. [9, Theorem 2.1] If f ∈ Lp[R∞I ], then the integral of (1.1) exists
and all theorems that are true for f ∈ Lp[RnI ], also hold for f ∈ Lp[R∞I ].
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2. [8, Theorem 2.54] Cc[R∞I ] is dense in Lp[R∞I ].

3. Let φ ∈ C∞0 [R∞I ], φ ≥ 0 and
∫
φ(x)dx = 1, and define for ε > 0 φε(x) =

ε−1φ(xε ). If f ∈ Lp[R∞I ] with compact support, then φε(x) ∗ f has compact
support, is of class C∞[R∞I ] and φε ∗ f converges to f in Lp[R∞I ]. Hence,
C∞0 [R∞I ] is dense in Lp[R∞I ].

2. Meaning of Dkf(x) when x ∈ R∞I

Recalling in the set theory, for two sets A and B, A ⊂⊂ B means that the closure
of A is a relatively compact subset of B. For example:

(0,∞) ⊂ R but (0,∞) ** R where as (0, 1) ⊂ R and (0, 1) ⊂⊂ R.

The test functions D[RnI ] on RnI are similar as test functions on Rn, so ignore the
detailed of the test functions on RnI .

We denote test functions on R∞I as D[R∞I ], to construct this spaces we use the
same approach that led to L1[R∞I ] in subsection 1.2. Since D[RnI ] ⊂ D[Rn+1

I ], we

define D[R̂∞I ] = ∪∞n=1D[RnI ].

Definition 2.1. We say that a measurable function f ∈ D[R∞I ] if and only if

there exists a sequence of functions {fm} ⊂ D[R̂∞I ] =
∞⋃
n=1
D[RnI ] and a compact

set K ⊂ R∞I , which contains the support of f − fm for all m, and Dαfm → Dαf
uniformly on K, for every multi index α ∈ N∞0 . We call the topology of D[R∞I ] as
the compact sequential limit topology.

Theorem 2.1. For each p, 1 ≤ p ≤ ∞, then test function D[RnI ] ⊂ Lp[RnI ] as
a continuous embedding. Also the test function D[R∞I ] ⊂ Lp[R∞I ] as a continuous
embedding.

Proof. Proof is similar as the proof of the Theorem 3.47 of [8].

The mollifiers are used in distribution theory to create sequences of smooth
functions that approximate non smooth functions via convolution. In 1938, Sergie
Sobolev [17] used mollifier functions in his work to create Sobolev embedding the-
orem. Modern approach of mollifier was introduced by Kurt Otto Friedrichs [7] in
1944.

Definition 2.2. (Friedrichs’s Definition) Mollifier identified the convolution oper-
ator as

φε(f)(x) =

∫
Rn
ϕε(x− y)f(y)dy

where ϕε(x) = ε−nϕ(xε ) and ϕ is a smooth function satisfying
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1. ϕ(x) ≥ 0 for all x ∈ Rn.

2. ϕ(x) = µ(|x|) for some infinitely differentiable function µ : R+ → R.

To construct mollifier in R∞I , for each ε > 0, let ϕε ∈ C∞0 [R∞I ] be given with the
property

ϕε ≥ 0, supp(ϕε) ⊂ {x ∈ R∞I : |x| ≤ ε},
∫
ϕε = 1

such functions can be constructed (see page 32 [15]), for example, by taking an
appropiate multiple of

ϕε(x) =

{
exp(|x|2 − ε2)−1 , |x| < ε;

0 , |x| ≥ ε

Let f ∈ L1[G], where G is open in R∞I . Suppose that the support of f satisfies
supp(f) ⊂⊂ G (compact support), then the distance from supp(f) to ∂G is a
positive number ∆. We extend f as zero on complement of G and also we denote
the extension in L1[R∞I ] by f. Define for each ε the mollifier:

fε(x) =

∫
R∞I

f(x− y)ϕε(y)dλ∞, x ∈ R∞I .(2.1)

From now on we consider functions f ∈ Lp[R∞I ] so, f = 0 almost everywhere. We
obtain the following lemma

Lemma 2.1. 1. For each ε > 0, supp(fε) ⊂ supp(f) + {y : |y| ≤ ε} and
fε ∈ C∞[R∞I ].

2. If f ∈ C0[G], then fε → f uniformly on G. If f ∈ Lp[G], 1 ≤ p < ∞ then
||fε||Lp[G] ≤ ||f ||Lp[G] and fε → f in Lp[G].

Proof. For (1), the proof is similar to that of [15, Lemma 1.1].
For (2), use the fact that Lp[G] is dense as continuous embedding on Lp[G] and
follow the proof of [15, Lemma 1.2].

Theorem 2.2. C∞0 [G] is a dense subset of L2[G] and Lp[G].

Proof. Since C∞0 [G] is dense in L2[G] and Lp[G], it follows that C∞0 [G is dense in
L2[G] and Lp[G]. It follows the result.

Definition 2.3. A distribution on G is a conjugate linear functional on C∞0 [G],
that is C∞0 [G]∗ is the linear space of distributions on G.

Example 2.1. The space L1
loc[G] =

⋂
{L1[K] : K ⊂⊂ G} of locally integrable

functions on G can be identified with a subspace of distributions on G. That is ,
f ∈ L1

loc[G] is assigned the distribution Tf ∈ C∞0 [G]∗ defined by

Tf (ϕ) =

∫
G
fϕc, ϕ ∈ C∞0 [G]

where the Lebesgue integral over the support of ϕ is used.
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Remark 2.1. We can find from the theorem (2.2) that T : L1
loc[G] → C∞0 [G]∗ is

an injection. In particluar the equivalence functions in L2[G] will be identified with
a subspace of D∗[G].

Let α = (α1, α2, .., ) be multi-index of non negative integers with |α| =
∞∑
k=1

αk. We

define the operators Dαn and Dα,n by

Dαn = Πn
k=1

∂αk

∂xαk
Dα,n = Πn

k=1

(
1

2πi

1

∂xk

)αk
,

respectively.

Definition 2.4. 1. We say that a sequence of functions {fm} ⊂ C∞[R∞I ] con-
verges to a function f ∈ C∞[R∞I ] if and only if for all multi-indices α, Dαf ∈
C[R∞I ] and for x ∈ R∞I for all n ∈ N, such that

lim
m→∞

sup[sup
α

sup
||x||≤N

|Dαf(x)− Dαfm(x)|] = 0.

2.1. Observation 1

: We say that a function f ∈ C∞[R∞I ] if and only if there exists a sequence of

functions {fm} ⊂ C∞[R̂∞I ] =
∞⋃
n=1

C∞[RnI ] such that for all x ∈ R∞I and n ∈ N,

lim
m→∞

sup[sup
α

sup
||x||≤N

|Dαf(x)− Dαfm(x)|] = 0.

From the above we can say the set of all continuous linear functionals T ∈
D∗[R∞I ] is called the space of distributions on R∞I . A family of distributions {Ti} ⊂
D∗[R∞I ] is said to converge to T ∈ D∗[R∞I ] if for every ϕ ∈ D[R∞I ], the numbers
Ti(ϕ) converge to T (ϕ).
We define derivatives of distributions in such a way that it agrees with the usual no-
tion of derivative in those distributions which arise from continuously differentiable
functions. We define ∂α : D∗[R∞I ] → D∗[R∞I ] as ∂α(Tf ) = TDαf , |α| ≤ m, f ∈
Cm[R∞I ]. By integration by parts we obtain

TDαf (y) = (−1)|α|Tf (Dαϕ), ϕ ∈ C∞0 [R∞I ]

and this identity suggest the following definition:
The αth partial derivative of the distribution T is the distribution ∂αT defined by

∂αT (ϕ) = (−1)|α|T (Dαϕ), ϕ ∈ C∞0 [R∞I ].

Since Dα ∈ L(C∞0 [R∞I ], C∞0 [R∞I ), it follows that ∂αT is linear. Every distribution
has derivatives of all orders and so every function. For distribution theory one can
see [1, 5, 6] and references therein.
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Example 2.2. It is clear that the derivatives ∂α and Dα are compatible with iden-
tifications of C∞[R∞I ] in D∗[R∞I ]. For example:

1. If f ∈ C1[R∞I ] then

∂f(ϕ) = −f(Dϕ) = −
∫
f(Dϕc) =

∫
(Df)ϕc = Df(ϕ)

where the equality follows by integration by parts. In particular, if f(x) =
H(x), where H is the Heaveside function on R∞I ,

H(x) =

{
1 for xi ≥ 0;

0 for xi < 0, i ∈ N

for x = (x1, x2, x3, . . .) ∈ R∞I , then∫
R∞I

DH(x)ϕ(x)dλ∞(x) =

∫
R∞I

H(x)Dϕ(x)dλ∞(x)

= ϕ(0)

=

∫
R∞I

∂R∞I (x)ϕ(x)dλ∞(x).

That is, in the generalized sense of distributions, DH(x) = ∂(x) the Dirac
delta function on R∞I

2. Let f : R∞I → K be satisfy f|R∞I − ∈ C
∞(−∞, 0] and f|R∞I + ∈ C∞[0,∞) and

denote the jump in the various derivatives at 0 by

σm(f) = Dmf(0+)− Dmf(0−), m ≥ 0.

Then we obtain

∂f(ϕ) = Df(ϕ) + σ0(f)∂(ϕ), ϕ ∈ C∞0 [R∞I ].

That is ∂f = Df + σ0(f)δ, we can compute derivatives of higher order as :
∂2f = D2f + σ1(f)δ + σ0(f)∂δ
∂3f = D3f + σ2(f)δ + σ1(f)∂δ + σ0(f)∂2δ
eg ∂(H · sin) = H · cos
∂(H · cos) = −H · sin +δ. So, H · sin is a generalized solution of the ODE
(δ2 + 1)y = δ.

Definition 2.5. If α is a multi-index and u, v ∈ L1
loc[R∞I ], we say that v is the αth

weak (or distributional) partial derivative of u and write Dαu = v provided that∫
R∞I

u(Dαϕ)dλ∞ = (−1)|α|
∫
R∞I

ϕvdλ∞

for all functions ϕ ∈ C∞c [R∞I ]. Thus v is in the dual space D∗[R∞I ] of D[R∞I ].



Sobolev spaces over R∞
I 759

If u ∈ L1
loc[R∞I ] and ϕ ∈ D[R∞I ] then we can define Tu(·) by

Tu(ϕ) =

∫
R∞I

uϕdλ∞.

This is a linear functional on D[R∞I ]. If {ϕn} ⊂ D[R∞I ] and ϕn → ϕ in D[R∞I ], with
the support of ϕn − ϕ contained in a compact set K ⊂ R∞I , then we have

|Tu(ϕn)− Tu(ϕ)| =

∣∣∣∣∣
∫
R∞I

u(x)[ϕn(x)− ϕ(x)]dλ∞(x)

∣∣∣∣∣
≤ sup

x∈K
|ϕn(x)− ϕ(x)|

∫
R∞I
|u(x)|dλ∞(x).

By uniform convergence on K, we see that T is continuous, so T ∈ D∗[R∞I ]. We
assume

||ϕ|| = sup
x∈R∞I

{|Dαϕ(x)| : α ∈ N∞0 , |α| ≤ N}.

Theorem 2.3. Let D∗[R∞I ] be the dual space of D[R∞I ].

1. Every differentiable operator Dα, α ∈ N∞0 defines a bounded linear operator
on D[R∞I ].

2. If T ∈ D∗[R∞I ] and α ∈ N∞0 , then DαT ∈ D∗[R∞I ] and

(DαT )(ϕ) = (−1)|α|T (Dαϕ), ϕ ∈ D[R∞I ].

3. If |T (ϕ)| ≤ c||ϕ||N for all ϕ ∈ D[K], for some compact set K ⊂ R∞I , then
|(DαT )(ϕ)| ≤ c||ϕ||N+|ϕ| and DαDβT = DβDαT.

4. If g = Dαf exists as a classical derivative and g ∈ L1
loc[R∞I ], then Tg ∈ D∗[R∞I ]

and

(−1)|α|
∫
R∞I

f(x)(Dαϕ)dλ∞(x) =

∫
R∞I

g(x)ϕ(x)dλ∞(x)

for all ϕ ∈ D[R∞I ].

5. If f ∈ C∞[R∞I ] and T ∈ D∗[R∞I ] then fT ∈ D∗[R∞I ], with fT (ϕ) = T (fϕ)
for all ϕ ∈ D[R∞I ] and Dα(fT ) =

∑
β≤α

Cαβ(Dα−βf)(DβT ).

Proof. The proofs are similar to those of Rn.

The weak and strong derivative for Lp[RnI ] can be defined like the weak and strong
derivative for Lp[Rn]. For theory of the weak derivative and strong derivative for
Lp[Rn] we follow the definition 29.15 of [2].

Theorem 2.4. Strong differentiable implies weak differentiable in Lp[RnI ].
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Proof. The proof is similar as (4)⇒ (2) of [2, Theorem 29.18] those of Lp[Rn].

We state the weak and strong derivative for Lp[R∞I ] as:

Definition 2.6. Let v ∈ R∞I and f ∈ Lp[R∞I ] (f ∈ L1
loc[R∞I ]), then ∂wv f is said

to exists weakly in Lp[R∞I ](L1
loc[R∞I ]) if there exists a function g ∈ Lp[R∞I ](g ∈

L1
loc[R∞I ]) such that

< f, ∂vϕ >= − < g,ϕ >, ∀ϕ ∈ C∞c [R∞I ].

In this case ∂wv f = g.

Definition 2.7. 1. For v ∈ R∞I , h ∈ R− {0} and a function f : R∞I → C, let

∂vhf(x) =
f(x+ hv)− f(x)

h

for those x ∈ R∞I such that x+hv ∈ R∞I . When v is one of the standard basis
elements ei, for 1 ≤ i ≤ d, we will write ∂hi f(x) rather than ∂ehi f(x).

2. Let v ∈ R∞I and f ∈ Lp[R∞I ], then it is said that ∂svf exists strongly in
Lp[R∞I ], if lim

h→0
∂hv f exists in Lp[R∞I ]. In this case ∂svf = lim

h→0
∂vhf .

Observation 2

Fix n ∈ N and let Q̂∞I = lim
n→∞

QnI =
∞⋃
k=1

QkI , where QnI is the set {x ∈ RnI :

the coordinates of x are rational}. Since this is a countable dense set in RnI , we can
arrange it as QnI = {x1, x2, ...}. For each k and i, let Bk(xi) be a closed cube in Rn
centered at xi with sides parallel to the coordinate axes and edge ek = 1

2k
√
n
. Now

choose the natural order which maps N× N bijectively to N, and let {Bk : k ∈ N}
be the resulting set of (all) closed cubes

{Bk(xi)| (k, i) ∈ N× N}

centered at a point in QnI . Let ζk(x) be the characteristic function of Bk, so that
ζk(x) ∈ Lp[R∞I ] ∩ L∞[R∞I ] for 1 ≤ p <∞.

Remark 2.2. Any function in L∞[RnI ] is weakly derivable in Lp[RnI ] so

ζr(f) ∈ Lp[RnI ] ∩ L∞[RnI ]

is also in the sense of weak if we consider in weak derivative.

Lemma 2.2. Suppose f ∈ L1
loc[R∞I ] and ∂vf exists weakly in L1

loc[R∞I ]. Then
suppm(∂vf) ⊂ suppm(f), where suppm(f) is essential support of f relative to
Lebesgue measure.
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3. Sobolev spaces over RnI

The function f(x) = |x| is weak derivable in Lp(RnI ) which is not strongly derivable
in Lp(RnI ). This type of functions motivate us to think in a space like Sobolev for
Lp(RnI ) and Lp(R∞I ).
In the one dimensional case the Sobolev space Sk,p[R] for 1 ≤ p ≤ ∞ is defined as
the subset of functions f in Lp[R] such that f and its weak derivatives upto order
k have a finite Lp norm.
In one dimensional problem it is enough to assume that f (k−1), the (k−1)th deriva-
tive of the function f is differentiable almost every where. That is

Sk,p[R] = {f(x) : Dkf(x) ∈ Lp[R]}.

For multi-dimensional case the transition to multiple dimensions entails more dif-
ficulties, starting with the definition itself. The requirement that f (k−1) be the
integral of f (k) does not generalize, and the simplest solution is to consider deriva-
tives in the sense of distribution theory.
A formal definition we now state as: Let k ∈ N, 1 ≤ p ≤ ∞. The Sobolev space
Sk,p[RnI ] is defined as the set of all functions f on RnI such that for every multi-index
α with |α| ≤ k, the mixed partial derivative

f (α) =
∂|α|f

∂xα1
1 ....∂xαnn

exists in the weak sense in Lp[RnI ] that is ||f (α)||Lp <∞.
Therefore the Sobolev space Sk,p[RnI ] is the space

Sk,p[RnI ] = {f ∈ Lp[RnI ] : Dαf ∈ Lp[RnI ], ∀|α| ≤ k}.

We called k as the order of the Sobolev space Sk,p[RnI ]. We define a norm for Sk,p[RnI ]
as:

||f ||WSk,p[RnI ] =


( ∑
|α|≤k

||Dαf ||pLp

) 1
p

, for 1 ≤ p <∞;

max
|α|≤k

||Dkf ||L∞ , for p =∞

For k = 1

||f ||S1,p[RnI ] =
(
||f ||pLp[RnI ] + ||Df ||Lp[RnI ]

) 1
p

and

||f ||S1,∞[RnI ] = sup
r≥1

∣∣∣∣∣
∫
RnI
f(x)dλ∞(x)

∣∣∣∣∣+ sup
r≥1

∣∣∣∣∣
∫
RnI

Df(x)dλ∞(x)

∣∣∣∣∣ .
We can consider equivalent norms

||f ||S1,p[RnI ] =

||f ||pLp[RnI ] +

n∑
j=1

||Djf ||pLp[RnI ]

 1
p

,
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||f ||S1,p[RnI ] = ||f ||Lp[RnI ] +

n∑
j=1

||Djf ||Lp[RnI ]

when 1 ≤ p <∞ and

||f ||S1,∞ = max{||f ||L∞[RnI ], ||Df ||L∞[RnI ], . . . , ||Dnf ||L∞[RnI ]}.

3.1. Completeness of Sobolev Spaces

A sequence (fi) of functions fi ∈ Sk,p[RnI ] i = 1, 2, ... converges to a function
f ∈ Sk,p[RnI ] if for every ε > 0 there exists iε such that

||fi − f ||Sk,p[RnI ] < ε when i ≥ iε.

Equivalently
lim
i→∞

||fi − f ||Sk,p[RnI ] = 0

A sequence (fi) is a Cauchy sequence in Sk,p[RnI ] if for every ε > 0 there exists iε
such that

||fi − fj ||Sk,p[RnI ] < ε when i, j ≥ iε.

Theorem 3.1. Sk,p[RnI ] is Banach space.

Proof. First we prove ||.||Sk,p[RnI ] is a norm.

1. ||f ||Sk,p[RnI ] = 0 ⇔ f = 0 a.e. in RnI .
||f ||Sk,p[RnI ] = 0⇒ ||f ||Lp[RnI ] = 0 which implies f = 0 a.e. in RnI .
Now f = 0 a.e. in RnI , implies∫

RnI
Dαfϕdλ∞ = (−1)|α|

∫
RnI
fDαϕdλ∞ = 0 for all ϕ ∈ C∞0 [RnI ].

As f ∈ L1
loc[RnI ] satisfies

∫
RnI
fϕdλ∞ = 0 for every ϕ ∈ C∞0 [RnI ] then f = 0

a.e. in RnI . This implies Dαf = 0 a.e. in RnI for all α, |α| ≤ k.

2. ||αf ||Sk,p[RnI ] = |α|||f ||Sk,p[RnI ], α ∈ R.

3. The triangle inequality for 1 ≤ p < ∞ follows from elementary inequality
(a+ b)α ≤ aα + bα, 0 < α ≤ 1 and Minkowski’s inequality.

Now, let (fi) be Cauchy sequence in Sk,p[RnI ], since

||Dαfi − Dαfj ||Lp[RnI ] ≤ ||fi − fj ||Sk,p[RnI ] , |α| ≤ k

it follows that (Dαfi) is Cauchy in Lp[RnI ], |α| ≤ k, next follow the completeness of
Lp[RnI ] implies that there exists fα ∈ Lp[RnI ] such that Dαfi → fα in Lp[RnI ].
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Remark 3.1. Sobolev space is a vector space of functions equipped with a norm
that is a combination of Lp-norms of function together with its derivatives upto a
given order.

Theorem 3.2. Sk,p[RnI ], 1 ≤ p < ∞ is separable, however S1,∞[RnI ] is not sepa-
rable.

Proof. In the case k = 1 consider the mapping S1,p[RnI ] to Lp[RnI ] × Lp[RnI ]. The
product space Lp[RnI ]×Lp[RnI ] is separable. From the [4, proposition 3.25] T (S1,p)
is also separable. Consequently S1,p is separable.
Let Ω = Ω

′ × (0, 1), Ω
′ ⊂ RN−1

I is bounded. For 0 < z < 1 choose rz > 0 such that
Iz = (z − rz, z + rz) ⊂ (0, 1) and

Fz(x
′
, xN ) =

∫ xN

0

∫ t1

0

....

∫ tk−1

0

χIzds....dtk−1

where x = (x
′
, xN ) ∈ Ω = Ω

′ × (0.1). Then Fz ∈ Sk,∞[Ω] and the set (Uz)z∈I is
uncountable, pairwise disjoint, open and non empty subset of Sk,∞[Ω] where

Uz =
{
f ∈ Sk,∞[Ω] : ||f − Fz||Sk,∞ <

1

2

}
.

This means, f ∈ Uz1∩Uz2 implies ||Fz1−Fz2 ||Sk,∞[Ω] < 1. So, ||∂kN (Fz1−Fz2 ||L∞[Ω] <

1. Hence, ||χIz1 − χIz2 ||L∞[0,1] < 1 implies z1 = z2. Therefore, Sk,∞[Ω] is not
separable.

The space Sk,2[RnI ] is a Hilbert space with the inner product

< f, g >Sk,2[RnI ]=
∑
|α|≤k

< Dαf,Dαg >L2[RnI ],

where

< Dαf,Dαg >L2[RnI ]=

∫
RnI

DαfDαgdλ∞(x).

Observe that ||f ||Sk,2[RnI ] =< f, f >
1
2

Sk,2[RnI ]
.

Theorem 3.3. For 1 ≤ p <∞, we have

1. If 1 < p <∞ then Sk,p[RnI ] is uniformly convex.

2. If 1 < p <∞ then Sk,p[RnI ] is reflexive.

3. Sk,∞[RnI ] ⊂ Sk,p[RnI ] for 1 ≤ p <∞.
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Proof. (1) Let T : Sk,p[RnI ] → Lp[RnI ], defined as x → (Dαx)|α|≤k, be a closed and
isometric embedding. Since Lp[RnI ] is uniformly convex for 1 < p < ∞, so is any
closed subspace, and hence as Sk,p[RnI ] is isometric to its image under T, it follows
that Sk,p[RnI ] is uniformly convex for these p.
(2) Follows from part (1).
(3) Let f ∈ Sk,∞[RnI ]. This implies that |

∫
RnI

Dαf(x)dλ∞(x)| is uniformly bounded

for all n. Then |
∫
RnI

Dαf(x)dλ∞(x)|p is uniformly bounded for each p, 1 ≤ p <∞.
So, it is clear [∣∣∣∣∣

∫
RnI

Dαf(x)dλ∞(x)

∣∣∣∣∣
p] 1

p

<∞.

Therefore, f ∈ Sk,p[RnI ].

Theorem 3.4. S1,p[RnI ]→ Lp[RnI ] as continuous embedding for 1 ≤ p <∞.

Proof. As [18], we have S1,p[RnI ] → Lq[RnI ] for 1 6 p ≤ q < ∞. Also, Lq[RnI ] ⊂
Lp[RnI ] as continuous dense for 1 ≤ p <∞. So, S1,p[RnI ]→ Lp[RnI ] for 1 ≤ p <∞.
We need to prove S1,p[RnI ]→ Lp[RnI ]. For this we find

||f ||Lp[RnI ] ≤ ||f ||S1,p[RnI ]

for f ∈ S1,p[RnI ], which gives our result.

3.2. Sobolev Spaces on R∞

In this section we will discuss Sk,p[R∞I ]. As Sk,p[RnI ] ⊂ Sk,p[Rn+1
I ], we can define

Sk,p[R̂∞I ] =

∞⋃
n=1

Sk,p[RnI ].

Definition 3.1. We say that for 1 ≤ p <∞, a measurable function f ∈ Sk,p[R∞I ],

if there exists a Cauchy sequence {fn} ⊂ Sk,p[R̂∞I ] with fn ∈ Sk,p[RnI ] and

lim
n→∞

Dαfn(x) = Dαf(x), λ∞ − a.e.

Definition 3.2. Let f ∈ Sk,p[R∞I ], we define the integral by∫
R∞I

Dαf(x)dλ∞(x) = lim
n→∞

∫
R∞I

Dαfn(x)dλ∞(x)

where fn ∈ Sk,p[R∞I ] for all n and the family {fn} is a Cauchy sequence.

Theorem 3.5. Sk,p[R̂∞I ] = Sk,p[R∞I ].
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We define Sobolev space Sk,p[R∞I ] as

Sk,p[R∞I ] = {f ∈ Lp[R∞I ] : Dαf ∈ Lp[R∞I ], ∀|α| ≤ k}.

We called k as the order of the Sobolev space Sk,p[R∞I ]. We define a norm for
Sk,p[R∞I ] as:

||f ||Sk,p[R∞I ] =


( ∑
|α|≤k

||Dαf ||pLp

) 1
p

, for 1 ≤ p <∞;

max
|α|≤k

||Dkf ||L∞ , for p =∞

For k = 1

||f ||S1,p[R∞I ] =
(
||f ||pLp[R∞I ] + ||Df ||Lp[R∞I ]

) 1
p

and

||f ||S1,∞[R∞I ] = sup
r≥1

∣∣∣∣∣
∫
R∞I

f(x)dλ∞(x)

∣∣∣∣∣+ sup
r≥1

∣∣∣∣∣
∫
R∞I

Df(x)dλ∞(x)

∣∣∣∣∣ .
We can consider equivalent norms

||f ||S1,p[R∞I ] =

||f ||pLp[R∞I ] +

n∑
j=1

||Djf ||pLp[R∞I ]

 1
p

,

||f ||S1,p[R∞I ] = ||f ||Lp[R∞I ] +

n∑
j=1

||Djf ||Lp[R∞I ]

when 1 ≤ p <∞ and

||f ||S1,∞ = max{||f ||L∞[R∞I ], ||Df ||L∞[R∞I ], .., ||Dnf ||L∞[R∞I ]}.

Remark 3.2. The remark 3.1 follows that the functions of Sk,p[R∞I ] are equal al-
most everywhere.

Theorem 3.6. Let f ∈ Sk,p[R∞I ], then∫
R∞I

Dαf(x)dλ∞(x) = lim
n→∞

∫
R∞I

Dαfn(x)dλ∞(x)

where fn ∈ Sk,p[R∞I ] for all n and the family {fn} is a Cauchy sequence.

Proof. Since the family of functions {fn} is Cauchy, it follows that if the integral
exists, it is unique. To prove the existence, follow the standard argument and
first assume that f(x) ≥ 0. In this case, the sequence can always be chosen to be
increasing, so that the integral exists. The general case now follows by the standard
decomposition.
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Theorem 3.7. For 1 ≤ p <∞, we have

1. If 1 < p <∞ then Sk,p[R∞I ] is uniformly convex.

2. If 1 < p <∞ then Sk,p[R∞I ] is reflexive.

3. Sk,∞[R∞I ] ⊂ Sk,p[R∞I ] for 1 ≤ p <∞.

Proof. (1) As Sk,p[RnI ] is uniformly convex for each n and that is dense and com-

pactly embedded in Sk,p[R∞I ] for all p, 1 ≤ p ≤ ∞. So,
∞⋃
n=1

Sk,p[RnI ] is uniformly

convex for each n and that is dense and compactly embedded in
∞⋃
n=1

Sk,p[R∞I ] for

all p, 1 ≤ p ≤ ∞.
However Sk,p[R̂∞I ] =

∞⋃
n=1

Sk,p[RnI ]. That is Sk,p[R̂∞I ] is uniformly convex, dense and

compactly embedded in Sk,p[R̂∞I ] for all p, 1 ≤ p ≤ ∞. As Sk,p[R∞I ] is closure of

Sk,p[R̂∞I ]. Therefore Sk,p[R∞I ] is uniformly convex.
(2) From (1) we have Sk,p[R∞I ] is reflexive for 1 < p <∞.
(3) Let f ∈ Sk,p[R∞I ]. This implies∣∣∣∣∣

∫
R∞I

Dαf(x)dλ∞(x)

∣∣∣∣∣
is uniformly bounded for all r. It follows that

∣∣∣∫R∞I Dαf(x)dλ∞(x)
∣∣∣p is uniformly

bounded for 1 ≤ p <∞. It is clear from the definition of Sk,p[R∞I ] that[∣∣∣∣∣
∫
R∞I

Dαf(x)dλ∞(x)

∣∣∣∣∣
p] 1

p

≤M ||f ||Sk,p[R∞I ] <∞.

So, f ∈ Sk,p[R∞I ].

Theorem 3.8. S1,p[R∞I ]→ Lp[R∞I ] as continuous embedding for 1 ≤ p <∞.

Proof. As S1,p[RnI ] −→ Lp[RnI ] as continuous embedding for 1 ≤ p < ∞. So,
∞⋃
n=1

S1,p[RnI ] −→
∞⋃
n=1

Lp[RnI ] as continuous embedding for 1 ≤ p < ∞. Therefore

S1,p[R̂∞I ] −→ Lp[R̂∞I ] for 1 ≤ p < ∞. Hence, S1,p[R∞I ] −→ Lp[R∞I ] as continuous
embedding for 1 ≤ p <∞.

4. Application on R∞I

In this section, as an application of R∞I , we will construct a Sobolev spaces on
an separable Banach spaces B. Let B be a Banach space with S-basis. We can
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find from the definition of a Schauder basis that, for any sequence (xn) of scalars
associated with a x ∈ B, lim

n→∞
xn = 0.

Recalling from [8], Jk =

[
− 1

2In(k+1) ,
1

2In(k+1)

]
and Jn = Π∞k=n+1Jk, J = Π∞k=1Jk. If

{ek} be an S-basis for B and let x =
∑∞
n=1 xnen. Recalling that Pn(x) =

∑n
k=1 xnek

and define Qnx = (x1, x2, .., xn), we define BnJ by

BnJ = {Qn(x) : x ∈ B} × Jn

with norm

||(xk)||BnJ = max
1≤k≤n

||
k∑
i=1

xiei|| = max
1≤k≤n

||Pn(x)||B .

Since BnJ ⊂ B
n+1
J we set B∞J =

⋃∞
n=1B

n
J . We define BJ by

BJ = {(x1, x2, ..) :

∞∑
k=1

xkek ∈ B} ⊂ B∞J

and define a norm on BJ by

||x||BJ = sup
n
||Pn(x)||B = |||x|||B .

Let B(B∞J ) be the smallest σ−algebra containing B∞J and define
B(BJ) = B(B∞J ) ∩BJ . Using the [8, Theorem 1.61] gives that,

|||x|||B = sup
n
||

n∑
k=1

xkek||B(4.1)

is an equivalent norm on B. When B carries the equivalent norm (4.1), the operator
T : (B, |||.|||B) → (BJ , ||.||BJ ) defined by T (x) = (xk) is an isometric isomorphism
from B onto BJ . BJ is called canonical representation of B (see [8, page 67].

Definition 4.1. [8, Definition 2.42] Define vk, γk on A ∈ B(R) by vk(A) =
µ(A)
µ(Jk) , γk(A) = µ(A∩Jk)

µ(Jk) for elementary sets A = Π∞k=1Bk, A ∈ B(BnJ ), define vnJ
by:

vnJ(A) = Πn
k=1vk(Ak)×Π∞k=n+1γk(Bk).

If B is a Banach space with an S−basis and A ∈ BJ(B). We define µB(A) =
vJ(T (A)).
Let ν be any probability measure on B(R) with density f. For each x ∈ BnJ , and
each A ∈ BJ(B), define fnB(x) by

fnB(x) =

(
⊗nk=1 f(xk)

)
⊗
(
⊗∞k=n+1 χI(xk)

)
and vnJ on BJ(B) by

vnJ(A) =

∫
T (A)∩BnJ

fnB(x)dµB(x)

where T is the isometric isomorphism between B and BJ also R∞I ⊆ BJ .
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4.1. Test Functions and weak derivatives

Definition 4.2. We define the set of test functions (or C∞-functions with compact
support on B as

Dt(B) =
{
φ ∈ C∞(B) : supp(φ) =

{
x : φ(x) 6= 0

}
⊆ B is compact.

We call supp(φ) the support of φ.

Lemma 4.1. The space of test functions Dt(B) is dense in Lp(B)
for 1 ≤ p <∞.

Let Nα
0 be the set of all multi-index infinite tuples α = (α1, α2, ..) with αi ∈ N and

all but a finite number of entries are zero.
We define the operator Dα and Dα by

Dα = Π∞k=1

∂αk

∂xiαk

and

Dα = Π∞k=1

(
1

2πi

∂

∂xk

)αk
Definition 4.3. [8, Definition 2.84] If α is a multi-index and u, v ∈ L1

loc(B), v is
the αth weak partial derivative of u provided that∫

B

u(Dαφ)dµB = (−1)|α|
∫
B

φvdµB

for all functions φ ∈ C∞c (B).

Lemma 4.2. C∞0 (B′) is dense in Lp(B′).

Proof. Taking φ ∈ C∞0 (B′), φ ≥ 0 and
∫
B′
φdµB = 1. Define φε(x) = ε−1φ(xε ). If

f ∈ Lp(B′) with compact support then φε ∗ f has compact support is of the class
C∞(B′) and φε ∗ f converges to f in Lp(B′).

Theorem 4.1. (Fundamental lemma of the Calculus of variations) If f ∈ L1
loc(B)

satisfies
∫
B
fφdµB = 0 for every φ ∈ C∞0 (B), then f = 0 a.e. in B.

Proof. Let v1, v2 ∈ L1
loc(B) are weak αth partial derivatives of u, then∫
B

uDαφdµB = (−1)|α|
∫
B

v1φdµB

= (−1)|α|
∫
B

v2φdµB
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for every φ ∈ C∞0 (B). We have now,∫
B

(v1 − v2)φdµB = 0 for every φ ∈ C∞0 (B).

Let B′ is open and B
′

is a compact subset of B. Since C∞0 (B′) is dense in Lp(B′)
then there exists a sequence of function φi ∈ C∞0 (B′) such that |φi| ≤ α in B′ and
φi → sgn(v1− v2) a.e. in B′ as i→∞. Now from dominated convergence theorem,
with the majorant |v1 − v2)φi| ≤ 2(|v1|+ |v2|) ∈ L1(B′), gives

0 = lim
i→∞

∫
B′

(v1 − v2)φidµB

=

∫
B′

lim
i→∞

(v1 − v2)φidµB

=

∫
B′

(v1 − v2)sgn(v1 − v2)dµB

=

∫
B′
|v1 − v2|dµB

This implies that v1 = v2 a.e. in B′ for every B′ b B. Thus v1 = v2 a.e. in B.
Consequently, if f ∈ L1

loc(B) satisfies
∫
B
fφdµB = 0 for every φ ∈ C∞0 (B) then

f = 0 a.e. in B.

Definition 4.4. [8, Definition 2.87] A function f ∈ C∞(B) is called a Schwartz
function, or f ∈ S(B), iff, for all multi-indices α and β in Nα

0 , the seminorm ρα,β(f)
is finite, where

ρα,β(f) = sup
x∈B
|xαDβf(x)|

S(B) (respectively S(B′)) is a Fréchet space, which is dense in C0(B). The test
function space Dt(B) is subspace of S(B) so from the Lemma 4.1, S(B) is dense in
Lp(B).

4.2. Sobolev space on separable Banach spaces

In this sub section, we discuss Sobolev space Sk,2(B) on separable Banach space B.

Definition 4.5. 1. The Sobolev space Sk,2(B) consists of functions u ∈ L2(B)
such that for every multi-index α with |α| ≤ k, the weak derivative Dαu exists
and Dαu ∈ L2(B). Thus

Sk,2(B) =
{
u ∈ L2(B) : Dαu ∈ L2(B), |α| ≤ k

}
.

2. We assume the inner product on Sk,2(B) as:〈
f | g

〉
Sk,2

=
∑
|α|≤m

〈
D(α)f | D(α)g

〉
L2(4.2)
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Hk,2(B) = Ck(B) ∩ Sk,2(B),

where the closure is with respect to the norm induced by < . | . >Sk,2 .

3. Hk,2
0 (B) = Dt(B) is with respect to the induced norm on Sk,2.

Theorem 4.2. Sk,2(B) is a Hilbert space with the inner product (4.2).
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