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Abstract. Let X,Y be two subspaces of summability domains of matrices with real or
complex entries defined by speeds of the convergence, i.e.by monotonically increasing
positive sequences λ and µ. In this paper, we give necessary and sufficient conditions
for a matrix M (with real or complex entries) to map X into Y , where X is the sub-
space of summability domain of a normal matrix A defined by the speed λ and Y is
the subspace of a lower triangular matrix B defined by the speed µ. As an application
we consider the case if A is the Riesz method (R, pn).
Keywords: Matrix transforms, Boundedness and summability with speed, Riesz method.

1. Introduction

Let X,Y be two sequence spaces and M = (mnk) be an arbitrary matrix with
real or complex entries. Throughout this paper we assume that indices and sum-
mation indices run from 0 to∞ unless otherwise specified. If for each x = (xk) ∈ X
the series

Mnx =
∑
k

mnkxk

converge and the sequence Mx = (Mnx) belongs to Y , we say that the matrix M
transforms X into Y . By (X,Y ) we denote the set of all matrices which transform
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X into Y . Let c and m be correspondingly the spaces of all convergent and bounded
sequences, and c0 the space of all sequences converging to zero.

Let throughout this paper λ = (λk) be a positive monotonically increasing
sequence, i.e.; the speed of convergence. Following Kangro [5], [6] a convergent
sequence x = (xk) with

lim
k
xk := ξ(x) and lk(x) = λk (xk − ξ(x))(1.1)

is called bounded with the speed λ (shortly, λ-bounded) if lk(x) = Ox (1) (or
(lk(x)) ∈ m), and convergent with the speed λ (shortly, λ-convergent) if the fi-
nite limit

lim
k
lk(x) := b(x)

exists (or (lk(x)) ∈ c). We denote the set of all λ-bounded sequences by mλ, and the
set of all λ-convergent sequences by cλ. It is not difficult to see that cλ ⊂ mλ ⊂ c.
In addition, for unbounded sequence λ these inclusions are strict. For λk = O (1)
we get cλ = mλ = c.

Let A = (ank) be a normal matrix (it means A is lower triangular, and ann 6= 0
for every n) and B = (bnk) a lower triangular matrix. A sequence x = (xk) is said
to be Aλ-bounded (Aλ-summable), if Ax ∈ mλ (Ax ∈ cλ, respectively). The set of
all Aλ-bounded sequences will be denoted by mλ

A, and the set of all Aλ-summable
sequences by cλA. Let cA be the summability domain of A, i.e.; the set of sequences
x (with real or complex entries), for which the finite limit limnAnx exists. It is easy
to see that cλA ⊂ mλ

A ⊂ cA, and, if λ is a bounded sequence, then mλ
A = cλA = cA.

Let µ = (µn) be another speed of convergence,

cµ0 := {x = (xn) : x ∈ cµ and lim
n
µn(xn − ξ(x)) = 0},

and
(c0)µB := {x ∈ cµB : Bx ∈ cµ0}.

Necessary and sufficient conditions for M ∈
(
mλ
A,m

µ
B

)
have been proved in [2], and

for M ∈
(
cλA, c

µ
B

)
in [3]. Necessary and sufficient conditions for M ∈

(
cλA,m

µ
B

)
have

been presented in [1], Exercises 9.3 and 9.4.

In this paper we describe necessary and sufficient conditions for M ∈
(
mλ
A, c

µ
B

)
and for M ∈

(
mλ
A, (c0)µB

)
. As an application we consider the case if A is the Riesz

method (R, pn).

2. Auxiliary results

For the proof of the main results we need some auxiliary results.

Lemma 2.1 ([4], p. 44, see also [8], Proposition 12 ). A matrix A = (ank) ∈
(c0, c) if and only if conditions

(I) lim
n
ank := ak for all k,
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(II)
∑
k

|ank| = O (1)

are satisfied. Moreover,

lim
n
Anx =

∑
k

akxk.(2.1)

Lemma 2.2 ([4], p. 51, see also [7], p. 8, Theorem 1.2 or [8], Proposition 10 ).
The following statements are equivalent:

(a) A = (ank) ∈ (m, c) .

(b) The conditions (I), (II) are satisfied and

lim
n

∑
k

|ank − ak| = 0.(2.2)

(c) The condition (I) holds and

the series
∑
k

|ank| converges uniformly in n.

Moreover, if one of the statements (a)-(c) is satisfied, then the equation (2.1) holds.

Lemma 2.3 ([8], Proposition 21 ). A matrix A = (ank) ∈ (m, c0) if and only if
condition

(III) lim
n

∑
k

|ank| = 0

is satisfied.

3. The sets
(
mλ
A, c

µ
B

)
and

(
mλ
A, (c0)µB

)
First we present necessary and sufficient conditions for existence of the trans-

formation y = Mx for every x ∈ mλ
A. Let A−1 := (ηnk) be the inverse matrix of a

normal matrix A. Then

j∑
k=0

mnkxk =

j∑
k=0

mnk

k∑
l=0

ηklyl =

j∑
l=0

hnjlyl

for each x := (xk) ∈ mλ
A, where yl := Alx and Hn :=

(
hnjl

)
is the lower triangular

matrix for every fixed n, with

hnjl :=

j∑
k=l

mnkηkl, l ≤ j.
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This implies that the transformation y = Mx exists for every x ∈ mλ
A if and only

if the matrix Hn :=
(
hnjl

)
∈
(
mλ, c

)
for every fixed n. Hence we can formulate the

following result (see [1], Proposition 8.1 or [2], Lemma 1).

Proposition 3.1. Let A = (ank) be a normal method and M = (mnk) an
arbitrary matrix. Then the transformation y = Mx exists for every x ∈ mλ

A if and
only if

(IV) there exist finite limits lim
j
hnjl := hnl for every fixed l and n,

(V) lim
j

j∑
l=0

hnjl exists and is finite for every fixed n,

(VI)
∑
l

|hn
jl|
λl

= On(1) for every fixed n,

(VII) lim
j

j∑
l=0

|hn
jl−hnl|
λl

= 0 for every fixed n.

Also, condition (VI) can be replaced by the condition

(VIII)
∑
l

|hnl|
λl

= On(1) for every fixed n.

Remark 3.2. Using Lemma 2.2 c) it is possible to show that conditions (VI)
and (VII) can be replaced by the condition

(IX) the series
∑
l

|hn
jl|
λl

converges uniformly in j for every fixed n.

Now we are able to prove the main results. Let e = (1, 1, ...), ek = (0, ..., 0, 1, 0, ...),
where 1 is in the k-th position, and G = (gnk) = BM ; i.e.,

gnk :=

n∑
l=0

bnlmlk.

Theorem 3.3. Let A = (ank) be a normal method, B = (bnk) a triangular
method and M = (mnk) an arbitrary matrix. Then M ∈

(
mλ
A, c

µ
B

)
if and only if

conditions (IV)-(VII) are satisfied and

(X) there exist the finite limits lim
n
γnl := γl,

(XI) there exist the finite limits lim
n
µn(γnl − γl) := Sl,

(XII)
∑
l

|γnl|
λl

= O(1),
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(XIII) µn
∑
l

|γnl−γl|
λl

= O(1),

(XIV) lim
n

∑
l

|µn(γnl−γl)−Sl|
λl

= 0,

where
γnl := lim

j
γjnl,

and

(XV) (ρn) ∈ cµ, ρn := lim
j

j∑
l=0

γjnl,

where Γn :=
(
γjnl

)
is the lower triangular matrix for every fixed n with

γjnl :=

j∑
k=l

gnkηkl, l ≤ j.

Also, condition (XII) can be replaced by the condition

(XVI)
∑
l

|γl|
λl

<∞,

and, if µn = O(1) and λn 6= O(1), then it is necessary to replace the O(1) in (XII)
by o(1).

Proof. Necessity. Assume that M ∈
(
mλ
A, c

µ
B

)
. Then the transformation

y = Mx exists for every x ∈ mλ
A. Hence conditions (IV) - (VII) hold by Proposition

3.1, and
Bny = Gnx(3.1)

for every x ∈ mλ
A because the change of the order of summation is allowed by

the lower triangularity of B. From (3.1) we can conclude that G ∈
(
mλ
A, c

µ
)
. In

addition,
j∑

k=0

gnkξk =

j∑
l=0

γjnlAlx(3.2)

for every x ∈ mλ
A. By the normality of A, there exists an x ∈ mλ

A, such that
(Alx) = e. Consequently condition (XV) is satisfied by (3.2).

Assume now that λn 6= O(1). Then, by the normality of A, for each bounded
sequence (βn) there exists an x ∈ mλ

A, such that

lim
n
Anx := δ and βn = λn (Anx− δ) .(3.3)

Moreover, using (3.2) and (3.3) we obtain

j∑
k=0

gnkxk = δ

j∑
l=0

γjnl +

j∑
l=0

γjnl
λl
βl(3.4)
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for every x ∈ mλ
A. As the series Gnx are convergent for every x ∈ mλ

A, and the

finite limits ρn exist by (XV), then the matrix Γnλ :=
(
γjnl/λl

)
∈ (m, c) for every n.

Therefore, from (XV), we obtain, using Lemma 2.2 that

Gnx = δρn +
∑
l

γnl
λl
βl(3.5)

for every x ∈ mλ
A. In addition, the finite limit limn ρn := ρ exists by (XV). There-

fore, from (3.5), we can conclude that the matrix Γλ := (γnl/λl) ∈ (m, c). Conse-
quently conditions (X), (XII) hold,

lim
n

∑
l

|γnl − γl|
λl

= 0,(3.6)

and

lim
n
Gnx = δρn +

∑
l

γl
λl
βl(3.7)

for every x ∈ mλ
A by Lemma 2.2. Now it is clear that, for µn = O(1), it is necessary

to replace O(1) in (XIII) by o(1); i.e., condition (XIII) is equivalent to (3.6).

We continue with the case µn 6= O(1), writing

µn(Gnx− lim
n
Gnx) = δµn(ρn − ρ) + µn

∑
l

γnl − γl
λl

βl(3.8)

for every x ∈ mλ
A. This implies that the matrix Γλ,µ := (µn(γnl − γl)/λl) ∈ (m, c).

Hence, using Lemma 2.2, we conclude that conditions (XI) and (XIV) hold.

If λn = O(1), then the proof is similar to the case λn 6= O(1), but now βl = o(1),
and, instead of Lemma 2.2, it is necessary to use Lemma 2.1.

Finally, we note that the necessity of condition (XVI) follows from the validity
of conditions (XII) and (XIII).

Sufficiency. Let all of the conditions of the present theorem be fulfilled. Then the
transformation y = Mx exists for every x ∈ mλ

A by Proposition 3.1, and equations
(3.1) - (3.4) hold for every x ∈ mλ

A. As in the proof of the necessity of the present
theorem, we get, using (XV) and Lemma 2.2, that, from (3.4), follows the validity
of (3.5) for every x ∈ mλ

A. If λn 6= O(1) and µn = O(1), then Γnλ ∈ (m, c) for
every n by (X), (XII) and (3.6) (in this case, instead of (XIII), we have (3.6)); i.e.,
M ∈

(
mλ
A, cB

)
.

If λn 6= O(1) and µn 6= O(1), then the validity of (3.6) follows from the validity
of (XIII). Thus, in that case, again Γλ ∈ (m, c) by (X), (XII) and (3.6). Moreover,
relation (3.7) holds for every x ∈ mλ

A by virtue of Lemma 2.2, and therefore relation
(3.8) holds for every x ∈ mλ. Hence Γλ,µ ∈ (m, c) by (XI), (XIII) and (XIV).
Consequently, M ∈

(
mλ
A, c

µ
B

)
by (XV).

The proof for the case λn = O(1) is analogous.
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Condition (XII) can be replaced by (XVI) because the validity of (XII) follows
from the validity of (XIII) and (XVI).

Remark 3.4. Using (c) in Lemma 2.2 it is possible to show that conditions
(XIII) and(XIV) in Theorem 3.2 can be replaced by the condition

(XVII) the series µn
∑
l

|γnl−γl|
λl

converges uniformly in n.

Using Lemma 2.3, from Theorem 3.3 we obtain the following result.

Corollary 3.5. Let A = (ank) be a normal method, B = (bnk) a triangular
method and M = (mnk) an arbitrary matrix. Then M ∈

(
mλ
A, (c0)µB

)
if and only if

(ρn) ∈ cµ0 , conditions (IV)-(VII), (X) and (XII) are satisfied, and

(XVIII) lim
n

∑
l

|µn(γnl−γl)|
λl

= 0.

Also, condition (XII) can be replaced by the condition (XVI) and, if µn = O(1) and
λn 6= O(1), then it is necessary to replace the O(1) in (XII) by o(1).

Proof. As in Theorem 3.3, all relations (3.1) - (3.8) hold for x ∈ mλ
A, Γnλ ∈ (m, c)

for every n and Γλ ∈ (m, c). Hence also conditions (IV) - (VII), (X), (XII) and (XIII)
hold. Unlike Theorem 3.3, we now get the condition (ρn) ∈ cµ0 instead of (XV), and
Γλ,µ ∈ (m, c0). Therefore instead of (XI) and (XIV) we obtain condition (XVIII)
by Lemma 2.3. Moreover, the validity of condition (XIII) follows from (XVIII).

4. The sets
(
mλ

(R,pn)
, cµB

)
and

(
mλ

(R,pn)
, (c0)µB

)
In this section we apply results from Section 3 for the case if A is the Riesz

matrix denoted by (R, pn). Let (pn) be a sequence of nonzero complex numbers
and Pn = p0 + ... + pn 6= 0. Then (R, pn), defined by a lower triangular matrix
A = (ank), is given in sequence-to-sequence form by equalities ([1], p. 29 or p. 131)

ank = pk/Pn, k ≤ n.

The inverse matrix A−1 = (ηkl) of (R, pn) is defined by ([1], p. 90)

ηkl =

 Pk/pk (l = k),
−Pk−1/pk (l = k − 1),
0 otherwise.

(4.1)

As in previous section, let M be an arbitrary matrix and B a lower triangular matrix
with real or complex entries. Then, using (4.1) we obtain

hnjl =

 hnl (l ≤ j − 1),
Pjmnj/pj (l = j),
0 otherwise,

(4.2)
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where
hnl = Pl∆l

mnl

pl
,(4.3)

and

γjnl =

 γnl (l ≤ j − 1),
Pjgnj/pj (l = j),
0 otherwise,

(4.4)

where
γnl = Pl∆l

gnl
pl
.(4.5)

As
j∑
l=0

hnjl =

j∑
l=0

j∑
k=l

mnkηkl =

j∑
k=0

mnkηk,

where

ηk :=

k∑
l=0

ηk = 1

by (4.1), then we get
j∑
l=0

hnjl =

j∑
k=0

mnk.(4.6)

Similarly to (4.6) we obtain
j∑
l=0

γnjl =

j∑
k=0

gnk,

and then
ρn =

∑
k

gnk.(4.7)

Theorem 4.1. Let ek ∈ mλ
(R,pn)

. Then M ∈
(
mλ

(R,pn)
, cµB

)
if and only if

(XIX) the series
∑
k

mnk is convergent for every n,

(XX) lim
l

Pj

pj

mnj

λj
= 0 for every n,

(XXI)
∑
l

1
λl

∣∣∣Pl∆l
mnl

pl

∣∣∣ = On(1),

(XXII) there exist the finite limits limn gnl := gl,

(XXIII) e ∈ cµG,

(XXIV) there exist the finite limits µn∆l
gnl−gl
pl

:= Gl,

(XXV)
∑
l

1
λl

∣∣∣Pl∆l
gnl

pl

∣∣∣ = O(1),
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(XXVI) µn
∑
l

1
λl

∣∣∣Pl∆l
gnl−gl
pl

∣∣∣ = O(1),

(XXVII) lim
n

∑
l

1
λl

∣∣∣µnPl∆l
gnl−gl
pl
−Gl

∣∣∣ = 0.

Proof. Necessity. Assume that M ∈
(
mλ

(R,pn)
, cµB

)
. Then, using equations

(4.3) and (4.5) - (4.7), we obtain by Theorem 3.3 that correspondingly conditions
(XXI), (XXV), (XIX) and (XXIII) are satisfied. Now it is not difficult to see that

∑
l

∣∣∣hnjl − hnl∣∣∣
λl

=

∣∣∣∣Pjmnj

pjλj
− Pj
λj

∆j
mnj

pj

∣∣∣∣+

∞∑
l=j+1

1

λl

∣∣∣∣Pl∆l
mnl

pl

∣∣∣∣ .(4.8)

From (4.8) we get by condition (XXI) that

lim
j

1

λj

∣∣∣∣Pj∆l
mnj

pj

∣∣∣∣ = 0(4.9)

and

lim
j

∞∑
l=j+1

1

λl

∣∣∣∣Pl∆l
mnl

pl

∣∣∣∣ = 0(4.10)

Hence condition (XX) holds by Theorem 3.3.

As ek ∈ mλ
(R,pn)

and equation (3.1) holds for every x ∈ mλ
(R,pn)

, then condition

(XXII) is satisfied. Finally, using the validity of (4.5) and (XXII), we have that
conditions (XXIV), (XXVI) and (XXVII) hold correspondingly by conditions (XI),
(XIII) and (XIV) of Theorem 3.3.

Sufficiency. Let all of the conditions of the present theorem be satisfied. We
show that all conditions of Theorem 3.3 are satisfied for A = (R, pn). First, con-
ditions (IV) and (V) hold by (4.2), (4.3) (4.6) and (XIX). Conditions (XX) and
(XXI) imply the validity of condition (VI) by (4.2) and (4.3). Then the validity of
condition (VII) follows from (XX) and (XXI) by (4.8) - (4.10).

Using equations (4.4), (4.5) and (4.7) we conclude that conditions (XXII) -
(XXVII) imply the validity of conditions (X) - (XV).

Remark 4.2. Condition (XXV) in Theorem 4.1 can be replaced by the condition

(XXVIII)
∑
l

1
λl

∣∣∣Pl∆l
gl
pl

∣∣∣ <∞,

since conditions (XXVI) and (XXVIII) imply the validity of (XXV).

Remark 4.3. Using Remark 3.4 we obtain that conditions (XXVI) and (XXVII)
can be replaced by condition

(XXIX) the series µn
∑
l

1
λl

∣∣∣Pl∆l
gnl−gl
pl

∣∣∣ converges uniformly in n,
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Using Corollary 3.5, from Theorem 4.1 we immediately get the following result.

Corollary 4.4. Let ek ∈ mλ
(R,pn)

. Then M ∈
(
mλ

(R,pn)
, (c0)µB

)
if and only if

e ∈ (c0)µG, conditions (XIX) - (XX), (XXV) are satisfied and

(XXX) lim
n

∑
l

1
λl

∣∣∣µnPl∆l
gnl−gl
pl

∣∣∣ = 0.

5. Conclusions

In this paper we continued the investigations started in [2] and [3] (see also [1]),
where we studied the matrix transformations of subspaces of summability domains
of matrices with real or complex entries defined by speeds of convergence, i.e.; by
monotonically increasing positive sequences λ and µ. Now we found necessary and
sufficient conditions for a matrix M (with real or complex entries) to map the
λ-boundedness domain of a normal matrix A into the µ-convergence domain (or
into the specific subdomain of µ-convergence domain) of lower triangular matrix
B. As an application we considered the case if A is the Riesz method (R, pn).
Further we intend to study matrix transforms between the specific subdomains
of λ-boundedness (or λ-convergence) domain of matrix A and µ-boundedness (or
µ-convergence) domain of matrix B.
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