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Abstract. The object of the present paper is to study S-almost Yamabe solitons and
B-almost Ricci solitons on almost co-Kéhler manifolds. In this paper, we prove that if
an almost co-Kahler manifold M with the Reeb vector field £ admits a S-almost Yam-
abe solitons with the potential vector field £ or b€, where b is a smooth function then
manifold is K-almost co-K&hler manifold or the soliton is trivial, respectively. Also, we
show if a closed (k, pt)-almost co-Kéhler manifold M™ with n > 1 and k < 0 admits a
[B-almost Yamabe soliton then the soliton is trivial and expanding. Then we study an
almost co-Kéhler manifold admits a S-almost Yamabe soliton or S-almost Ricci soliton
with V as the potential vector field, V is a special geometric vector field.

Keywords: Ricci soliton, Yamabe soliton, Contact manifold, Almost co-K&hler mani-
fold.

1. Introduction

Over the last few years, the geometric flows have been an interesting topic of
active research in both mathematics and physics. The Ricci flow was introduced by
Hamilton [15], which is an evolution equation for metrics on a Riemannian manifold
defined as follows

dg

(1.1) 5 = -2S,  g(0) = go,

where S denotes the Ricci tensor. A Ricci soliton (M,g,V, ) on a Riemannian
manifold (M, g) is a special solution to the Ricci flow, a generalization of an Einstein
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metric and is defined by
(1.2) Lyg+2S+2Xg =0,

where Ly is the Lie derivative operator along the vector field V' (called the po-
tential vector field ) on M and A is a real number. The Ricci soliton is said to
be shrinking, steady, or expanding depending on whether A is negative, zero, and
positive, respectively. If the vector field V' is the gradient of a potential function f,
then g is called a gradient Ricci soliton. If in Ricci soliton (1.2), A be a function
A: M — R it is then called almost Ricci soliton. In [12, 21] almost Ricci soliton
has been investigated. Also, if there exists a function 8 : M — R such that

(1.3) BLyg+ 28+ 2\g =0,

then this soliton is called S-almost Ricci soliton which studied in [12, 13]. The
B-almost Ricci soliton is called expanding, steady and shrinking when A > 0, A =0
or A < 0, respectively. A S-almost Ricci soliton is said to be trivial if the potential
vector field V' is homothetic, i.e., Lyyg = cg, for some constant c. Otherwise, it is
called non-trivial. Similarly, a Riemannian manifold (M, g) is said to be S-almost
Yamabe soliton if there exists a vector field V on M (called the potential vector
field ), a soliton function A : M — R and a smooth function 8 : M — R such that

(1.4) BLyg = (A—r)g,

where r is scalar curvature of M respect to metric g. When the function A in (1.3)
(and in (1.4) ) is constant we simply say that it is a §-Ricci soliton ( a S-Yamabe
soliton). The S-almost Yamabe soliton is called expanding, steady or shrinking
when A < 0, A = 0 or A > 0, respectively. A S-almost Yamabe soliton is said to
be trivial if the potential vector field V' is Killing, i.e., Lyg = 0. We say that
is defined signal whenever either 5 > 0 on M or f < 0 on M. During the last
two decades, the geometry of Ricci soliton and other solitons have been the focus
of attention of many mathematicians and physicists. For theoretical physicists the
Ricci solitons are as quasi Einstein metrics and they have been looking into the
equation of geometric sloitons in relation with topics of physics as string theory and
general relativity [11, 25].

In contact geometry, gradient Ricci soliton have been studied by Sharma [22] as
a K-contact and by Ghosh et al. [14] as a (k, u)-metric. In [8], Cho et al. and in
[16] Hui et al. studied 7-Ricci solitons on real hypersurfaces in a non-flat complex
space form and on 7-Einstein Kenmotsu manifolds, respectively. Also, in [23], Suh
et al. investigated the Yamabe solitons and Ricci solitons on almost co-Kahler man-
ifolds. In [17], Kar and Majhi studied S-almost Ricci soliton on almost co-Ké&hler
manifolds with £ belong to (x, p)-nullity distribution.

Motivated by the above studies the object of he tpresent paper is to study (-
almost Yamabe solitons and S-almost Ricci solitons on almost co-Kéhler manifolds
and we generalize the results of [23] and also we obtain other results of these solitons
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on almost co-Kahler manifolds when the potential vector field of solitons is satisfied
in certain conditions. This paper is organized as follows. In section 2., after a brief
introduction, we study almost co-K&hler manifolds and give some formula that will
be used in the next sections. In section 3., we consider S-almost Yamabe solitons
on almost co-Kéahler manifolds and prove if an almost co-Kéhler manifold M with
the Reeb vector field £ admits a S-almost Yamabe solitons with the potential vector
field & or b€, where b is a smooth function, and [ is defined signal, then manifold
M is K-almost co-Kéhler manifold or the soliton is trivial, respectively. Also we
prove several important results about the geometric fields and [-almost Yamabe
solitons on almost co-Kéahler manifolds. In the following part of this section, we
study S-almost Yamabe solitons on (k, p)-almost co-Kéhler manifolds. In the last
section, we consider S-almost Ricci solitons with geometric vector fields on almost
co-Kéhler manifolds.

2. Preliminaries

In this section, we give some well known definitions and formulas on almost co-
Kéhler manifolds which will be useful in the later sections. A smooth (2n + 1)
dimensional Riemannian manifold (M, g) is said to admit an almost contact metric
structures (¢, &, 7, g), if it admits a (1,1) tensor field ¢, a unit vector field £ (called
the Reeb vector field), and a 1-form 7 satisfying [1, 2],

(21) ¢2:7[+77®£a 77(5):17 ¢£:07 77°¢:07
and

(2:2) 9(¢X,¢Y) = g(X,Y) — n(X)n(Y),

or equivalently

(23) g(¢X’Y) = _g(X7¢Y)’ Q(X,f) ZU(X)7

for all vector fields X, Y on M. For an almost contact metric manifold (M?"+1 ¢, ¢ n, g),
we can always define a 2-form ® as ®(X,Y) = g(X, ¢Y). An almost contact metric
structure becomes a contact metric structure if ® = dn. In this case, 1-form 7 is a
contact form, £ is its characteristic vector field, and ® is the fundamental 2-form. If,
in addition, € is a Killing vector field, then M?"*! is said to be K-contact manifold.
The almost contact metric structure is said to be normal if [¢, ¢] = —2dn ® £ where

(2.4) [0, ¢](X,Y) = [6X, 0Y] + ¢*[X, Y] = 9[6X, Y] — 6[X, ¢Y],

for any vector fields X,Y on M. A normal almost contact metric manifold is said
to be Sasakian, that is an almost contact metric manifold is Sasakian if and only if

(2.5) (Vx@)Y =g(X,Y)§ —n(Y)X,

or equivalently
(2.6) R(X,Y)§ =n(Y)X —n(X)Y,
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for any vector fields X,Y on M (see [2]). An almost contact metric manifold
(M?"+1 ¢, & n, g) is said to be almost co-Kihler manifold [2, 4] if both the 1-form 7
and the 2-form ® are closed. If, in addition the associated almost contact structure
is normal, which is also equivalent to V® = 0, or equivalently V¢ = 0, then M is
said to be co-Kéhler manifold. There exists some examples of (almost) co-K&hler
manifolds, for instance, the Riemannian product of a real line and a (almost) K&hler
manifold admits a (almost) co-Kéahler structure ([7, 18, 19, 20]). On an almost co-
Kihler manifold (M?"*1 ¢ €, m,9) we set h = %Eg(b and h' = ho¢. Then the
following formulas also hold for a almost co-K&hler manifold [9, 10, 19, 20]

(2.7) hE=0, ho+oh=0, trh=trlk,
) Vep =0, VE=H, divé = 0,
(2.9) S(&€) + ||l =o.

If, in addition, we put I = R(.,£)&, then we also get ¢l — [ = 2h?, where R is the
Riemannian curvature tensor. From the second term of (2.7) it is easy to see that

(2.10) (Leg)(X,Y) =29(W X, Y),

for any vector fields X,Y on M. Therefore, the Reeb vector field £ on almost co-
Kéhler manifold is Killing if and only if the (1,1) tensor field & vanishes. An almost
co-Kahler manifold is said to be a K-almost co-Ké&hler manifold if the Reeb vector
field ¢ is Killing.

A contact metric manifold (M?"+1 ¢, £ n,g) whose curvature tensor satisfies

(2.11) R(X,Y)=r[nY)X —n(X)Y]+ pn(Y)hX —n(X)hY],

for any vector fields X,Y on M and &, € R is called (k, u)-contact manifold and
¢ is said to belong to the (x, p)-nullity distribution. Similarly, we have

Definition 2.1. An almost co-Kihler manifold (M?"+1 ¢, £ 1, g) is said to be a
(K, pt)-almost co-K&hler manifold if the Reeb vector field ¢ satisfies the equation
(2.11).

In a consequence of (2.11), we obtain

(2.12) S(X,€) =2nkn(X),

and Q¢ = 2nk&, where @ is the Ricci operator defined by ¢(QX,Y) = S(X,Y).

3. p-almost Yamabe solitons on almost co-Kahler manifolds

In this section we study [-almost Yamabe solitons on almost co-Kéhler manifolds
(M?"+1 ¢, & n, g). If we assume that the potential vector field of soliton be &, then
we have:
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Theorem 3.1. If an almost co-Kdihler manifold (M*"*1, ¢, &,n,9) admits a B-
almost Yamabe soliton with & as the potential vector field and (B is defined signal,
then manifold M is K -almost co-Kdhler manifold.

Proof. Let in almost co-Kéhler manifold (M?" 1 ¢, & 7, g) the metric g be a (-

almost Yamabe soliton with the potential vector field £&. Then, we have L¢g = AET g.

By taking trace of both-sides of last identity we get 2divE = )‘E" (2n 4+ 1). Since
divé = 0, we conclude 2= = 0, which means ¢ is a Killing vector field. This

completes the proof of Theorem. [

Any three dimensional almost co-K&hler manifold is co-K&hler manifold if and only
if it is K-almost co-K&hler manifold [19]. Hence, we get the following result.

Corollary 3.1. If an almost co-Kdihler manifold (M?,¢,€,m,g) admits a B-almost
Yamabe soliton with & as the potential vector field and B is defined signal, then
manifold M is a co-Kdhler manifold.

Now, if we assume that the potential vector field of S-almost Yamabe soliton is
pointwise collinear with the Reeb vector field, then we have the following theorem.

Theorem 3.2. If an almost co-Kdhler manifold (M?"*Y ¢ & n,g) admits a (-
almost Yamabe soliton with b§ as the potential vector field where b is non-zero
smooth function and B is defined signal, then the soliton is trivial.

Proof. Using (2.8) we can write
(3.1) Vi (b€) = X (b)€ + bVXE = X (b)E + bl X,

for any vector field X on M. On the other hand, the metric g is a S-almost Yamabe
soliton with the potential vector field b, then we have SLyeg = (A — r)g and this
implies

A=7)g(X,Y) = Bg(Vx(S),Y)+ Bg(X, Vy (b))
(3.2) — BX()(Y) + BY (B)(X)28b9(W' X, V),
For each point p in M, we consider a local ¢-basis {e¢; : 1 < i < 2n + 1} on the
tangent space T, M. Since

2n+1 2n+1

(33) D ghene) =Y g(Ve& e) = divg =0,

i=1 i=1

taking X =Y =¢; in (3.2) and summing over i, we derive

(3.4) A=r)2n+1) =28&(b).
Again, substituting X =Y = ¢ in (3.2), we get
(3.5) (A =1) =2B&(b).

Equations (3.4) and (3.5) yield A = r. Putting A = r in Lycg = (A —1r)g , we
obtain Lyeg = 0 . Thus, b is a Killing vector field and the soliton is trivial. O
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Now we state the following lemma, which will be used in the next results when
in a (k, u)-almost co-Kihler manifold (M?"+1 ¢, & 1, g) with n > 1 constant « is
negative.

Lemma 3.1. ([24]) Let (M*" 1 ¢,£,m,9) be a (k,u)-almost co-Kdihler manifold
withn > 1 and kK < 0. Then the Ricci operator is given by

(3.6) Q = ph+2nkn ® ¢,

where K is a constant and p is a smooth function satisfying du An = 0.

Theorem 3.3. If a closed (k, )-almost co-Kdihler manifold (M?"+1, ¢, &, n, g) with
n > 1 and k < 0 admits a B-almost Yamabe soliton and B is defined signal, then
the soliton is trivial and expanding.

Proof. Let  the  metric g of (k,u)-almost  co-K&hler  manifold
(M?"*1 ¢, & m,9) be a B-almost Yamabe soliton with the potential vector field

V, then we have Ly g = (A —r)g. Set p := )‘E", from [26] we have

(3.7) Lyr = —pr—2nAp,

where A = div grad denotes the Laplace operator of g. On the other hand, from
(3.6) of lemma 3.1 we derive

(3.8) S(X,Y) = pg(hX,Y) + 2nen(X)n(Y),

for any vector fields X,Y on M. Consider a local ¢-basis {e; : 1 < i < 2n + 1}
on the tangent space T, M. Putting X =Y = ¢; in (3.8) and summing over ¢,
1 <i<2n+41, we conclude 7 = 2nk. Hence the scalar curvature r is constant and
negative. Thus Lyr = 0 and equation (3.7) implies that —Ap = 5-p. Multiplying
both sides of this equation in function p, integrating over M and using divergence
theorem we obtain

3.9 vm:i/29
(39) | vera= o [ o

where Q is the volume form of M. If p # 0 the (3.9) implies r is positive and
this is a contradiction. Therefore, p = 0, i.e. A = r. So, the soliton is trivial and
expanding. [

Now we recall the following definition which will be used in the next theorem.

Definition 3.1. A vector field V on a contact manifold (M2, ¢, £, 7, g) is called
a contact vector field if it satisfies

(3.10) Lyn=1yn,

for some smooth function ¥ on M. If ¢y = 0 on M, then the vector field V is called
a strict contact vector field.
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Theorem 3.4. If an almost co-Kdhler manifold (M*"*1, ¢, &,n,9) admits a B-
almost Yamabe soliton with V' as the potential vector field, V is a contact vector
field, i.e. Lyn =1m, then v is constant and this soliton is shrinking, steady or ex-
panding depending on whether r+ 2’::;11 B is negative, zero or positive, respectively.
Moreover, if M be is closed manifold then X = r.

Proof. Since the metric g is f-almost Yamabe soliton with the potential vector field
V', then
(3.11) BlLvg)(X,Y) = (A —r)g(X,Y).

This implies
(312)  BLy(9(X,Y)) — Bg(LvX,Y) = Bg(X,LyY) = (A —r)g(X,Y).

Putting £ for X and Y in (3.12), we conclude

(3.13) 289(LvE, &) =A—r.
Replacing Y = £ in (3.12) we deduce

(3.14) BLy (n(X)) = Bn(Lyv X) — Bg(X, Lv&) = (A —1)g(X, ),
or equivalently

(3.15) B(Lym) X — Bg(X, Lv§) = (A —r)g(X, ).
In view of (3.10), (3.15) yields

(3.16) Byn(X) — Bg(X, LvE§) = (A —r)g(X,§).
This implies

(3.17) BLvE = (B — A+7)¢,

and

(3.18) Bg(Lv&, &) =Py — A+
Applying (3.13) in (3.18) we infer

(3.19) By = g(A =)

Making use of (3.19) in (3.17) we obtain

(320) prve="""¢

From ¢(¢) = 0 and (3.20) we conclude

(3.21) B(Lv¢)§ = BLv (¢€) — p(BLYE) = 0.

On the other hand, on almost co-Kihler manifold (M?"+1 ¢, ¢ n, g) we have

(3.22) (Lvdn)(X,Y) = (Lvg)(X, oY) + g(X, (Lv)Y),
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for all vector fields X,Y on M. Multiplying both sides of (3.22) in 8 and using
(3.11), we can write

(3.23) BLvdn)(X,Y) = (A =r)g(X, oY) + Bg(X, (Lvd)Y),

for any vector fields X,Y on M. Since V is a contact vector field, from (3.10) we
find

(3.24) Lydn = dLyn = d(yn) = (dy) A+ p(dn).
This gives

(325)  (Lvdn)(X,Y) = L [dp(Xn(Y) — db(¥)(X)] + vg(X,6Y).
In view of (3.23) and (3.25) we get

Bdyp(X)n(Y) = Bdy(Y)n(X) + 28¢g(X, ¢Y)
=20\

r)g(X, ¢Y) +2B9(X, (Lv¢)Y),

(3.26) —
from which it follows that
(3.27) 28(Lyv )Y =2(BY — A +7)oY + B(n(Y)Dy — (Y)§).

Substituting Y = ¢ in (3.27) we obtain

(3.28) 28(Lvd)E = B(DY — (EY)E).
Replacing (3.21) in (3.28) we derive
(3:29) Dy = (§P)E,

where we use (3 is defined signal. Taking inner product of (3.29) with respect to
any vector field Y we have dy(Y) = (£&¢)n(Y), then

(3.30) dp = (&)n.
Taking exterior derivative of (3.30) we conclude
(3.31) 0= d*) = d(&y) A+ (E)dn.

The wedge product of both sides of (3.31) with n implies

(3.32) (&) Adn=0.

As Q =nAdn™ is the volume form, then n A dn # 0 and the above equation yields
& = 0. Hence from (3.30) it follows that dip) = 0, thus ¢ becomes constant. Tracing
(3.11) over XY, gives

(3.33) BdivV = (A —r)(2n + 1).
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Taking Lie derivative of the volume form 2 = n A dn™ along the vector field V' and
applying the formula £y Q = (divV)Q and (3.24) we obtain (divV)Q2 = (n + 1)y
and hence

(3.34) divV = (n + 1)3.

From (3.33) and (3.34) we have

n+1
2n+1

(3.35) A=r+ Bip.

Also, if manifold M is closed then integrating (3.34) and use divergence theorem
we get ¥ =0and A =r.

0
In the following part, we recall definitions of some geometric vector fields.

Definition 3.2. ([3, 5, 6]) A vector field V' on manifold M is called torse forming
if it satisfies
(3.36) VxV =fX+0(X)V

for all vector field X on M, where f € C*°(M) and 0 is a 1-form. A torse forming
vector field V is said to be recurrent if f = 0. If 6 = 0 then V is concircular. The
vector field V' is concurrent if it satisfies (3.36) with f =1 and 6 = 0.

Definition 3.3. ([5, 6]) A vector field V is called parallel vector field if VxV =0
for any vector field X on M.

Definition 3.4. ([5, 6]) A nowhere zero vector field V' on Riemannian manifold is
called a torqued vector field if it satisfies

(3.37) VxV = fX 4+ 0(X)V, o(V) = 0.

Theorem 3.5. If an almost co-Kdihler manifold (M*"*1, ¢, &,n,9) admits a B-
almost Yamabe soliton with V' as the potential vector field, V is a torse forming, then
this soliton is shrinking, steady or expanding depending on whether ﬁﬁH(V) +

r 4 2fpB is negative, zero or positive, respectively. Moreover, if V is torqued vector
field then A =r +2f0.

Proof. Let  the  metric g of (k,u)-almost  co-K&hler  manifold
(M?"+1 6, ¢,1,9) be a B-almost Yamabe soliton with the potential vector field
V. Then from (3.37), for any vector fields X,Y on M, we have

A=r)g(X,Y) = BLvg)(X,Y)=Bg(VxVY)+ Bg(X,VyV)
(3.38) = 28f9(X,Y) +BO(X)g(V.Y) + BO(Y)g(V, X).

Taking contraction of (3.38) over X and Y we get
(3.39) A=r—=2f8)2n+1)=280(V).
If V is torqued vector field en (V') = 0. This completes the proof of the theorem. [
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4. p-almost Ricci solitons on almost co-Kihler manifolds

In this section we study the S-almost Ricci solitons on almost co-Kéhler manifolds
when the potential vector field of soliton is the Reeb vector field.

Theorem 4.1. If a (k, p)-almost co-Kihler manifold (M*" 1, ¢,£,m,9) admits a
B-almost Ricci soliton with £ as the potential vector field and B is defined signal,
then € is a geodesic vector field and the soliton is expanding, steady or shrinking
depending on whether k is negative, zero or positive, respectively.

Proof. Since (k, p)-almost co-Kihler manifold (M?2"1 ¢, £ 7, g) is a B-almost Ricci
soliton with the potential vector field &, then for any vector fields X,Y on M we
get

(4.1) B(Leg)(X,Y)+25(X,Y) +2)\g(X,Y) = 0.

The definition of Lie-derivative implies

(4.2) Bg(VxEY) + Bg(X,VyE) +25(X,Y) +2X0g(X,Y) = 0.
Putting Y = £ in the above equation, we obtain

(4.3) B9(Vx&,&) + Byg(X, Veg) +25(X,§) + 2A9(X,§) = 0.
Since, g(Vx&,&) =0 and S(X, &) = 2nkg(X, £), the above equation gives
(4.4) BV € = (dnk + 20)E.

Also, if we set X = ¢ in (4.3) then we infer A = —2nk and V¢£ = 0. Therefore, £
is a geodesic vector field and this completes the proof of theorem. [

Definition 4.1. A contact manifold (M?"*1 ¢, ¢ n, g) is said to be n-Einstein if
its Ricci tensor S satisfies
S=ag+m®n

where a and b are smooth function on M.

Theorem 4.2. If a (k, p)-almost co-Kihler manifold (M*" 1, ¢,£,m,9) admits a
B-almost Ricci soliton with £ as the potential vector field, & is a torse forming,
then & is geodesic vector field, n is closed, and M is n-FEinstein. Moreover, if f is
constant then k < 0 and f? = —2k.

Proof. Let  the  metric g of (k,u)-almost  co-K&hler  manifold
(M?"*1 ¢, & n,g) be B-almost Ricci soliton with the potential vector field ¢ and
¢ is a torse forming. Then n(§) = 1 and torse forming of £ imply
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for any vector field X on M and hence we have 8 = —fn. Consequently (3.36)
reduces to

(4.6) Vx§ = f(X —n(X)S),

for any vector field X on M. Equation (4.6) implies that & is a geodesic vector field
that is V& = 0 and Vx¢ is collinear to ¢?X for all X and hence dn = 0, that is
is closed. Using (4.6) in (4.2), we obtain

hence manifold M is n-Einstein. By definition of Ricci curvature tensor, we have
(4.8) R(X,Y){ =VxVy{—VyVx{—Vixyé

Substituting (3.36) in (4.8) implies
(RYX,Y)E = (X(/)Y =Y (£)X) = (X(/)n(Y) =Y ()n(X)e+* (n(X)Y —n(Y)X).

Now, if the function f be a constant, then

(4.10) R(X,Y)§ = f*(n(X)Y —n(Y)X),
and

(4.11) S(X,€) = —2nf?n(X).
From (2.12), we have

(4.12) S(X, &) = 4nkn(X).

Comparing (4.11) and (4.12) we infer f2 = —2x and & is nonpositive. [J

Corollary 4.1. If a (k,p)-almost co-Kdhler manifold (M?*" 1, ¢,&,n,g) admits a
B-almost Ricci soliton with £ as the potential vector field, & is a recurrent torse
forming, then £ is parallel and Killing vector field.

Proof. Since ¢ is recurrent vector field, therefore f = 0. So equation (4.6) yields
Vx& =0, for all vector field X on M, which means that £ is concurrent vector field.
Also,

(4.13) (Leg)(X,Y) = g(Vx&Y) +9(X,Vy§) =0

for all vector fields X,Y on M, that means ¢ is Killing vector field. [

Corollary 4.2. If a (k,u)-almost co-Kihler manifold (Mt ¢, &,n, g) admits a
B-almost Ricci soliton with & as the potential vector field, £ is a concircular vector
field, then & is parallel and Killing vector field.

Proof. Let  the  metric g of (k,u)-almost  co-K&hler  manifold
(M?"+1 6, &1, g) be B-almost Ricci soliton with the potential vector field ¢ and
¢ is a concircular vector field. Then n(§) =1 and Vx& = fX imply

(4.14) 0=g(Vx¢&§) = fn(X).

Substituting X = ¢ in above identity we have f = 0. Therefore £ is parallel and
Killing vector field. [
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