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Abstract. The goal of this paper is to characterize Lorentzian concircular structure
manifolds (briefly, (LCS)n-manifolds) admitting Ricci-Yamabe solitons. It is shown
that an (LCS)n-manifold which admits the Ricci-Yamabe soliton becomes flat when
the soliton is steady. Next, we construct a 3-dimensional and 5-dimensional (LCS)n-
manifold that satisfy the result. Also, the expression for the scalar λ on an (LCS)n-
manifold admitting conformal Ricci-Yamabe soliton is obtained. Lastly, we extend our
study to η−Ricci-Yamabe soliton on a conformally flat (LCS)n (n ≥ 4) manifold in
which we have shown the condition when the soliton is shrinking, steady and expanding
with ξ being a torse forming vector field.
Keywords:Ricci-Yamabe solitons, torse forming, conformally flat, (LCS)n−manifolds.

1. Introduction

Lorentzian manifold provides important tools to tackle problems in mathe-
matical physics, specially to the theory of general relativity and cosmology. LP-
Sasakian manifolds introduced by Matsumoto [8] is generalized by Shaikh [13]
by introducing the notion of Lorentzian concircular structure manifolds (briefly,
(LCS)n−manifolds). Many geometers studied (LCS)n-manifold since it has been
first introduced (see, for details, [1, 12, 14, 15, 16]).

One of the most significant approach to understand the geometric structure in
Riemannian geometry is the theory of geometric flows. Hamilton [4] introduced the
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Ricci flow which plays a crucial role in forming the proof of the well known Poincaré
conjecture. The Ricci soliton on a Riemannian manifold M is defined by

(LV g)(X,Y ) + 2S(X,Y ) = 2λg(X,Y ),

for any vector fields X,Y on M , where LV g denotes the Lie derivative of g along a
vector field V , S is the Ricci tensor of M and λ, a real constant. The Ricci soliton
is a limiting solution to the Ricci flow and is said to be expanding, steady and
shrinking depending on the fact whether λ < 0, λ = 0 and λ > 0 respectively.

The Yamabe soliton is a limiting solution to the Yamabe flow introduced by
Hamilton [4]. A Yamabe soliton on a Riemannian manifold (M, g) is given by

(LV g)(X,Y ) = 2(r − λ)g(X,Y ),

for any vector fields X,Y on M , where r is the scalar curvature of the manifold and
λ, a real constant. For dimension n = 2, the Yamabe soliton is equivalent to Ricci
soliton. However, for dimension n > 2, the Yamabe soliton preserves conformal
class of the metric but the Ricci soliton does not preserve the same in general and
hence the two solitons do not agree anymore.

Güler and Crasmareanu [3] recently introduced a scalar combination of Ricci
and Yamabe flow under the name Ricci-Yamabe map. In [3], the authors define the
following:

Definition 1.1. [3] A Riemannian flow on M is a smooth map:

g : I ⊂ R→ Riem(M),

where I is a given open interval.

Definition 1.2. [3] The map RY (α,β,g) : I → T s2 (M) given by

RY (α,β,g) (t) :=
∂g

∂t
(t) + 2αRic(t) + βR(t)g(t),

is called the (α, β)−Ricci-Yamabe map of the Riemannian flow (M, g). IfRY (α,β,g) ≡
0, then g (·) will be called an (α, β)−Ricci-Yamabe flow.

The (α, β)−Ricci-Yamabe map can be Riemannian or semi-Riemannian or sin-
gular Riemannian flow due to the signs of α and β. The Ricci-Yamabe soliton
emerges as the limiting solution of Ricci-Yamabe flow. The Ricci-Yamabe soliton
is defined as:

Definition 1.3. [2] A Riemannian manifold (M, g), n > 2 is said to admit a
Ricci-Yamabe soliton (in short, RYS) (g, V, λ, α, β) if

LV g + 2αS = (2λ− βr) g,(1.1)

where λ, α, β ∈ R. If V is gradient of some smooth function f on M , then the
above notion is called gradient Ricci-Yamabe soliton (in short, GRYS) and then
(1.1) reduces to

∇2f + αS =

(
λ− 1

2
βr

)
g,(1.2)
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where ∇2f is the Hessian of f .

Since λ > 0, λ < 0 or λ = 0, then (M, g) is called Ricci-Yamabe shrinker, Ricci-
Yamabe expander or Ricci-Yamabe steady soliton respectively. Since the notion of
Ricci-Yamabe flow has been first introduced, many geometers studied Ricci-Yamabe
soliton to different extent such as Dey [2], Siddiqi and Akyol [17], Khatri and Singh
([7],[18]).

An advance extension of Ricci-Yamabe soliton is the concept of η−Ricci-Yamabe
soliton (in short, η−RYS) defined by Siddiqi and Akyol [17], which is given as

LV g + 2αS + (2λ− βr)g + 2µη ⊗ η = 0.(1.3)

In [17], the authors established the geometrical bearing on Riemannian submer-
sions in terms of η−Ricci-Yamabe soliton with the potential field and giving the
classification of any fiber of Riemannian submersion is an η−Ricci-Yamabe soliton,
η−Ricci soliton and η−Yamabe soliton.

Again, from [19], we have the following:

P (X,Y )Z = R(X,Y )Z − 1

(n− 1)
[g(QY,Z)X − g(QX,Z)Y ],(1.4)

H(X,Y )Z = R(X,Y )Z − 1

(n− 2)
[g(Y,Z)QX − g(X,Z)QY(1.5)

+S(Y, Z)X − S(X,Z)Y ],

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,(1.6)

which are the projective curvature tensor P [20], the conharmonic curvature tensor
H [6], and the Riemannian-Christoffel curvature tensor R [9] respectively in a Rie-
mannian manifold (Mn, g), where Q denotes the Ricci operator.

The paper is organized as follows: After Preliminaries, in Section 3, we gen-
eralize the results found in [12]. We have studied the Ricci-Yamabe soliton on
(LCS)n−manifolds in which we investigate when such manifold admits a Ricci-
Yamabe soliton, then the scalar curvature is constant. Also, we have found that
if the manifold admits a Ricci-Yamabe soliton, then R(ξ,X) · S = 0. Section 4 is
devoted to the construction of an example for a (LCS)3− and (LCS)5−manifolds
on which we can easily verify our results. In Section 5, we give the expression for
the scalar λ on an (LCS)n-manifold admitting conformal Ricci-Yamabe soliton. In
the last section, we extend our study to η−Ricci-Yamabe soliton on a conformally
flat (LCS)n (n ≥ 4) manifold, where we have established the condition when the
soliton is shrinking, steady and expanding with ξ being a torse forming vector field
on such manifold.

2. Preliminaries

Let an n−dimensional Lorentzian manifold M admits the characteristic vector
field ξ. Then, we have g(ξ, ξ) = −1. Since ξ is a unit concircular vector field, we
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have a non-zero 1−form η such that for g(X, ξ) = η(X), the following equation
holds for all vector fields X,Y on M :

(∇Xη)(Y ) = γ{g(X,Y ) + η(X)η(Y )}, γ 6= 0(2.1)

where γ is a scalar function on M which satisfies

∇Xγ = X(γ) = dγ(X) = ρη(X),(2.2)

for ρ ∈ C∞(M), where∇ is the Levi-Civita connection of g. Let us take a symmetric
(1, 1) tensor field φ denoted by

φ(X) = X(γ) =
1

γ
∇Xξ,(2.3)

called the structure tensor of the manifold. Thus, the Lorentzian manifold M
equipped with ξ, η and φ is said to be a Lorentzian concircular structure mani-
fold (briefly, (LCS)n−manifold) [13]. In fact, if we take γ = 1, then we obtain
the LP-Sasakian structure of Matsumoto [8]. The following relations hold in an
(LCS)n−manifold (n > 2) for any X,Y, Z on M ([12],[13]):

φX = X + η(X)ξ,(2.4)

φ2 = I + η ⊗ ξ, η(ξ) = −1, φξ = 0, η ◦ φ = 0,(2.5)

g(φX, φY ) = g(X,Y ) + η(X)η(Y ) and g(φX, Y ) = g(X,φY ),(2.6)

(∇Xφ)Y = γ[g(X,Y )ξ + 2η(X)η(Y )ξ + η(Y )X],(2.7)

η(∇Xξ) = 0, ∇ξξ = 0,(2.8)

R(X,Y )Z = (γ2 − ρ)[g(Y,Z)X − g(X,Z)Y ],(2.9)

S(X,Y ) = (γ2 − ρ)(n− 1)g(X,Y ),(2.10)

r = n(n− 1)(γ2 − ρ),(2.11)

∇η = γ(g + η ⊗ η), ∇ξη = 0,(2.12)

Lξφ = 0, Lξη = 0, Lξg = 2∇η = 2γ(g + η ⊗ η),(2.13)

where R is the Riemannian curvature tensor, S is the Ricci tensor, r is the scalar
curvature, ∇ is the Levi-Civita connection associated with g.

In [14], A.A. Shaikh studied a conformally flat (LCS)n−manifold and shown
that a conformally flat (LCS)n (n ≥ 4) manifold is η−Einstein and its Ricci tensor
is given by

S(X,Y ) = ag(X,Y ) + bη(X)η(Y ),(2.14)

where a = r
n−1 − (γ2 − ρ) and b = n(γ2 − ρ)− r

n−1 . Then, from (2.14), we have

S(X, ξ) = (a− b)η(X),(2.15)

and
S(ξ, ξ) = −(a− b).(2.16)
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Definition 2.1. [5] A vector field ξ is called torse forming if it satisfies

∇Xξ = fX + ν(X)ξ,(2.17)

for a smooth function f ∈ C∞(M) and ν is an 1−form, for all vector field X on M .

Remark 2.2. Let ξ be a torse forming vector field on an (LCS)n-manifold. We
know that in an (LCS)n-manifold, ∇ξξ = 0. Taking X = ξ in (2.17), we get
(f − 1)ξ = 0. Since ξ 6= 0, then f = 1.

3. Ricci-Yamabe Soliton (RYS) on (LCS)n manifolds

In this section, we assume that ξ is the Reeb vector field of the Lorentzian con-
circular structure.

Consider the Ricci-Yamabe soliton (RYS) on an n−dimensional (LCS)n mani-
fold as

Lξg + 2αS = (2λ− βr)g.(3.1)

From (2.13), we have

2γ(g(X,Y ) + η(X)η(Y )) + 2αS(X,Y ) = (2λ− βr)g(X,Y ),(3.2)

for all vector fields X,Y on M . This implies

(2λ− βr − 2γ)g(X,Y )− 2αg(QX,Y )− 2γη(X)η(Y ) = 0.(3.3)

Setting Y = ξ in the above equation and using (2.5), we get

g((2λ− βr)X − 2αQX, ξ) = 0.(3.4)

Then, we have

QX =
2λ− βr

2α
X,α 6= 0.(3.5)

Contracting the foregoing equation, we obtain

r =
2λn

2α+ nβ
, 2α+ nβ 6= 0.(3.6)

Since, α, β, λ are constants, r is also constant. Now, using (2.10), (2.11) and (3.6),
we have

S(X,Y ) =
2λ

2α+ nβ
g(X,Y ), 2α+ nβ 6= 0.(3.7)

Also, using (3.6) and (3.7) in (3.1), we get

Lξg = 0.(3.8)

Thus, we can state the following theorem:

Theorem 3.1. An (LCS)n−manifold admitting a Ricci-Yamabe soliton has con-
stant scalar curvature and the manifold becomes Einstein manifold provided that
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α 6= {0,−nβ2 }. Moreover, ξ is the killing vector field.

Let us assume that the Ricci tensor S of an (LCS)n manifold is η−recurrent,
we have

∇S = η ⊗ S,(3.9)

which implies
(∇XS)(Y,Z) = η(X)S(Y,Z),(3.10)

for all vector fields X,Y, Z on M . From (3.7), we get ∇S = 0. Now, from (3.10),
we have

η(X)S(Y, Z) = 0.(3.11)

Since η(X) 6= 0, we obtain S(Y,Z) = 0. Thus, from the expression of S in (3.7),
we have λ = 0. Also, from (3.6), we get r = 0, which then implies from (2.11) that
(γ2 − ρ) = 0 provided n > 1. Again, in view of (2.9), we have R(X,Y )Z = 0 for all
vector fields X,Y, Z on M . This results to the following:

Proposition 3.2. If the Ricci tensor S of an (LCS)n (n > 1) manifold admitting
a RYS is η−recurrent, then the soliton is steady and the manifold becomes flat.

Let us consider a symmetric (0, 2) tensor field h such that

h =
1

2α
Lξg −

2λ− βr
2α

g, α 6= 0.(3.12)

This implies ∇h = 0. Then,

h(ξ, ξ) = Lξg(ξ, ξ)− 2λ−βr
2α g(ξ, ξ)

= 2λ−βr
2α .(3.13)

As ∇h = 0, then using (3.13) and the results obtained in [1], (3.12) becomes

Lξg(X,Y ) + 2αS(X,Y ) = (2λ− βr)g(X,Y ),(3.14)

for all vector fields X,Y on M . This leads to the following theorem:

Theorem 3.3. Let (M, g, ξ, η, φ, γ) be an (LCS)n−manifold such that a symmetric
(0, 2) tensor field h given by h = 1

2αLξg −
2λ−βr

2α g with α 6= 0 and ∇h = 0. Then,
(g, ξ) yields a Ricci-Yamabe soliton on M .

Let us define a Ricci-Yamabe soliton (RYS) on an n−dimensional (LCS)n−manifold
M as

LV g + 2αS = (2λ− βr)g.(3.15)

Let V = tξ, where t is a function on M . Then,

Ltξg(X,Y ) + 2αS(X,Y ) = (2λ− βr)g(X,Y ),(3.16)

for any vector fields X,Y on M . Applying the property of Lie derivative and Levi-
Civita connection, we have

tg(∇Xξ, Y )+(Xt)η(Y )+tg(∇Y ξ,X)+(Y t)η(X)+2αg(QX,Y ) = (2λ−βr)g(X,Y ).
(3.17)
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Taking Y = ξ in the above equation and using (2.8), we get

−Xt+

(
ξt+

4αλ

2α+ nβ
− 2λ+ βr

)
η(X) = 0, 2α+ nβ 6= 0.(3.18)

Taking X = ξ in the foregoing equation, we obtain

ξt =
2λ− βr

2
− 2αλ

2α+ nβ
.(3.19)

Using (3.19), (3.18) becomes

Xt = −2nλβ − βr(2α+ nβ)

2(2α+ nβ)
η(X).(3.20)

Applying exterior differentiation in (3.20), we get

2nλβ − βr(2α+ nβ)

2(2α+ nβ)
dη = 0.(3.21)

We know that in an n−dimensional (LCS)n−manifold, we have

(dη)(X,Y ) = X(η(Y ))− Y (η(X))− η([X,Y ]),(3.22)

which implies
(dη)(X,Y ) = g(Y,∇Xξ)− g(X,∇Y ξ).(3.23)

Using (2.3) and (2.6) in (3.23), we get

(dη)(X,Y ) = 0.(3.24)

Hence, the 1−form η is closed. Then, using the above equation, (3.21) implies either

r =
2λn

2α+ nβ
or r 6= 2λn

2α+ nβ
.(3.25)

Now, if r 6= 2λn
2α+nβ , we have

LV g + 2αS = (2λ− βr)g.(3.26)

Replacing the expression of S from (3.7) in (3.26), we get

LV g =

(
2λ− 4αλ

2α+ nβ
− βr

)
g,(3.27)

which implies that V is a conformal Killing vector field. Again, if r = 2λn
2α+nβ , then

from (3.20), we get
Xt = 0,(3.28)

which implies that t is constant. Therefore, we can state the following theorem:
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Theorem 3.4. If a vector field V on an (LCS)n−manifold admitting a Ricci-
Yamabe soliton is pointwise collinear with ξ, then either V is a conformal Killing
vector field, or V is a constant multiple of ξ, provided that r 6= 2λn

2α+nβ and 2α+nβ 6=
0.

Remark 3.5. The above Theorem 3.4 is a generalization of Theorem 3.8 in Roy
et al.[12], where they obtained the condition for V to be a conformal Killing vector
field is r 6= λ. It is easy to see that for α = 0 and β = 2, Theorem 3.8 in [12] can
be obtained from Theorem 3.4.

As a consequence of Theorem 3.4, substituting r = 2λn
2α+nβ , 2α + nβ 6= 0 in

(3.26), we get that

LV g = 0,(3.29)

implying V is a Killing vector field. Then, we have:

Corollary 3.6. If a vector field V on an (LCS)n−manifold admitting a Ricci-
Yamabe soliton is pointwise collinear with ξ and r = 2λn

2α+nβ with 2α+nβ 6= 0, then
V becomes a Killing vector field.

Setting Z = ξ in (1.4), we get

P (X,Y )ξ = R(X,Y )ξ − 1

(n− 1)
[S(Y, ξ)X − S(X, ξ)Y ].(3.30)

Taking Z = ξ in (2.9), then using the result and (3.7) in the above equation, we get

P (X,Y )ξ =

(
(γ2 − ρ)− 2λ

(n− 1)(2α+ nβ)

)
[η(Y )X − η(X)Y ].(3.31)

Using (2.11) and (3.6) in (3.31), we obtain

P (X,Y )ξ = 0,(3.32)

which results to the following:

Proposition 3.7. An (LCS)n−manifold admitting a Ricci-Yamabe soliton is
ξ−projectively flat.

Again, taking Z = ξ in (1.5), we get

H(X,Y )ξ = R(X,Y )ξ − 1

(n− 2)
[g(Y, ξ)QX − g(X, ξ)QY(3.33)

+S(Y, ξ)X − S(X, ξ)Y ].

Putting Z = ξ in (2.9), then using the result and (3.7) in (3.33), we obtain

H(X,Y )ξ =

(
(γ2 − ρ)− 4λ

(n− 2)(2α+ nβ)

)
[η(Y )X − η(X)Y ].(3.34)
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Using (2.11) and (3.6) in the above equation, we get

H(X,Y )ξ = − 2nλ

(n− 1)(n− 2)(2α+ nβ)
[η(Y )X − η(X)Y ].(3.35)

This implies that H(X,Y )ξ = 0 if and only if λ = 0. Hence, we can state the
following:

Proposition 3.8. An (LCS)n−manifold admitting a Ricci-Yamabe soliton is
ξ−conharmonically flat if and only if the soliton is steady.

Now, we know that

R(ξ,X) · S = S(R(ξ,X)Y, Z) + S(Y,R(ξ,X)Z),(3.36)

for all vector fields X,Y, Z on M . Interchanging Y and Z, then putting Z = ξ in
(2.9), then using the result and (3.7) in (3.36), the above equation becomes

R(ξ,X) · S = 2λ
2α+nβ (γ2 − ρ)[g(X,Y )η(Z)− g(X,Z)η(Y )(3.37)

+g(X,Z)η(Y )− g(Y,X)η(Z)],

which implies that R(ξ,X) · S = 0. This leads to the following theorem:

Theorem 3.9. If an (LCS)n−manifold admits a Ricci-Yamabe soliton, then the
manifold is ξ−semi symmetric.

Let us assume that S(ξ,X) ·R = 0, which implies

S(X,R(Y,Z)W )ξ − S(ξ,R(Y,Z)W )X + S(X,Y )R(ξ, Z)W(3.38)

−S(ξ, Y )R(X,Z)W + S(X,Z)R(Y, ξ)W − S(ξ, Z)R(Y,X)W

+S(X,W )R(Y, Z)ξ − S(ξ,W )R(Y, Z)X = 0,

for any vector fields X,Y, Z,W on M . Taking the inner product with ξ, (3.38)
becomes

−S(X,R(Y,Z)W )− S(ξ,R(Y,Z)W )η(X) + S(X,Y )η(R(ξ, Z)W )(3.39)

−S(ξ, Y )η(R(X,Z)W ) + S(X,Z)η(R(Y, ξ)W )− S(ξ, Z)η(R(Y,X)W )

+S(X,W )η(R(Y,Z)ξ)− S(ξ,W )η(R(Y,Z)X) = 0.

Taking Z = W = ξ in (3.39) and replacing the expression of S from (3.7), we get

2λ
2α+nβ [−g(X,R(Y, ξ)ξ)− η(R(Y, ξ)ξ)η(X) + g(X,Y )η(R(ξ, ξ)ξ)(3.40)

−η(Y )η(R(X, ξ)ξ) + η(X)η(R(Y, ξ)ξ) + η(R(Y,X)ξ) + η(X)η(R(Y, ξ)ξ)

+η(R(Y, ξ)X)] = 0.

In view of (2.9) and on simplification, the above equation becomes

4λ

2α+ nβ
(γ2 − ρ)[g(X,Y ) + η(X)η(Y )] = 0.(3.41)
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Using (2.6), we get
4λ

2α+ nβ
(γ2 − ρ)g(φX, φY ) = 0,(3.42)

for all vector fields X,Y on M , which implies that

4λ

2α+ nβ
(γ2 − ρ) = 0.(3.43)

Using (2.11) and (3.6) in (3.43), we get

8λ2

(n− 1)(2α+ nβ)2
= 0.(3.44)

This implies that λ = 0, then using (3.6), r = 0. From (2.11), r = 0 implies
(γ2 − ρ) = 0 provided n > 1. Again, in view of (2.9), we have R(X,Y )Z = 0 for all
vector fields X,Y, Z on M . Hence, we can state the following theorem:

Theorem 3.10. If an (LCS)n (n > 1) manifold admitting a Ricci-Yamabe soliton
satisfies S(ξ,X) ·R = 0, then the manifold becomes flat and the soliton is steady.

4. Examples of (LCS)3 and (LCS)5− manifold satisfying RYS

In this section, we constructed examples for the 3-dimensional and 5-dimensional
(LCS)n-manifold in which we verify our results.

Example 4.1. Consider the 3−dimensional manifold M = {(x, y, z) ∈ R3, z 6= 0},
where (x, y, z) are the standard coordinates in R3. Let E1, E2, E3 be a linearly
independent system of vector fields on M given by

E1 = y
∂

∂x
, E2 = y

∂

∂y
, E3 = y

∂

∂z
.

Let g be the Lorentzian metric defined by

g(E1, E1) = g(E2, E2) = 1, g(E3, E3)− 1,

g(Ei, Ej) = 0 ∀i 6= j; i, j = 1, 2, 3.

Let η be the 1−form defined by η(Z) = g(Z, e2) and φ be the (1, 1)−tensor field
defined by

φE1 = E1, φE2 = 0, φE3 = E3.

Then, using the linearity of φ and g, we have

η(E2) = −1, φ2(Z) = Z + η(Z)E2

and g(φZ, φV ) = g(Z, V ) + η(Z)η(V ),

for all Z, V ∈ χ(M). Let ∇ be the Levi-Civita connection with respect to the
Lorentzian metric g. Then, we have

[E1, E2] = −E1, [E2, E3] = E3, [E1, E3] = 0.
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Using Koszuls formula and taking ξ = E2, we can easily calculate

∇E1
E3 = 0, ∇E2

E3 = 0, ∇E3
E3 = 1

2 (1 + 2E2),

∇E1
E1 = 1

2 (1 + 2E2), ∇E2
E1 = 0, ∇E3

E1 = 0,

∇E1
E2 = −E1, ∇E2

E2 = 0, ∇E3
E2 = −E3.

Hence, in this case, the data (g, ξ, η, φ, γ) is an (LCS)3−structure on M , where
γ = −1. Also, as γ = −1, then ρ = 0 and consequently (M, g, ξ, η, φ, γ) is an
(LCS)3−manifold.
Now, from (2.11), we have r = 6. Let us consider that g defines a RYS on M .
Putting the value of r and γ in (3.2), we have(

2λ− 6β + 2− 4αλ

2α+ 3β

)
g(X,Y ) + 2η(X)η(Y ) = 0.

Taking X = Y = ξ, we get λ = 2α + 3β which satisfies (3.6). Again, from (3.7),
we have S(X,Y ) = 2g(X,Y ) and therefore, this example verifies Theorem 3.1 in
3-dimension.

Example 4.2. Consider the 5−dimensional manifold M = {(x1, x2, x3, x4, x5) ∈
R5 : x5 6= 0}, where (x1, x2, x3, x4, x5) are the standard coordinates in R5. Let
E1, E2, E3, E4, E5 be a linearly independent global frame on M given by

E1 = x5

(
∂
∂x1

+ x2
∂
∂x2

)
, E2 = x5

∂
∂x2

, E3 = x5

(
∂
∂x3

+ ∂
∂x4

)
,

E4 = x5
∂
∂x4

, E5 = (x5)4 ∂
∂x5

.

Let us define φ, ξ, η, g by

φE1 = E1, φE2 = E2, φE3 = E3, φE4 = E4, φE5 = 0, ξ = E5,

η(X) = g(X,E5) for any X ∈ χ(M), g(Ei, Ei) = 1 ∀i = 1, 2, 3, 4,

and g(E5, E5) = −1, g(Ei, Ej) = 0 ∀i 6= j, i, j = 1, 2, 3, 4, 5.

Let ∇ be the Levi-Civita connection with respect to the Lorentzian metric g, then
we have

[E1, E5] = −(x5)3E1, [E2, E5] = −(x5)3E2, [E3, E5] = −(x5)3E3,

[E4, E5] = −(x5)3E4, [E1, E2] = −(x5)E2,

and all other remaining [Ei, Ej ] vanishes. Taking ξ = E5 and using Koszul formula
for the Lorentzian metric g, we obtain

∇E1E5 = −(x5)3E1, ∇E2E5 = −(x5)3E2, ∇E3E5 = −(x5)3E3,

∇E4E5 = −(x5)3E4, ∇E2E1 = (x5)E2,

∇E1E1 = ∇E3E3 = ∇E4E4 = − 1
2 (1− 2(x5)3E5),

∇E2
E2 = − 1

2 (1− 2(x5)3E5 + 2(x5)E1).
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Hence, (g, φ, ξ, η, γ) is an (LCS)5−structure on M . Consequently, M5(g, ξ, η, φ, γ)
is an (LCS)5−manifold with γ = −(x5)3 6= 0, where ρ = 3(x5)6.
Now, from (2.11), we get r = −40(x5)6. Assume g defines a RYS on M and from
(3.2), we obtain(

2λ+ 40(x5)6β + 2(x5)3 − 4αλ

2α+ 5β

)
g(X,Y ) + 2(x5)3η(X)η(Y ) = 0.

Setting X = Y = ξ, we get λ = −4(x5)6(2α + 5β) which satisfies (3.6). Again,
from (3.7), we have S(X,Y ) = −8(x5)6g(X,Y ) and thus confirms Theorem 3.1 in
5-dimension.

5. Conformal Ricci-Yamabe soliton on (LCS)n-manifolds

In this section, we obtained the expression for the scalar λ on an (LCS)n-
manifold admitting a conformal Ricci-Yamabe soliton, where the notion of the soli-
ton was introduced in [11] while studying a perfect fluid spacetime, the soliton is
given by

LV g + 2αS =

[
2λ− βr −

(
p+

2

n

)]
g,(5.1)

where p is a conformal pressure.
Taking V = ξ in (5.1), we get

g(∇Xξ, Y ) + g(X,∇Y ξ) + 2αS(X,Y ) =

[
2λ− βr −

(
p+

2

n

)]
g(X,Y ),(5.2)

for all X,Y . Now, using (2.3), (2.4) and (2.6) in the above equation and on simpli-
fication, we obtain

S(X,Y ) =
1

α

[
λ− βr

2
−
(
p

2
+

1

n

)
− γ
]
g(X,Y )− γ

α
η(X)η(Y ), α 6= 0.(5.3)

Now, contracting (5.3), we have

λ =
p

2
+

(2α+ nβ)

2n
r +

(n− 1)γ + 1

n
.(5.4)

Thus, we can state the following:

Theorem 5.1. If an (LCS)n-manifold admits a conformal Ricci-Yamabe soliton,

then the manifold becomes η-Einstein and the scalar λ is given by λ = p
2 + (2α+nβ)

2n r+
(n−1)γ+1

n provided α 6= 0.

6. η−Ricci-Yamabe Soliton (η−RYS) on a conformally flat (LCS)n
(n ≥ 4) manifold

Here, we study a conformally flat (LCS)n (n ≥ 4) manifold which admit
η−Ricci-Yamabe soliton.
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Lemma 6.1. If a conformally flat (LCS)n (n ≥ 4) manifold admits a η−RYS,
then

α(a− b) + λ− βr

2
− µ = 0.

Proof. From (1.3), we have

g(∇Xξ, Y ) + g(X,∇Y ξ) + 2αS(X,Y ) + (2λ− βr)g(X,Y )(6.1)

+2µη(X)η(Y ) = 0.

Substituting (2.14) in the foregoing equation, we get

g(∇Xξ, Y ) + g(X,∇Y ξ)(6.2)

+2
[(
λ− βr

2 + aα
)
g(X,Y ) + (bα+ µ)η(X)η(Y )

]
= 0.

Putting X = Y = ξ in (6.2), we get

g(∇ξξ, ξ) = α(a− b) + λ− βr

2
− µ.(6.3)

Using (2.8), g(∇ξξ, ξ) = 0. Then,

α(a− b) + λ− βr

2
− µ = 0.(6.4)

Hence, we get the result.

Remark 6.2. For a particular case such that α = 1 and β = 0 in the above Lemma
6.1, the relation becomes a− b+ λ− µ = 0. This result is obtained in [5].

Theorem 6.3. If ξ is a torse forming vector field on a conformally flat (LCS)n−
manifold admitting η−RYS, then λ = βr

2 − aα− 1, η is closed and

b = a− (n− 1) and µ = α(n− 1) + λ− βr

2
.

Proof. Let ξ be a torse forming vector field on a conformally flat (LCS)n−manifold
which admits η−RYS. Then, taking inner product with ξ in (2.17), we get

fη(X) = ν(X).(6.5)

In view of the above relation, (2.17) becomes

∇Xξ = f [X + η(X)ξ].(6.6)

Using (6.6) in (6.2) and in view of Lemma 6.1, we get(
f + λ− βr

2
+ aα

)
[g(X,Y ) + η(X)η(Y )] = 0,(6.7)
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for all vector fields X and Y and hence it follows that

f = −
(
λ− βr

2
+ aα

)
.(6.8)

Using the fact that f = 1 from Remark 2.2 in (6.8), we get

λ =
βr

2
− aα− 1.(6.9)

Now, using (6.8) in (6.6), we get

∇Xξ = −
(
λ− βr

2
+ aα

)
[X + η(X)ξ],(6.10)

which means that ∇Xξ is collinear to φ2X for all X and hence we get dη = 0, i.e.,
η is closed. From (1.6), we know that

R(X,Y )ξ = ∇X∇Y ξ −∇Y∇Xξ −∇[X,Y ]ξ.(6.11)

In view of (6.10), (6.11) yields

R(X,Y )ξ =

(
λ− βr

2
+ aα

)2

[η(Y )X − η(X)Y ].(6.12)

Again, in view of (2.9), (2.10), (6.9) and (6.12), we get

S(X, ξ) = (n− 1)η(X).(6.13)

Comparing (6.13) with (2.15), we obtain

b = a− (n− 1),(6.14)

and µ = α(n− 1) + λ− βr
2 .(6.15)

Hence, we get the theorem. The following result follows immediately from Theorem

6.3:

Corollary 6.4. If ξ is a torse forming vector field on a conformally flat (LCS)n
(n ≥ 4) manifold admitting η−RYS, then the soliton is expanding, steady and
shrinking according as βr < 2(aα + 1), βr = 2(aα + 1) and βr > 2(aα + 1)
respectively.

Again, as a consequence of Theorem 6.3, in particular, if µ = 0, then we obtain
λ = α(b− a) + βr

2 which results in the following corollary:

Corollary 6.5. If ξ is a torse forming vector field on a conformally flat (LCS)n
(n ≥ 4) manifold admitting Ricci-Yamabe soliton with α 6= 0, then the soliton is
shrinking, steady and expanding according as βr > 2α(a− b), βr = 2α(a− b), and
βr < 2α(a− b) respectively.
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7. Conclusion

This work is an extension of the work done on (LCS)n-manifolds by Roy et al.
[12]. We generalized their results in Section 3 and obtained more general value for
the scalar curvature tensor on an (LCS)n-manifold admitting the Ricci-Yamabe
soliton and have shown that it is constant. The prominence of this result is that
it holds for a larger group of solitons. In Section 4, we verified our result by con-
structing a 3-dimensional and 5-dimensional (LCS)n-manifold. We also obtained
the expression for the scalar λ when the manifold admits a conformal Ricci-Yamabe
soliton in Section 5. In Section 6, the conditions under which a conformally flat
(LCS)n (n ≥ 4) manifold admitting a torse forming vector field ξ is expanding,
steady and shrinking η-Ricci-Yamabe soliton is obtained. Also, we give the expres-
sion for λ in a conformally flat (LCS)n (n ≥ 4) manifold which admits a torse
forming η-Ricci-Yamabe soliton. Further, it is shown that the results obtained in
[12] are particular results.
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