FACTA UNIVERSITATIS (NIŠ) SER. MATH. INFORM. Vol. 38, No 3 (2023), 509 - 517 https://doi.org/10.22190/FUMI220912033A Original Scientific Paper

ON ESTIMATES FOR THE CANONICAL LINEAR FOURIER-BESSEL TRANSFORM IN THE SPACE $L^p(\mathbb{R}^+, x^{2\alpha+1}dx)$ (1

Akhlidj Akhlidj and Zakaria Sadiq

Faculty of Science Aïn Chock, Department of Mathematics and Informatics, Laboratoire de Mathématiques Fondamentales et Appliquées, Casablanca, Maroco

Abstract. In this paper, we establish the analog of Abilov's theorems and the analog of Titchmarsh's theorems for the canonical linear Fourier-Bessel transform in a class of functions in the space $L^p(\mathbb{R}^+, x^{2\alpha+1}dx)$ where $1 and <math>\alpha > \frac{-1}{2}$. The proof of the theorems is based on the algebraic properties associated with the canonical linear Fourier-Bessel transform.

Keywords:Canonical linear Fourier-Bessel operator, Canonical linear Fourier-Bessel Transform, Translation operators associated with the canonical linear Fourier-Bessel operator, Generalized modulus of continuity.

2010 Mathematics Subjects Classification: 42B10; 42B37.

1. Introduction and preliminaries

Consider the operator (see [5], [9])

(1.1)
$$B_{\alpha,m} = \frac{d^2}{dx^2} + \left(\frac{(2\alpha+1)}{x} - 2ix\frac{d}{b}\right)\frac{d}{dx} - \left(x^2\frac{d^2}{b^2} + 2i(\alpha+1)\frac{d}{b}\right)$$

Received September 12, 2022. accepted May 13, 2023.

Communicated by Dijana Mosić

Corresponding Author: Faculty of Science Aïn Chock, Department of Mathematics and Informatics, Laboratoire de Mathématiques Fondamentales et Appliquées, Casablanca, Maroco | E-mail: akhlidj@hotmail.fr

²⁰¹⁰ Mathematics Subject Classification. Primary 46E30; 41A25

^{© 2023} by University of Niš, Serbia | Creative Commons License: CC BY-NC-ND

where $\alpha > \frac{-1}{2}$,

(1.2)
$$m = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

is a matrix in $SL_2(\mathbb{R})$ with $b \neq 0$

If

$$(1.3) m = \left(\begin{array}{cc} 0 & -1\\ 1 & 0 \end{array}\right)$$

we obtain the classical Bessel operator

(1.4)
$$B_{\alpha} = \frac{d^2}{dx^2} + \frac{(2\alpha+1)}{x}\frac{d}{dx}.$$

Let $L^p(\mathbb{R}^+, x^{2\alpha+1}dx)$ the space of measurable functions f on \mathbb{R}^+ such that

(1.5)
$$||f||_{p,\alpha} = \left(\int_0^{+\infty} |f(x)|^p x^{2\alpha+1} dx\right)^{\frac{1}{p}} < +\infty$$

The chirp multiplication operator L_a and the dilatation operator D_a are defined, respectively by $L_a(f)(x) = e^{i\frac{a}{2}x^2}f(x)$; $a \in \mathbb{R}$ and $D_af(x) = \frac{1}{|a|^{\alpha+1}}f(\frac{x}{a})$; $a \in \mathbb{R}^*$.

The inverse of L_a and the inverse of D_a are given, respectively, by

(1.6)
$$(L_a)^{-1} = L_{-a}; (D_a)^{-1} = D_{-\frac{1}{a}}.$$

In case f is even we have $D_a f = D_{|a|} f$. Let $m \in SL_2(\mathbb{R})$. The canonical Fourier-Bessel transform of a function $f \in L^1(\mathbb{R}^+, x^{2\alpha+1}dx)$ is defined by (see [5],[8])

(1.7)
$$\mathcal{F}^m_{\alpha}(f)(\lambda) = \frac{c_{\alpha}}{(ib)^{\alpha+1}} \int_0^{+\infty} \mathcal{K}^m_{\alpha}(\lambda, x) f(x) x^{2\alpha+1} dx$$

where $c_{\alpha} = \frac{1}{2^{\alpha} \Gamma(\alpha+1)}$;

(1.8)
$$\mathcal{K}^m_{\alpha}(\lambda, x) = e^{\frac{i}{2}(\frac{d}{b}\lambda^2 + \frac{a}{b}x^2)} j_{\alpha}(\frac{\lambda x}{b}).$$

and

(1.9)
$$j_{\alpha}(z) = \Gamma(\alpha+1) \sum_{n=0}^{\infty} \frac{(-1)^n}{n! \Gamma(n+\alpha+1)} \left(\frac{z}{2}\right)^{2n}, z \in \mathbb{C}$$

For $\lambda \in \mathbb{R}$, the kernel $\mathcal{K}^m_{\alpha}(.,\lambda)$ of the canonical Fourier-Bessel transform \mathcal{F}^m_{α} is the unique solution of:

(1.10)
$$\mathcal{B}_{\alpha,m}\mathcal{K}^m_{\alpha}(.,\lambda) = -\frac{\lambda^2}{b^2}\mathcal{K}^m_{\alpha}(.,\lambda)$$

with initial conditions $\mathcal{K}^m_{\alpha}(0,\lambda) = e^{\frac{i}{2}\frac{a}{b}\lambda^2}$ and $\frac{d}{dx}\mathcal{K}^m_{\alpha}(0,\lambda) = 0$

Let $m \in SL_2(\mathbb{R})$ such that $b \neq 0$. For $f \in \mathcal{C}_{*,c}(\mathbb{R})$, we define the generalized translation operators associated with the operator $B_{\alpha,m}$ by ([9]):

(1.11)
$$\tau_{\alpha,m,h}f(x) = e^{\frac{i}{2}(\frac{d}{b}h^2 + \frac{a}{b}x^2)}\tau_{\alpha,h}\left[e^{-\frac{i}{2}\frac{d}{b}s^2}f(s)\right](x);$$

where $\tau_{\alpha,h}$ is the translation operator associated with the operator B_{α} and $\mathcal{C}_{*,c}(\mathbb{R})$ is the space of the even continuous functions with support compact.

2. Main results

Our main results are inspired from the work realised by V.A. Abilov, F. V. Abilova, M.K. Kerimov and E. C. Titchmarsh (see [1], [2], [3], [4], [5], [7], [8], [11]). Briefly, we give new estimates for the canonical Fourier-Bessel transform of a class of function f in a Sobolev space that we will define later.

Lemma 2.1. (see [6],[10]) We have the formulas

- i) $L_{\frac{-d}{h}} \circ B_{\alpha,m} \circ L_{\frac{d}{h}} = B_{\alpha}.$
- ii) $\mathcal{F}^m_{\alpha} = e^{-i(\alpha+1)\frac{\pi}{2}sgnb}L_{\frac{d}{b}} \circ D_b \circ \mathcal{F}_{\alpha} \circ L_{\frac{a}{b}}$ where \mathcal{F}_{α} is the classical Bessel transform.
- iii) $\tau_{\alpha,m,h} = e^{\frac{i}{2}\frac{d}{b}h^2} L_{\frac{d}{b}} \circ \tau_{\alpha,h} \circ L_{-\frac{d}{b}}$, where $\tau_{\alpha,h}$ is the translation operator associated to the classical Bessel operator.

Definition 2.1. ([7])

Let $k \in \mathbb{N}$. The k^{th} order modulus of continuity of a function $f \in L^p(\mathbb{R}^+, x^{2\alpha+1}dx)$ is defined as

(2.1)
$$\Omega_{k,p,\alpha}(f,\delta) = \sup_{0 < h \le \delta} \|\Delta_{\alpha,h}^k f\|_{p,\alpha}$$

where,

$$\Delta^{0}_{\alpha,h}f = f$$
$$\Delta_{\alpha,h}f = (\tau_{\alpha,h} - \mathcal{I})f$$
$$\Delta^{k}_{\alpha,h}f = (\tau_{\alpha,h} - \mathcal{I})^{k}f$$

and ${\mathcal I}$ is the identity operator.

Definition 2.2. Let $k \in \mathbb{N}$. The k^{th} order generalized modulus of continuity of a function $f \in L^p_{\alpha}(\mathbb{R}^+)$ is defined as

(2.2)
$$\Omega_{k,p,\alpha,m^{-1}}(f,\delta) = \sup_{0 < h \le \delta} \|\Delta_{\alpha,m^{-1},h}^k f\|_{p,\alpha}.$$

where,

(2.3)
$$\Delta^0_{\alpha,m^{-1},h}f = f,$$

(2.4)
$$\Delta_{\alpha,m^{-1},h}f = (\tau_{\alpha,m^{-1},h} - e^{-\frac{i}{2}\frac{a}{b}h^2}\mathcal{I})f$$

(2.5)
$$\Delta^{k}_{\alpha,m^{-1},h}f = (\tau_{\alpha,m^{-1},h} - e^{-\frac{i}{2}\frac{a}{b}h^{2}}\mathcal{I})^{k}f.$$

We denote in the classical Bessel harmonic analysis by $\mathcal{W}_p^r(B_\alpha)$ the class of functions f belongs to $L^p(\mathbb{R}^+, x^{2\alpha+1}dx)$ that have generalized derivatives in the sense of Levi (see [9])such that for all $j \in \{1, ..., r\}$ we have $B_\alpha^j f \in L^p(\mathbb{R}^+, x^{2\alpha+1}dx)$. And by $\mathcal{W}_{p,\Psi}^{r,k}(B_\alpha)$ where, $r \in \mathbb{N}^*$, $k \in \mathbb{N}^*$ and Ψ is a nonnegative function on \mathbb{R}^+ , the class of functions f belongs to $\mathcal{W}_p^r(B_\alpha)$ satisfying the estimate $\Omega_{k,\alpha}((B_\alpha)^r f, \delta) = \mathcal{O}(\Psi(\delta^k) \text{ as } \delta \to 0.$

We denote in the canonical Bessel harmonic analysis by $\mathcal{W}_p^r(B_{\alpha,m^{-1}})$ the class of functions f belongs to $L^p(\mathbb{R}^+, x^{2\alpha+1}dx)$ that have generalized derivatives in the sense of Levi (see [9]) such that for all $j \in \{1, ..., r\}$ we have $B_{\alpha,m^{-1}}^j f \in$ $L^p(\mathbb{R}^+, x^{2\alpha+1}dx)$. And by $\mathcal{W}_{p,\Psi}^{r,k}(B_{\alpha,m^{-1}})$ where, $r \in \mathbb{N}^*$, $k \in \mathbb{N}^*$ and Ψ is a nonnegative function on \mathbb{R}^+ , the class of functions f belongs to $\mathcal{W}_p^r(B_{\alpha,m^{-1}})$ satisfying the estimate

 $\Omega_{k,p,\alpha,m^{-1}}((B_{\alpha,m^{-1}})^r f,\delta) = \mathcal{O}(\Psi(\delta^k) \ as \ \dot{\delta} \to 0.$

Lemma 2.2. Let $f \in L^p(\mathbb{R}^+, x^{2\alpha+1}dx)$ we have

- i) $\Omega_{k,p,\alpha,m^{-1}}(f,\delta) = \Omega_{k,p,\alpha}(L_{\frac{\alpha}{h}}f,\delta).$
- *ii*) $W_p^r(B_{\alpha,m^{-1}}) = L_{-\frac{a}{b}}(W_p^r(B_{\alpha})).$
- *iii*) $\mathcal{W}_{p,\Psi}^{r,k}(B_{\alpha,m^{-1}}) = L_{\frac{-a}{b}}\left(\mathcal{W}_{p,\Psi}^{r,k}(B_{\alpha})\right).$

Proof. i) Let $f \in L^p(\mathbb{R}^+, x^{2\alpha+1}dx)$

$$\begin{aligned} \Omega_{k,p,\alpha,m^{-1}}(f,\delta) &= sup_{0 < h \le \delta} \left\| \Delta_{\alpha,m^{-1},h}^{k} f \right\|_{p,\alpha} \\ &= sup_{0 < h \le \delta} \left\| \left(\tau_{\alpha,m^{-1},h} - e^{-\frac{i}{2}\frac{a}{b}h^{2}}\mathcal{I} \right)^{k} f \right\|_{p,\alpha} \\ &= sup_{0 < h \le \delta} \left\| \left(L_{-\frac{a}{b}} \circ \tau_{\alpha,h} \circ L_{\frac{a}{b}} - \mathcal{I} \right)^{k} f \right\|_{p,\alpha} \\ &= sup_{0 < h \le \delta} \left\| L_{-\frac{a}{b}} \circ \Delta_{\alpha,h}^{k} \circ L_{\frac{a}{b}} f \right\|_{p,\alpha} \\ &= sup_{0 < h \le \delta} \left\| \Delta_{\alpha,h}^{k} \left(L_{\frac{a}{b}} f \right) \right\|_{p,\alpha} \\ &= \Omega_{k,p,\alpha} (L_{\frac{a}{b}} f, \delta). \end{aligned}$$

ii)

$$\begin{split} f \in W_p^r(B_{\alpha,m^{-1}}) \Leftrightarrow f \in L^p\left(\mathbb{R}^+, x^{2\alpha+1}dx\right) & and \quad \forall j \in \{1, ..., r\} \quad B_{\alpha,m^{-1}}^j f \in L^p\left(\mathbb{R}^+, x^{2\alpha+1}dx\right) \\ \Leftrightarrow f \in L^p\left(\mathbb{R}^+, x^{2\alpha+1}dx\right) & and \quad \forall j \in \{1, ..., r\} \quad L_{-\frac{a}{b}} \circ B_{\alpha}^j \circ L_{\frac{a}{b}}(f) \in L^p\left(\mathbb{R}^+, x^{2\alpha+1}dx\right) \\ \Leftrightarrow f \in L^p\left(\mathbb{R}^+, x^{2\alpha+1}dx\right) & and \quad L_{\frac{a}{b}}^a f \in W_p^r(B_{\alpha}) \\ \Leftrightarrow f \in L_{-\frac{a}{b}}\left(W_p^r(B_{\alpha})\right). \end{split}$$

$$\begin{array}{l} \text{iii)} \quad f \in W^{r,k}_{p,\Psi}(B_{\alpha,m^{-1}}) \Leftrightarrow f \in W^r_p(B_{\alpha,m^{-1}}) \text{ and } \Omega_{k,p,\alpha,m^{-1}}(B^r_{\alpha,m^{-1}}f,\delta) = \mathcal{O}(\Psi(\delta^k) \\ \Leftrightarrow L_{\frac{a}{b}}f \in W^r_p(B_{\alpha}) \text{ and } \Omega_{k,p,\alpha}(L_{\frac{a}{b}}f,\delta) = \mathcal{O}(\Psi(\delta^k) \text{ as } \delta \to 0 \\ \Leftrightarrow L_{\frac{a}{b}}f \in W^{r,k}_{p,\Psi}(B_{\alpha}) \\ \Leftrightarrow f \in L_{-\frac{a}{b}}\left(W^{r,k}_{p,\Psi}(B_{\alpha})\right). \end{array}$$

Theorem 2.1. Let $1 , <math>m \in SL_2(\mathbb{R})$ and ψ be a nonnegative function on \mathbb{R}^+ . For all $f \in \mathcal{W}_{p,\Psi}^{r,k}(B_{\alpha,m^{-1}})$ we have,

$$\int_{|\lambda| \ge N} |\mathcal{F}^m_{\alpha}(f)(\lambda)|^q \lambda^{2\alpha+1} d\lambda = \mathcal{O}\left(N^{-rq}(\Psi)^q \left(\left(\frac{c}{N}\right)^k\right)\right) as N \to +\infty$$

where c is a positive constant, $r \in \mathbb{N}$; $k \in \mathbb{N}^*$; q is the conjugate exponent of p.

Proof. We have $f \in \mathcal{W}_{p,\Psi}^{r,k}(B_{\alpha,m^{-1}}) \Leftrightarrow L_{\frac{a}{b}}f \in \mathcal{W}_{p,\Psi}^{r,k}(B_{\alpha})$. Then by [7] we have

$$\int_{|\lambda| \ge N} |\mathcal{F}_{\alpha}(L_{\frac{a}{b}}f)(\lambda)|^{q} \lambda^{2\alpha+1} d\lambda = \mathcal{O}\left(N^{-rq}(\Psi)^{q}\left((\frac{c}{N})^{k}\right)\right) as N \to +\infty$$

where c is a positive constant, $r \in \mathbb{N}$; $k \in \mathbb{N}^*$; q is the conjugate exponent of p. By relations (see[6],[10])

(2.6) $D_b f = D_{|b|} f$ for all $b \in \mathbb{R}^*$ and f is is even function.

A. Akhlidj and Z. Sadiq

(2.7)
$$\mathcal{F}^m_{\alpha} = e^{-i(\alpha+1)\frac{\pi}{2}sgnb}L_{\frac{d}{b}} \circ D_b \circ \mathcal{F}_{\alpha} \circ L_{\frac{a}{b}}$$

we deduce the result. $\hfill\square$

Corollary 2.1. Let $\Psi(t) = t^{\beta}$ and $f \in \mathcal{W}_{p,t^{\beta}}^{r,k}(B_{\alpha,m^{-1}})$ where $\beta > 0$ and 1 . Then,

$$\int_{|\lambda| \ge N} |\mathcal{F}^m_{\alpha}(f)(\lambda)|^q \lambda^{2\alpha+1} d\lambda = \mathcal{O}\left(N^{-rq-qk\beta}\right) \ as \ N \to +\infty$$

where, q is the conjugate exponent of p.

Theorem 2.2. Let $\Psi(t) = t^{\beta}$ and $0 < \beta < 2$ this conditions are equivalents

$$i) \ f \in \mathcal{W}_{2,t^{\beta}}^{r,k}(B_{\alpha,m^{-1}})$$
$$ii) \ \int_{|\lambda| \ge N} |\mathcal{F}_{\alpha}^{m}(f)(\lambda)|^{2} \lambda^{2\alpha+1} d\lambda = \mathcal{O}\left(N^{-2r-2k\beta}\right) \ as \ N \to +\infty$$

Proof. i) \Rightarrow ii). By corollary (2.1) we deduce easily the result. ii) \Rightarrow i). Let $f \in L^2(\mathbb{R}^+, x^{2\alpha+1})$ such that

$$\int_{|\lambda| \ge N} |\mathcal{F}^m_{\alpha}(f)(\lambda)|^2 \lambda^{2\alpha+1} d\lambda = \mathcal{O}\left(N^{-2r-2k\beta}\right) as N \to +\infty$$

by lemma (2.1) we have the formula

$$\mathcal{F}^m_{\alpha} = e^{-i(\alpha+1)\frac{\pi}{2}sgnb}L_{\frac{d}{t}} \circ D_b \circ \mathcal{F}_{\alpha} \circ L_{\frac{a}{b}}$$

where \mathcal{F}_{α} is the classical Bessel transform. Then

$$\begin{split} &\int_{|\lambda|\geq N} |\mathcal{F}_{\alpha}^{m}(f)(\lambda)|^{2}\lambda^{2\alpha+1}d\lambda = \int_{|\lambda|\geq N} |e^{-i(\alpha+1)\frac{\Pi}{2}sgnb}L_{\frac{d}{b}}\circ D_{|b|}\circ\mathcal{F}_{\alpha}\circ L_{\frac{a}{b}}(f)(\lambda)|^{2}\lambda^{2\alpha+1}d\lambda \\ &= \int_{|\lambda|\geq N} |\frac{1}{|b|^{\alpha+1}}\mathcal{F}_{\alpha}(L_{\frac{a}{b}}f)(\lambda)|^{2}\lambda^{2\alpha+1}d\lambda \\ &= \int_{|\lambda|\geq N} |\frac{1}{|b|^{\alpha+1}}\mathcal{F}_{\alpha}(L_{\frac{a}{b}}f)(\frac{\lambda}{|b|})|^{2}\lambda^{2\alpha+1}d\lambda \\ &\text{by change of variables we put } \lambda = |b|\mu. \text{ we have } d\lambda = |b|d\mu \text{ and } |\lambda| \geq N \text{ equivalent} \\ &\text{to } |\mu| \geq \frac{N}{|b|}. \text{ Then,} \\ &\int_{|\lambda|\geq N} |\mathcal{F}_{\alpha}^{m}(f)(\lambda)|^{2}\lambda^{2\alpha+1}d\lambda = \frac{1}{|b|^{2\alpha+2}}\int_{|\mu|\geq \frac{N}{|b|}} |\mathcal{F}_{\alpha}(L_{\frac{a}{b}}f)(\mu)|^{2}(|b|\mu)^{2\alpha+1}|b|d\mu \\ &= \int_{|\mu|\geq \frac{N}{|b|}} |\mathcal{F}_{\alpha}(L_{\frac{a}{b}}f)(\mu)|^{2}\mu^{2\alpha+1}d\mu. \\ &\text{Since,} \\ &\int_{|\mu|\geq \frac{N}{|b|}} |\mathcal{F}_{\alpha}(L_{\frac{a}{b}}f)(\mu)|^{2}\mu^{2\alpha+1}d\mu = \mathcal{O}\left(N^{-2r-2k\beta}\right) \text{ as } N \to +\infty \\ &\text{and by } [4] \text{ we have } L_{\frac{a}{b}}f \in W_{2,t^{\beta}}^{r,k}(B_{\alpha}). \text{ Thus} \\ &f \in L_{-\frac{a}{b}}\left(W_{2,t^{\beta}}^{r,k}(B_{\alpha})\right) = W_{2,t^{\beta}}^{r,k}(B_{\alpha,m^{-1}}). \\ &\Box \end{split}$$

Theorem 2.3. Let $0 < \gamma \leq k$ and $f \in W_p^r(B_{\alpha,m^{-1}})$ such that

1

$$\|\Delta_{\alpha,m^{-1},h}^k(B_{\alpha,m^{-1}})^r f\|_{p,\alpha} = \mathcal{O}(h^{\gamma}) \text{ as } h \to 0,$$

then

$$\mathcal{F}^m_{\alpha}(f) \in L^{\beta}(\mathbb{R}^+, x^{2\alpha+1}dx)$$

for

ъ

$$\frac{2\alpha p + 2p}{2p + 2\alpha(p-1) - 2 + \gamma p + rp} < \beta \le \frac{p}{p-1}$$

Proof. Let
$$f \in \mathcal{W}_p^r(B_{\alpha,m^{-1}})$$
 and $1 we have
 $\|\Delta_{\alpha,m^{-1},h}^k(B_{\alpha,m^{-1}})^r f\|_{p,\alpha} = \|\left(T_{\alpha,m^{-1},h} - e^{-\frac{i}{2}\frac{a}{b}h^2}\mathcal{I}\right)^k \left((B_{\alpha,m^{-1}})^r f\right)\|_{p,\alpha}$
 $= \|L_{-\frac{a}{b}} \circ \Delta_{\alpha,h}^k \circ L_{\frac{a}{b}}\left((B_{\alpha,m^{-1}})^r f\right)\|_{p,\alpha}$
 $= \|\Delta_{\alpha,h}^k\left((B_{\alpha})^r L_{\frac{a}{b}}f\right)\|_{p,\alpha}$
 $= \mathcal{O}(h^{\gamma}) \text{ as } h \to 0$
Therefore by the result in [5] and lemma (2.1) and lemma (2.2) we deduce $\mathcal{F}_{\alpha}^m(f) \in L_{\alpha}^{\beta}(\mathbb{R}^+)$$

$$\frac{2\alpha p+2p}{2p+2\alpha(p-1)-2+\gamma p+rp} < \beta \leq \frac{p}{p-1}$$

Definition 2.3. Let $0 < \gamma \leq 1$. A function $f \in \mathcal{W}_2^r(B_{\alpha,m^{-1}})$ is said to be in the k- m^{-1} -Bessel Lipschitz class, denoted by $DLip(\gamma, 2, \tilde{k}, m^{-1})$, if

(2.8)
$$\|\Delta_{\alpha,m^{-1},h}^k (B_{\alpha,m^{-1}})^r f\|_{2,\alpha} = \mathcal{O}(h^{\gamma}) \text{ as } h \to 0.$$

Lemma 2.3. Let $0 < \gamma \leq 1$ and $k \in \mathbb{N}$ we have

(2.9)
$$DLip(\gamma, 2, k, m^{-1}) = L_{-\frac{a}{b}}(DLip(\gamma, 2, k))$$

Proof. We have

 $f \in DLip(\gamma, 2, k, m^{-1}) \Leftrightarrow f \in \mathcal{W}_2^r(B_{\alpha, m^{-1}}) \text{ and } \|\Delta_{\alpha, m^{-1}, h}^k(B_{\alpha, m^{-1}})^r f\|_{2, \alpha} =$ $\mathcal{O}(h^{\gamma}) as h \to 0$ $\Leftrightarrow L_{\frac{a}{b}} f \in W_2^r(B_{\alpha}) \text{ and } \|\Delta_{\alpha,m^{-1},h}^k(B_{\alpha,m^{-1}})^r f\|_{2,\alpha} = \mathcal{O}(h^{\gamma}) \text{ as } h \to 0$ $\Leftrightarrow L_{\frac{a}{b}} f \in W_2^r(B_{\alpha}) \text{ and } \|\Delta_{\alpha,h}^k(B_{\alpha})^r L_{\frac{a}{b}} f\|_{2,\alpha} = \mathcal{O}(h^{\gamma}) \text{ as } h \to 0$ $\Leftrightarrow L^{\flat}_{\frac{a}{b}}f \in \tilde{DLip}(\gamma, 2, k)$ $\Leftrightarrow f \in L_{-\frac{a}{b}} (DLip(\gamma, 2, k)).$

Theorem 2.4. Let $f \in W_2^r(B_{\alpha,m^{-1}})$. The following are equivalents

A. Akhlidj and Z. Sadiq

1)
$$f \in DLip(\gamma, 2, k, m^{-1})$$

2) $\int_{|\lambda| \ge s} |\lambda|^{2r} |\mathcal{F}^m_{\alpha}(f)(\lambda)|^2 \lambda^{2\alpha+1} d\lambda = \mathcal{O}(s^{-2\gamma}) \quad as \quad s \to +\infty$

Proof. By lemma (2.3) we have $f \in Dlip(\gamma, 2, k, m^{-1}) \Leftrightarrow L_{\frac{a}{b}} f \in DLip(\gamma, 2, k)$

Corollary 2.2. Let
$$f \in DLip(\gamma, 2, k, m^{-1})$$
. Then

(2.10)
$$\int_{|\lambda| \ge s} |\mathcal{F}^m_{\alpha}(f)(\lambda)|^2 \lambda^{2\alpha+1} d\lambda = \mathcal{O}(s^{-2\gamma-2r}) \quad as \quad s \to +\infty$$

3. Conclusion

In this work, via the chirp multiplication from $L^p(\mathbb{R}^+, x^{2\alpha+1}dx)$ into $L^p(\mathbb{R}^+, x^{2\alpha+1}dx)$ and by the algebraic relations:

- i) $L_{\frac{-d}{h}} \circ B^m_\alpha \circ L_{\frac{d}{h}} = B_\alpha$.
- ii) $\mathcal{F}_{\alpha}^{m} = e^{-i(\alpha+1)\frac{\pi}{2}sgn}L_{\frac{d}{b}} \circ D_{b} \circ \mathcal{F}_{\alpha} \circ L_{\frac{a}{b}}$ where \mathcal{F}_{α} is the classical Bessel transform.
- iii) $\tau_{\alpha,m,h} = e^{i\frac{d}{2b}h^2}L_{\frac{d}{b}}\circ\tau_{\alpha,h}\circ L_{-\frac{d}{b}}$, where $\tau_{\alpha,h}$ is the translation operator associated to the classical Bessel operator.

we were able to establish, without using calculations, the first and the second generalized Abilov's theorems and generalized Titchmarsh's theorems.

Acknowledgment

The authors would like to thank the anonymous referees for their helpful comments and suggestions which have improved the original manuscript.

REFERENCES

- V. A. ABILOV and F. V. ABILOVA, Approximation of Functions by Fourier-Bessel Sums, Izv. Vyssh. Uchebn. Zaved., Mat., 8 (2001), 3-9.
- V.A.ABILOV, F.V.ABILOVA, and M.K.Kerimov, Some Remarks Concerning the Fourier Transform in the Space L₂(ℝ) Zh. Vychisl. Mat. Hat. Fiz. 48, 939-945 (2008).
- V.A.ABILOV, F.V.ABILOVA, and M.K.KERIMOV, Some Remarks Concerning the Fourier Transform in the Space L₂(Rⁿ), Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 48 (12) (2008) 2113-2120.

On estimates for the canonical linear Fourier-Bessel transform

- V.A.ABILOV, F.V.ABILOVA, and M.K.KERIMOV, On estimates for the Fourier-Bessel integral transform in the Space L₂(R⁺), Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 49(7) (2009), 1158-1166.
- 5. H. LAHLALI, R. DAHER and M. EL HAMMA, Growth properties for the Bessel transform in the Space $L_{p,\alpha}(\mathbb{R})$ International Journal of Advances in Mathematics, **1** (1) (2014), 25-29.
- L. DHAOUDI, J. SAHBANI and A. FITOUHI, Harmonic analysis associted to the canonical Fourier Bessel transform, Integral transforms and special functions, (2020) DOI: 10.1080/10652469.
- 7. R. DAHER and M. EL HAMMA, On Estimates for the Fourier-Bessel transform in the space $L_{p,\alpha}(\mathbb{R}^+)$. Thai Journal of Mathematics 11 (3) (2013), 697-702.
- R. DAHER, M. EL HAMMA and A. EL HOUASNI, Titchmarsh's theorem for the Fourier-Bessel transform, Matematika, 28 (2) (2012), 127-131.
- 9. S.M. NIKOL'SKII, Approximation of Functions of Several Variables and Embed-ding Theorems, (in Russian), Nauka, Moscow, 1977.
- S. GHAZOUNI and J. SAHBANI, Generalized translation operator and the heat equation for the canonical Fourier Bessel transform, arXiv: 2104.05587v1 [math. AP] (2021).
- 11. E. C. TITCHMARSH, Introduction to the theory of Fourier Integrals, Oxford University Press, Amen House, London, E. C. 4, 1948.