RANKS OF SUBMATRICES IN THE REFLEXIVE SOLUTIONS OF SOME MATRIX EQUATIONS

Sihem Guerarra and Radja Belkhiri
Faculty of Exact Sciences and Sciences of Nature and Life
Department of Mathematics and Informatics
University of Oum El Bouaghi, 04000, Algeria

Abstract

Maximal and minimal ranks of the two submatrices X_{1} and X_{2} in the (skew-) Hermitian reflexive solution $X=U\left[\begin{array}{cc}X_{1} & 0 \\ 0 & X_{2}\end{array}\right] U^{*}$ of the matrix equation $A X A^{*}=C$, in the reflexive solution of the matrix equation $A X B=C$ are derived. Therefore, necessary and sufficient conditions for these reflexive solutions to have special forms, and the general expressions of these reflexive solutions are achieved. Keywords: matrix equation, rank, reflexive solution.

1. Introduction

Throughout this paper, we denote the set of all $m \times n$ complex matrices over \mathbb{C} by $\mathbb{C}^{m \times n}$, the set of all $n \times n$ Hermitian matrices by $\mathbb{C}_{H}^{n \times n}$, the symbols A^{*} and $r(A)$ stand for the conjugate transpose and the rank of a given matrix $A \in \mathbb{C}^{n \times m}$ respectively, I_{n} denotes the identity matrix of order n. The Moore-Penrose inverse of a matrix A, is defined to be the unique matrix A^{+}satisfying:

$$
A A^{+} A=A, A^{+} A A^{+}=A^{+},\left(A A^{+}\right)^{*}=A A^{+},\left(A^{+} A\right)^{*}=A^{+} A
$$

Further, the symbols R_{A} and L_{A} stand for the two orthogonal projectors $L_{A}=$ $I_{n}-A^{+} A$ and $R_{A}=I_{m}-A A^{+}$induced by $A \in \mathbb{C}^{m \times n}$. For more informations and basic concepts about the Moore-Penrose generalized inverse see [1], [15].

[^0]A matrix $P \in \mathbb{C}^{n \times n}$ is called a generalized reflection matrix if $P^{*}=P$ and $P^{2}=I$. Chen in [2] defined the following subspace of matrices:

$$
\mathbb{C}_{r}^{n \times n}(P)=\left\{A \in \mathbb{C}^{n \times n}, A=P A P\right\}
$$

where P is a generalized reflection matrix.
The matrix $A \in \mathbb{C}_{r}^{n \times n}(P)$ is said to be a generalized reflexive with respect to the generalized reflection matrix P. The generalized reflexive matrices have applications in system and control theory, in engineering, in scientific computations and various other fields (see [2], [3], [7]). In particular the reflexive solutions of the linear matrix equations

$$
\begin{aligned}
A X A^{*} & =C \\
A X B & =C
\end{aligned}
$$

where A, B, C are given matrices, and X is a variable matrix was widely studied by many authors (see [12], [13], [14]), also in [5] Deghan and Hajarian established new necessary and sufficient conditions for the existence of the reflexive (anti-reflexive) solutions to the linear matrix equation $A X B+C Y D=E$ and derived representation of the general reflexive (anti-reflexive) solutions to this matrix equation, then in [6] they investigated the solvability of these matrix equations

$$
\begin{aligned}
A_{1} X B_{1} & =D_{1} \\
A_{1} X & =C_{1}, X B_{2}=C_{2}, \text { and } \\
A_{1} X & =C_{1}, X B_{2}=C_{2}, A_{3} X=C_{3}, X B_{4}=C_{4}
\end{aligned}
$$

over reflexive and anti reflexive matrices, in [4] Cvetković-Ilić studied the existence of a reflexive solution of the matrix equation $A X B=C$, with respect to the generalized reflection matrix P, Liu and Yuan [9] gave some conditions for the existence and the representations for the generalized reflexive and anti-reflexive solutions to matrix equation $A X=B$, In [10], Liu established some conditions for the existence and representations for the common generalized reflexive and anti-reflexive solutions of matrix equations $A X=B$ and $X C=D$, also Liu in [11] discussed the extremal ranks of the matrix expression $A-B X C$ where X is (anti-) reflexive matrix, and in [8] he established some conditions for the existence and the representations for the Hermitian reflexive and Hermitian anti-reflexive, and nonnegative definite reflexive solutions to the matrix equation $A X=B$ with respect to a generalized reflection matrix P by using the Moore-Penrose inverse.

This paper is organized as follows: In Section 2 we derive the extremal ranks of the (skew-) Hermitian reflexive solution of the matrix equation $A X A^{*}=C$, from these rank formulas we show some forms of the reflexive solution of $A X A^{*}=C$, also the general expressions of the solution is given. In Section 3, we consider the matrix equation $A X B=C$ over the general reflexive solution and give some forms for this solution.

First we begin by these lemmas to review some representations of the generalized reflection matrix P and the subspace $\mathbb{C}_{r}^{n \times n}(P)$ matrices.

Lemma 1.1. Let $P \in \mathbb{C}^{n \times n}$ be a generalized reflection matrix, so P can be expressed as

$$
P=U\left[\begin{array}{cc}
I_{k} & 0 \\
0 & -I_{n-k}
\end{array}\right] U^{*}
$$

where U is an unitary matrix.
Lemma 1.2. The matrix $A \in \mathbb{C}_{r}^{n \times n}(P)$ if and only if A can be expressed as

$$
A=U\left[\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right] U^{*}
$$

where $A_{1} \in \mathbb{C}^{k \times k}, A_{2} \in \mathbb{C}^{(n-k) \times(n-k)}$, U is an unitary matrix.
Definition 1.1. Given a generalized reflection matrix $P \in \mathbb{C}^{n \times n}$.

1. A matrix $A \in \mathbb{C}^{n \times n}$ is said to be a Hermitian reflexive matrix if $A=A^{*}$ and $A \in \mathbb{C}_{r}^{n \times n}(P)$.
2. A matrix $A \in \mathbb{C}^{n \times n}$ is said to be a skew-Hermitian reflexive matrix if $A=-A^{*}$ and $A \in \mathbb{C}_{r}^{n \times n}(P)$.

The Lemmas 1.3, 1.4 and 1.5 are found in [19] as [Theorem 2.5, Theorem 2.6 and Lemma 2.2] respectively.

Lemma 1.3. [19] Let $H^{m \times n}$ be the set of all $m \times n$ matrices over the quaternion algebra. Suppose that the matrix equation

$$
\begin{equation*}
A X A^{*}+B Y B^{*}=C \tag{1.1}
\end{equation*}
$$

where $A \in H^{m \times n}, B \in H^{m \times p}, C \in H^{m \times m}, C=C^{*}, X \in H^{n \times n}$, and $Y \in H^{p \times p}$, $G=\left[\begin{array}{ll}A & B\end{array}\right]$ has a Hermitian solution. Then,
The maximal and minimal ranks of the general Hermitian solution to (1.1) are given by

$$
\begin{aligned}
& \begin{array}{l}
\max _{A X A^{*}+B Y B^{*}=C} r(X)=\min \left\{n, r\left[\begin{array}{ll}
B & C
\end{array}\right]+2 n-r(A)-r(G)\right\} \\
X=X^{*}
\end{array} \\
& \begin{array}{l}
\min ^{A X A^{*}+B Y B^{*}=C} \begin{array}{l}
X=X^{*}
\end{array} \quad r(X)=2 r[B, C]-r\left[\begin{array}{cc}
C & B \\
B^{*} & 0
\end{array}\right]
\end{array} \\
& \begin{array}{c}
\max _{A X A^{*}+B Y B^{*}=C} \quad r(Y)=\min \left\{p, r\left[\begin{array}{ll}
A & C
\end{array}\right]+2 p-r(B)-r(G)\right\} \\
Y=Y^{*}
\end{array} \\
& \min _{A X A^{*}+B Y B^{*}=C} r(Y)=2 r\left[\begin{array}{ll}
A & C
\end{array}\right]-r\left[\begin{array}{cc}
C & A \\
A^{*} & 0
\end{array}\right] \\
& Y=Y^{*}
\end{aligned}
$$

Lemma 1.4. [19] Let $H^{m \times n}$ be the set of all $m \times n$ matrices over the quaternion algebra. Suppose that the matrix equation (1.1), where $A \in H^{m \times n}, B \in H^{m \times p}$, $C \in H^{m \times m}, C=-C^{*}, X \in H^{n \times n}$, and $Y \in H^{p \times p}, G=\left[\begin{array}{ll}A & B\end{array}\right]$ has a skew Hermitian solution. Then,
The maximal and minimal ranks of the general skew-Hermitian solution to (1.1) are given by

$$
\begin{gathered}
\max _{A X A^{*}+B Y B^{*}=C} r(X)=\min \left\{n, r\left[\begin{array}{ll}
B & C
\end{array}\right]+2 n-r(A)-r(G)\right\} \\
X=-X^{*} \\
\min _{A X A^{*}+B Y B^{*}=C} \quad r(X)=2 r[B, C]-r\left[\begin{array}{cc}
C & B \\
-B^{*} & 0
\end{array}\right] \\
X=-X^{*} \\
\max ^{A X A^{*}+B Y B^{*}=C} \begin{array}{l}
Y=-Y^{*} \\
\min ^{2}(Y)=\min \left\{p, r\left[\begin{array}{ll}
A & C
\end{array}\right]+2 p-r(B)-r(G)\right\} \\
A X A^{*}+B Y B^{*}=C \\
Y=-Y^{*}
\end{array} r(Y)=2 r\left[\begin{array}{ll}
A & C
\end{array}\right]-r\left[\begin{array}{cc}
C & A \\
-A^{*} & 0
\end{array}\right]
\end{gathered}
$$

Lemma 1.5. [19] Consider the linear matrix equation (1.1), where $A \in H^{m \times n}$, $B \in H^{m \times p}, C \in H^{m \times m}$ are given, and $X \in H^{n \times n}, Y \in H^{p \times p}$ unknown.

1) If $C=C^{*}$, and (1.1) has a Hermitian solution, then the general Hermitian solution to (1.1) can be expressed as

$$
\begin{gather*}
X=X_{0}+S_{1} L_{G} Z L_{G} S_{1}^{*}+L_{A} V+V^{*} L_{A} \tag{1.2}\\
Y=Y_{0}-S_{2} L_{G} Z L_{G} S_{2}^{*}+L_{B} W+W^{*} L_{B} \tag{1.3}
\end{gather*}
$$

where X_{0} and Y_{0} are a special pair Hermitian solution of (1.1),

$$
S_{1}=\left(I_{n}, 0\right), S_{2}=\left(0, I_{p}\right), G=\left[\begin{array}{ll}
A & B \tag{1.4}
\end{array}\right]
$$

Z is an arbitrary Hermitian quaternion matrix with consistent size, and V and W are arbitrary quaternion matrices with suitable sizes.
2) If $C=-C^{*}$, and (1.1) has a skew-Hermitian solution, then the general skewHermitian solution can be expressed as

$$
\begin{align*}
& X=X_{0}+S_{1} L_{G} Z L_{G} S_{1}^{*}+L_{A} V-V^{*} L_{A} \tag{1.5}\\
& Y=Y_{0}-S_{2} L_{G} Z L_{G} S_{2}^{*}+L_{B} W-W^{*} L_{B} \tag{1.6}
\end{align*}
$$

where X_{0} and Y_{0} are a special pair skew-Hermitian solution of (1.1), and S_{1}, S_{2}, and G are the same as (1.4); Z is an arbitrary skew-Hermitian quaternion matrix with consistent size, and V and W are arbitrary quaternion matrices with suitable sizes.

2. Extremal ranks of submatrices in (skew-)Hermitian reflexive solution of $A X A^{*}=C$

In this section we will derive the extremal ranks of the (skew-) Hermitian reflexive solution of the matrix equation $A X A^{*}=C$, as consequences we will show some forms of the reflexive solution of $A X A^{*}=C$, and some applications on generelized inverses.

Consider the linear matrix equation

$$
\begin{equation*}
A X A^{*}=C \tag{2.1}
\end{equation*}
$$

where A, C are given and X is unknown
Theorem 2.1. Let $P \in \mathbb{C}^{n \times n}$ be a generalized reflection matrix and let $A \in \mathbb{C}^{m \times n}$, $C \in \mathbb{C}_{H}^{m \times m}$ be given, suppose that the matrix equation (2.1) has a Hermitian reflexive solution. $X=X^{*} \in \mathbb{C}_{r}^{n \times n}(P)$ Then,
a) The maximal and minimal ranks of the two submatrices X_{1} and X_{2} in Hermitian reflexive solution $X=U\left[\begin{array}{cc}X_{1} & 0 \\ 0 & X_{2}\end{array}\right] U^{*}$ to the matrix equation (2.1) are given by

$$
\max _{X_{1}=X_{1}^{*}} r\left(X_{1}\right)=\min \left\{k, r\left[\begin{array}{cc}
A\left(I_{n}-P\right) & C \tag{2.2}
\end{array}\right]+2 k-r\left(A\left(I_{n}+P\right)\right)-r(A)\right\} .
$$

$$
\min _{X_{1}=X_{1}^{*}} r\left(X_{1}\right)=2 r\left[\begin{array}{ll}
A\left(I_{n}-P\right) & C
\end{array}\right]-r\left[\begin{array}{cc}
C & A\left(I_{n}-P\right) \tag{2.3}\\
\left(I_{n}-P\right) A^{*} & 0
\end{array}\right] .
$$

$$
\max _{X_{2}=X_{2}^{*}} r\left(X_{2}\right)=\min \left\{n-k, r\left[\begin{array}{ll}
A\left(I_{n}+P\right) & C \tag{2.4}
\end{array}\right]+2(n-k)-r\left(A\left(I_{n}-P\right)\right)-r(A)\right\} .
$$

$$
\min _{X_{2}=X_{2}^{*}} r\left(X_{2}\right)=2 r\left[\begin{array}{ll}
A\left(I_{n}+P\right) & C
\end{array}\right]-r\left[\begin{array}{cc}
C & A\left(I_{n}+P\right) \tag{2.5}\\
\left(I_{n}+P\right) A^{*} & 0
\end{array}\right] .
$$

b) The general Hermitian reflexive solution to (2.1) can be expressed as

$$
X=U\left[\begin{array}{cc}
X_{1} & 0 \\
0 & X_{2}
\end{array}\right] U^{*}
$$

where
(2.6) $X_{1}=X_{01}+S_{1} L_{A U} Z L_{A U} S_{1}^{*}+L_{\left(\frac{1}{2} A\left(I_{n}+P\right) U\right)} V+V^{*} L_{\left(\frac{1}{2} A\left(I_{n}+P\right) U\right)}$
(2.7) $X_{2}=X_{02}-S_{2} L_{A U} Z L_{A U} S_{2}^{*}+L_{\left(\frac{1}{2} A\left(I_{n}-P\right) U\right)} W+W^{*} L_{\left(\frac{1}{2} A\left(I_{n}-P\right) U\right)}$
where $\left[\begin{array}{cc}X_{01} & 0 \\ 0 & X_{02}\end{array}\right]$ is a special Hermitian reflexive solution of (2.1), and

$$
S_{1}=\left(I_{k}, 0\right), S_{2}=\left(0, I_{n-k}\right)
$$

V, W and Z are arbitrary matrices with suitable sizes.

Proof. a) From lemma 1.2 the Hermitian reflexive solution to $A X A^{*}=C$ can be written as

$$
X=U\left[\begin{array}{cc}
X_{1} & 0 \\
0 & X_{2}
\end{array}\right] U^{*}
$$

where $X_{1}=X_{1}^{*} \in \mathbb{C}^{k \times k}, X_{2}=X_{2}^{*} \in \mathbb{C}^{(n-k) \times(n-k)}$, and arbitrary unitary matrix $U=\left[\begin{array}{ll}U_{1} & U_{2}\end{array}\right]$, with $U_{1} \in \mathbb{C}^{n \times k}, U_{2} \in \mathbb{C}^{n \times(n-k)}$.
We denote $A U=\left[\begin{array}{ll}A_{1} & A_{2}\end{array}\right]$, where $A_{1} \in \mathbb{C}^{m \times k}, A_{2} \in \mathbb{C}^{m \times(n-k)}$, we have

$$
\begin{align*}
A X A^{*}=C & \Longleftrightarrow \quad A U\left[\begin{array}{cc}
X_{1} & 0 \\
0 & X_{2}
\end{array}\right] U^{*} A^{*}=C \\
& \Longleftrightarrow \quad\left[\begin{array}{ll}
A_{1} & A_{2}
\end{array}\right]\left[\begin{array}{cc}
X_{1} & 0 \\
0 & X_{2}
\end{array}\right]\left[\begin{array}{c}
A_{1}^{*} \\
A_{2}^{*}
\end{array}\right]=C \\
& \Longleftrightarrow \tag{2.8}
\end{align*}
$$

Then, the two equations (2.1) and (2.8) are equivalent, so from Lemma 1.3 we have

$$
\begin{align*}
& \max _{A_{1} X_{1} A_{1}^{*}+A_{2} X_{2} A_{2}^{*}=C}^{X_{1}=X_{1}^{*}} \begin{array}{l}
\\
A_{1}\left(X_{1}\right) \\
\end{array} \tag{2.9}\\
& =\min \left\{k, r\left[\begin{array}{ll}
A_{2} & C
\end{array}\right]+2 k-r\left(A_{1}\right)-r\left[\begin{array}{ll}
A_{1} & A_{2}
\end{array}\right]\right\} \\
& \min _{\substack{A_{1} X_{1} A_{1}^{*}+A_{2} X_{2} A_{2}^{*}=C \\
X_{1}=X_{1}^{*}}} r\left(X_{1}\right)=2 r\left[\begin{array}{ll}
A_{2} & C
\end{array}\right]-r\left[\begin{array}{cc}
C & A_{2} \\
A_{2}^{*} & 0
\end{array}\right] . \tag{2.10}\\
& \max _{\substack{A_{1} X_{1} A_{1}^{*}+A_{2} X_{2} A_{2}^{*}=C \\
X_{2}=X_{2}^{*}}} r\left(X_{2}\right) \tag{2.11}\\
& =\min \left\{n-k, r\left[\begin{array}{ll}
A_{1} & C
\end{array}\right]+2(n-k)-r\left(A_{2}\right)-r\left[\begin{array}{ll}
A_{1} & A_{2}
\end{array}\right]\right\} \\
& \min _{\substack{A_{1} X_{1} A_{1}^{*}+A_{2} X_{2} A_{2}^{*}=C \\
X_{2}=X_{2}^{*}}} r\left(X_{2}\right)=2 r\left[\begin{array}{ll}
A_{1} & C
\end{array}\right]-r\left[\begin{array}{cc}
C & A_{1} \\
A_{1}^{*} & 0
\end{array}\right] . \tag{2.12}
\end{align*}
$$

From Lemmas 1.1 and 1.2 we can simplify:

$$
\begin{align*}
r\left[\begin{array}{ll}
A_{1} & C
\end{array}\right] & =r\left[\begin{array}{ccc}
A_{1} & 0 & C
\end{array}\right] \\
& =r\left[\begin{array}{cc}
\frac{1}{2} A\left(I_{n}+P\right) U & C
\end{array}\right] \\
& =r\left[\begin{array}{cc}
A\left(I_{n}+P\right) & C
\end{array}\right] \tag{2.13}\\
r\left[\begin{array}{ll}
A_{2} & C
\end{array}\right] & =r\left[\begin{array}{ccc}
0 & A_{2} & C
\end{array}\right] \\
& =r\left[\frac{1}{2} A\left(I_{n}-P\right) U\right. \\
& =r\left[\begin{array}{ll}
A\left(I_{n}-P\right) & C
\end{array}\right] \tag{2.14}\\
r\left[\begin{array}{cc}
C & A_{1} \\
A_{1}^{*} & 0
\end{array}\right] & =r\left[\begin{array}{ccc}
C & A_{1} & 0 \\
A_{1}^{*} & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{align*}
$$

$$
\begin{align*}
& =r\left[\begin{array}{cc}
C & \frac{1}{2} A\left(I_{n}+P\right) U \\
\frac{1}{2} U\left(I_{n}+P\right) A^{*} & 0
\end{array}\right] \\
& =r\left[\begin{array}{cc}
C & A\left(I_{n}+P\right) \\
\left(I_{n}+P\right) A^{*} & 0
\end{array}\right], \tag{2.15}\\
r\left[\begin{array}{cc}
C & A_{2} \\
A_{2}^{*} & 0
\end{array}\right] & =r\left[\begin{array}{ccc}
C & 0 & A_{2} \\
0 & 0 & 0 \\
A_{2}^{*} & 0 & 0
\end{array}\right] \\
& =r\left[\begin{array}{cc}
C & \frac{1}{2} A\left(I_{n}-P\right) U \\
\frac{1}{2} U\left(I_{n}-P\right) A^{*} & 0
\end{array}\right] \\
& =r\left[\begin{array}{cc}
C & A\left(I_{n}-P\right) \\
\left(I_{n}-P\right) A^{*} & 0
\end{array}\right] . \tag{2.16}
\end{align*}
$$

Substituting (2.13)-(2.16) into (2.9)-(2.12) yields (2.2)-(2.5).
b) Necessary substitutions from (2.13)-(2.16) into (1.2)-(1.3) yields (2.6) and (2.7).

Corollary 2.1. Let $P \in \mathbb{C}^{n \times n}$ be a generalized reflection matrix and $A \in \mathbb{C}^{m \times n}$, $C \in \mathbb{C}_{H}^{m \times m}$ be given, suppose that the matrix equation (2.1) has a Hermitian reflexive solution. $X=X^{*} \in \mathbb{C}_{r}^{n \times n}(P)$ Then.
a) Equation (2.1) has a Hermitian reflexive solution of the form $X=U\left[\begin{array}{cc}X_{1} & 0 \\ 0 & 0\end{array}\right] U^{*}$ if and only if

$$
r\left[\begin{array}{cc}
C & A\left(I_{n}+P\right) \\
\left(I_{n}+P\right) A^{*} & 0
\end{array}\right]=2 r\left[\begin{array}{cc}
A\left(I_{n}+P\right) & C
\end{array}\right] .
$$

b) All Hermitian reflexive solutions of equation (2.1) have the form $X=U\left[\begin{array}{cc}X_{1} & 0 \\ 0 & 0\end{array}\right] U^{*}$ if and only if

$$
r\left[\begin{array}{ll}
A\left(I_{n}+P\right) & C
\end{array}\right]=r\left(A\left(I_{n}-P\right)\right)+r(A)-2(n-k)
$$

c) Equation (2.1) has a Hermitian reflexive solution of the form $X=U\left[\begin{array}{cc}0 & 0 \\ 0 & X_{2}\end{array}\right] U^{*}$ if and only if

$$
r\left[\begin{array}{cc}
C & A\left(I_{n}-P\right) \\
\left(I_{n}-P\right) A^{*} & 0
\end{array}\right]=2 r\left[\begin{array}{cc}
A\left(I_{n}-P\right) & C
\end{array}\right] .
$$

d) All Hermitian reflexive solutions of equation (2.1) have the form $X=U\left[\begin{array}{cc}0 & 0 \\ 0 & X_{2}\end{array}\right] U^{*}$ if and only if

$$
r\left[\begin{array}{ll}
A\left(I_{n}-P\right) & C]=r\left(A\left(I_{n}+P\right)\right)+r(A)-2 k .
\end{array}\right.
$$

e) Equation (2.1) has a null solution if and only if

$$
\begin{aligned}
& r\left[\begin{array}{cc}
C & A\left(I_{n}+P\right) \\
\left(I_{n}+P\right) A^{*} & 0
\end{array}\right]=2 r\left[\begin{array}{cc}
A\left(I_{n}+P\right) & C
\end{array}\right], \\
& r\left[\begin{array}{cc}
C & A\left(I_{n}-P\right) \\
\left(I_{n}-P\right) A^{*} & 0
\end{array}\right]=2 r\left[\begin{array}{cc}
A\left(I_{n}-P\right) & C
\end{array}\right] .
\end{aligned}
$$

f) All Hermitian reflexive solutions of equation (2.1) are nulls if and only if

$$
\begin{gathered}
r\left[\begin{array}{cc}
A\left(I_{n}+P\right) & C
\end{array}\right]=r\left(A\left(I_{n}-P\right)\right)+r(A)-2(n-k) \\
r\left[\begin{array}{cc}
A\left(I_{n}-P\right) & C
\end{array}\right]=r\left(A\left(I_{n}+P\right)\right)+r(A)-2 k
\end{gathered}
$$

It is well known that, the generalized inverse A^{-}for a given matrix A is a solution of the matrix equation $A X A=A$, so we apply Corollary 2.1 to the equation $A X A=A$ we obtain this result.

Corollary 2.2. Let $A \in \mathbb{C}^{n \times n}$, for some unitary matrix U. Then, a) A has a generalized inverse A^{-}of the form $A^{-}=U\left[\begin{array}{cc}N_{1} & 0 \\ 0 & 0\end{array}\right] U^{*}$ if and only if

$$
r\left[\begin{array}{cc}
A & A\left(I_{n}+P\right) \\
\left(I_{n}+P\right) A & 0
\end{array}\right]=2 r\left[\begin{array}{cc}
A\left(I_{n}+P\right) & A
\end{array}\right] .
$$

b) A has a generalized inverse A^{-}of the form $A^{-}=U\left[\begin{array}{cc}0 & 0 \\ 0 & N_{2}\end{array}\right] U^{*}$ if and only if

$$
r\left[\begin{array}{cc}
A & A\left(I_{n}-P\right) \\
\left(I_{n}-P\right) A & 0
\end{array}\right]=2 r\left[\begin{array}{cc}
A\left(I_{n}-P\right) & A
\end{array}\right]
$$

A square complex matrix A is defined as EP (Equal-Range Projection) or (rangeHermitian) when both the matrix A and its conjugate transpose A^{*} have identical ranges. Tian in [18] compiled established characterizations for EP matrices and provided additional new characterizations for this class of matrices, hence if the two matrices N_{1} and N_{2} in Corollary (2.2) satisfy some conditions we have the result

Corollary 2.3. Let $A \in \mathbb{C}^{n \times n}$, If N_{1} and N_{2} in Corollary (2.2) are nonsingular, for some unitary matrix U, we have:
A is an EP matrix if and only if

$$
\begin{aligned}
& r\left[\begin{array}{cc}
A & A\left(I_{n}+P\right) \\
\left(I_{n}+P\right) A & 0
\end{array}\right]=2 r\left[\begin{array}{cc}
A\left(I_{n}+P\right) & A
\end{array}\right] . \\
& {\left[\begin{array}{cc}
A & A\left(I_{n}-P\right) \\
\left(I_{n}-P\right) A & 0
\end{array}\right]=2 r\left[\begin{array}{ll}
A\left(I_{n}-P\right) & A
\end{array}\right] .}
\end{aligned}
$$

Proof. From ([18] Theorem 2.1) for a given matrix $A \in \mathbb{C}^{n \times n}$, the following statements are equivalent
i) A is $E P$
ii) A^{-}is $E P$
iii) There exists an unitary matrix U such that $U A U^{*}=\left[\begin{array}{cc}A_{1} & 0 \\ 0 & 0\end{array}\right]$, where A_{1} is nonsingular.
By applying i), ii) and iii) to a) and b) of Corollary (2.2) leads to result in Corollary (2.3).

Theorem 2.2. Let $P \in \mathbb{C}^{n \times n}$ be a generalized reflection matrix and let $A \in \mathbb{C}^{m \times n}$, $C \in \mathbb{C}^{m \times m}, C=-C^{*}$, and assume that the matrix equation (2.1) has a skewHermitian reflexive solution $X=-X^{*} \in \mathbb{C}_{r}^{n \times n}(P)$ Then,
(a) The maximal and minimal ranks of the two submatrices X_{1} and X_{2} in skewHermitian reflexive solution $X=U\left[\begin{array}{cc}X_{1} & 0 \\ 0 & X_{2}\end{array}\right] U^{*}$ to the matrix equation (2.1) are given by

$$
\begin{array}{r}
\max _{X_{1}=-X_{1}^{*}} r\left(X_{1}\right)=\min \left\{\begin{array}{ll}
\left.k, r\left[\begin{array}{ll}
A\left(I_{n}-P\right) & C
\end{array}\right]+2 k-r\left(A\left(I_{n}+P\right)\right)-r(A)\right\} . \\
\min _{X_{1}=-X_{1}^{*}} r\left(X_{1}\right)=2 r\left[\begin{array}{cc}
A\left(I_{n}-P\right) & C
\end{array}\right]-r\left[\begin{array}{cc}
C & A\left(I_{n}-P\right) \\
-\left(I_{n}-P\right) A^{*} & 0
\end{array}\right] . \\
\max _{2=-X_{2}^{*}} r\left(X_{2}\right)=\min \left\{n-k, r\left[\begin{array}{ll}
A\left(I_{n}+P\right) & C
\end{array}\right]+2(n-k)-r\left(A\left(I_{n}-P\right)\right)-r(A)\right\} . \\
\min _{X_{2}=-X_{2}^{*}} r\left(X_{2}\right)=2 r\left[\begin{array}{cc}
A\left(I_{n}+P\right) & C
\end{array}\right]-r\left[\begin{array}{cc}
C & A\left(I_{n}+P\right) \\
-\left(I_{n}+P\right) A^{*} & 0
\end{array}\right] .
\end{array} . .\right.
\end{array}
$$

b) The general skew- Hermitian reflexive solution of (2.1) can be expressed as

$$
X=U\left[\begin{array}{cc}
X_{1} & 0 \\
0 & 0
\end{array}\right] U^{*}
$$

where

$$
\begin{aligned}
& X_{1}=X_{01}+S_{1} L_{A U} Z L_{A U} S_{1}^{*}+L_{\left(\frac{1}{2} A\left(I_{n}+P\right) U\right)} V-V^{*} L_{\left(\frac{1}{2} A\left(I_{n}+P\right) U\right)} \\
& X_{2}=X_{02}-S_{2} L_{A U} Z L_{A U} S_{2}^{*}+L_{\left(\frac{1}{2} A\left(I_{n}-P\right) U\right)} W-W^{*} L_{\left(\frac{1}{2} A\left(I_{n}-P\right) U\right)}
\end{aligned}
$$

where $\left[\begin{array}{cc}X_{01} & 0 \\ 0 & X_{02}\end{array}\right]$ is a special skew-Hermitian reflexive solution of (2.1), and

$$
S_{1}=\left(I_{k}, 0\right), S_{2}=\left(0, I_{n-k}\right)
$$

Z, V and W are arbitrary matrices with suitable sizes.
Proof. The poof is similar to that of Theorem 2.1.

Corollary 2.4. Let $A \in \mathbb{C}^{m \times n}, C \in \mathbb{C}_{H}^{m \times m}$ be given and assume that the matrix equation (2.1) has a skew-Hermitian reflexive solution $X=-X^{*} \in \mathbb{C}_{r}^{n \times n}(P)$ Then. a) Equation (2.1) has a skew-Hermitian reflexive solution of the form $X=U\left[\begin{array}{cc}X_{1} & 0 \\ 0 & 0\end{array}\right] U^{*}$ if and only if

$$
r\left[\begin{array}{cc}
C & A\left(I_{n}+P\right) \\
-\left(I_{n}+P\right) A^{*} & 0
\end{array}\right]=2 r\left[\begin{array}{cc}
A\left(I_{n}+P\right) & C
\end{array}\right]
$$

b) All skew-Hermitian reflexive solutions of equation (2.1) have the form $X=$ $U\left[\begin{array}{cc}X_{1} & 0 \\ 0 & 0\end{array}\right] U^{*}$ if and only if

$$
r\left[A\left(I_{n}+P\right) C\right]=r\left(A\left(I_{n}-P\right)\right)+r(A)-2(n-k) .
$$

c) Equation (2.1) has a skew-Hermitian reflexive solution of the form $X=U\left[\begin{array}{cc}0 & 0 \\ 0 & X_{2}\end{array}\right] U^{*}$ if and only if

$$
r\left[\begin{array}{cc}
C & A\left(I_{n}-P\right) \\
-\left(I_{n}-P\right) A^{*} & 0
\end{array}\right]=2 r\left[\begin{array}{cc}
A\left(I_{n}-P\right) & C
\end{array}\right]
$$

d) All skew-Hermitian reflexive solutions of equation (2.1) have the form $X=$ $U\left[\begin{array}{cc}0 & 0 \\ 0 & X_{2}\end{array}\right] U^{*}$ if and only if

$$
r\left[\begin{array}{ll}
A\left(I_{n}-P\right) & C
\end{array}\right]=r\left(A\left(I_{n}+P\right)\right)+r(A)-2 k .
$$

e) Equation (2.1) has a null solution if and only if

$$
\begin{aligned}
& r\left[\begin{array}{cc}
C & A\left(I_{n}+P\right) \\
-\left(I_{n}+P\right) A^{*} & 0
\end{array}\right]=2 r\left[\begin{array}{cc}
A\left(I_{n}+P\right) & C
\end{array}\right], \\
& r\left[\begin{array}{cc}
C & A\left(I_{n}-P\right) \\
-\left(I_{n}-P\right) A^{*} & 0
\end{array}\right]=2 r\left[\begin{array}{cc}
A\left(I_{n}-P\right) & C
\end{array}\right] .
\end{aligned}
$$

f) All skew-Hermitian reflexive solutions of equation (2.1) are null solutions if and only if

$$
\begin{aligned}
& r\left[A\left(I_{n}+P\right) C\right]=r\left(A\left(I_{n}-P\right)\right)+r(A)-2(n-k), \\
& r\left[\begin{array}{ll}
A\left(I_{n}-P\right) & C
\end{array}\right]=r\left(A\left(I_{n}+P\right)\right)+r(A)-2 k .
\end{aligned}
$$

3. Extremal ranks of submatrices in generalized reflexive solution of

$$
A X B=C
$$

In this section we will review special forms of the reflexive solution of the equation $A X B=C$ with respect to the generalized reflexion matrix P.
Consider the linear matrix equation

$$
\begin{equation*}
A X B=C \tag{3.1}
\end{equation*}
$$

where A, B and C are given, and X is unknown.
The following Lemma is the same that corollary 3.5 in [20], (also it is the same that Theorem 2.2 in [17]).

Lemma 3.1. [20]We adopt the following notations:

$$
\begin{aligned}
& J_{3}=\left\{X_{1} \in H^{p_{1} \times q_{1}} \mid A_{3} X_{1} B_{1}+A_{4} X_{2} B_{2}=C_{3}\right\} \\
& J_{4}=\left\{X_{2} \in H^{p_{2} \times q_{2}} \mid, A_{3} X_{1} B_{1}+A_{4} X_{2} B_{2}=C_{3}\right\}
\end{aligned}
$$

Assume that $A_{3} \in H^{s \times p_{1}}, A_{4} \in H^{s \times p_{2}}, B_{1} \in H^{q_{1} \times t}, B_{2} \in H^{q_{2} \times t}, C_{3} \in H^{s \times t}$, and the matrix equation

$$
\begin{equation*}
A_{3} X_{1} B_{1}+A_{4} X_{2} B_{2}=C_{3} \tag{3.2}
\end{equation*}
$$

is consistent. Then the extremal ranks of the solution to (3.2) are given by

$$
\begin{aligned}
& \max _{X_{1} \in J_{3}} r\left(X_{1}\right)=\min \left\{\begin{array}{c}
p_{1}, q_{1}, p_{1}+q_{1}+r\left[\begin{array}{cc}
C_{3} & A_{4}
\end{array}\right]-r\left[\begin{array}{ll}
A_{3} & A_{4}
\end{array}\right]-r\left(B_{1}\right), \\
p_{1}+q_{1}+r\left[\begin{array}{l}
B_{2} \\
C_{3}
\end{array}\right]-r\left[\begin{array}{c}
B_{1} \\
B_{2}
\end{array}\right]-r\left(A_{3}\right) .
\end{array}\right\} . \\
& \min _{X_{1} \in J_{3}} r\left(X_{1}\right)=r\left[\begin{array}{ll}
C_{3} & A_{4}
\end{array}\right]+r\left[\begin{array}{c}
B_{2} \\
C_{3}
\end{array}\right]-r\left[\begin{array}{cc}
C_{3} & A_{4} \\
B_{2} & 0
\end{array}\right] \text {. } \\
& \max _{X_{2} \in J_{4}} r\left(X_{2}\right)=\min \left\{\begin{array}{c}
p_{2}, q_{2}, p_{2}+q_{2}+r\left[\begin{array}{cc}
C_{3} & A_{3}
\end{array}\right]-r\left[\begin{array}{ll}
A_{3} & A_{4}
\end{array}\right]-r\left(B_{2}\right), \\
p_{2}+q_{2}+r\left[\begin{array}{l}
B_{1} \\
C_{3}
\end{array}\right]-r\left[\begin{array}{c}
B_{1} \\
B_{2}
\end{array}\right]-r\left(A_{4}\right) .
\end{array}\right\} . \\
& \min _{X_{2} \in J_{4}} r\left(X_{2}\right)=r\left[\begin{array}{ll}
C_{3} & A_{3}
\end{array}\right]+r\left[\begin{array}{l}
B_{1} \\
C_{3}
\end{array}\right]-r\left[\begin{array}{cc}
C_{3} & A_{3} \\
B_{1} & 0
\end{array}\right] .
\end{aligned}
$$

Lemma 3.2. [16] Let $A_{1} \in \mathcal{F}^{m \times p}, B_{1} \in \mathcal{F}^{q \times n}, A_{2} \in \mathcal{F}^{m \times s}, B_{2} \in \mathcal{F}^{t \times n}$ and $C \in \mathcal{F}^{m \times n}$ be given over an arbitrary field \mathcal{F}, and suppose that the matrix equation

$$
\begin{equation*}
A_{1} X B_{1}+A_{2} Y B_{2}=C \tag{3.3}
\end{equation*}
$$

is solvable. Then its general solutions for X and Y can be expressed as:

$$
\begin{align*}
& X=X_{0}+S_{1} L_{G} U R_{H} T_{1}+L_{A_{1}} V_{1}+V_{2} R_{B_{1}} \tag{3.4}\\
& Y=Y_{0}+S_{2} L_{G} U R_{H} T_{2}+L_{A_{2}} W_{1}+W_{2} R_{B_{2}} \tag{3.5}
\end{align*}
$$

where $S_{1}=\left[I_{p}, 0\right], S_{2}=\left[0, I_{s}\right], T_{1}=\left[\begin{array}{c}I_{q} \\ 0\end{array}\right], T_{2}=\left[\begin{array}{c}0 \\ I_{t}\end{array}\right], G=\left[\begin{array}{ll}A_{1} & A_{2}\end{array}\right], H=$ $\left[\begin{array}{c}B_{1} \\ -B_{2}\end{array}\right]$ and X_{0}, Y_{0} are a pair of particular solutions to $E q$ (3.3), U, V_{1}, V_{2}, W_{1} and W_{2} are arbitrary

Theorem 3.1. Let $P \in \mathbb{C}^{n \times n}$ be a generalized reflection matrix and let $A \in \mathbb{C}^{m \times n}$, $B \in \mathbb{C}^{n \times l}, C \in \mathbb{C}^{m \times l}$ are given, suppose that the matrix equation (3.1) has a reflexive solution. $X \in \mathbb{C}_{r}^{n \times n}(P)$ Then
(a) The maximal and minimal ranks of the two submatrices X_{1} and X_{2} in a reflexive solution $X=U\left[\begin{array}{cc}X_{1} & 0 \\ 0 & X_{2}\end{array}\right] U^{*}$ to the matrix equation (3.1) are given by

$$
\begin{equation*}
\max _{X_{1}} r\left(X_{1}\right) \tag{3.6}
\end{equation*}
$$

$$
=\min \left\{\begin{array}{c}
k, 2 k+r\left[\begin{array}{cc}
C & \left.A\left(I_{n}-P\right)\right]-r(A)-r\left(\left(I_{n}+P\right) B\right) \\
2 k+r\left[\begin{array}{c}
\left(I_{n}-P\right) B \\
C
\end{array}\right]-r(B)-r\left(A\left(I_{n}+P\right)\right) \\
\min _{X_{1}} & r\left(X_{1}\right)
\end{array}\right\}
\end{array}\right.
$$

$$
=r\left[\begin{array}{cc}
C & A\left(I_{n}-P\right)
\end{array}\right]+r\left[\begin{array}{c}
\left(I_{n}-P\right) B \\
C
\end{array}\right]-r\left[\begin{array}{cc}
C & A\left(I_{n}-P\right) \\
\left(I_{n}-P\right) B & 0
\end{array}\right]
$$

$$
\begin{equation*}
\max _{X_{2}} r\left(X_{2}\right) \tag{3.8}
\end{equation*}
$$

$$
=\min \left\{\begin{array}{c}
n-k, 2(n-r)+r\left[\begin{array}{cc}
C & \left.A\left(I_{n}+P\right)\right]-r(A)-r\left(\left(I_{n}-P\right) B\right) \\
2(n-k)+r\left[\begin{array}{c}
\left(I_{n}+P\right) B \\
C
\end{array}\right]-r(B)-r\left(A\left(I_{n}-P\right)\right) .
\end{array}\right\} ~ . ~ . ~
\end{array}\right.
$$

$$
\begin{equation*}
\min _{X_{2}} r\left(X_{2}\right) \tag{3.9}
\end{equation*}
$$

$$
=r\left[\begin{array}{cc}
C & A\left(I_{n}+P\right)
\end{array}\right]+r\left[\begin{array}{c}
\left(I_{n}+P\right) B \\
C
\end{array}\right]-r\left[\begin{array}{cc}
C & A\left(I_{n}+P\right) \\
\left(I_{n}+P\right) B & 0
\end{array}\right]
$$

b) The general reflexive solution to (3.1) can be expressed as

$$
X=U\left[\begin{array}{cc}
X_{1} & 0 \\
0 & X_{2}
\end{array}\right] U^{*}
$$

where

$$
\begin{aligned}
& X_{1}=X_{0}+S_{1} L_{A U} Z R_{U^{*} B} T_{1}+L_{\left(\frac{1}{2} A\left(I_{n}+P\right) U\right)} Z_{1}+Z_{2} R_{\left(\frac{1}{2} U^{*}\left(I_{n}+P\right) B\right)} \\
& X_{2}=Y_{0}+S_{2} L_{A U} Z R_{U^{*} B} T_{2}+L_{\left(\frac{1}{2} A\left(I_{n}-P\right) U\right)} Z_{3}+Z_{4} R_{\left(\frac{1}{2} U^{*}\left(I_{n}-P\right) B\right)}
\end{aligned}
$$

where $S_{1}=\left[I_{k}, 0\right], S_{2}=\left[0, I_{n-k}\right], T_{1}=\left[\begin{array}{c}I_{k} \\ 0\end{array}\right], T_{2}=\left[\begin{array}{c}0 \\ I_{n-k}\end{array}\right]$, and $\left[\begin{array}{cc}X_{0} & 0 \\ 0 & Y_{0}\end{array}\right]$ is a particular reflexive solution to equation (3.1),
Z, Z_{1}, Z_{2}, Z_{3} and Z_{4} are arbitrary matrices with appropriate sizes.
Proof. a) From lemma 1.2 the reflexive solution to $A X B=C$ can be written as

$$
X=U\left[\begin{array}{cc}
X_{1} & 0 \\
0 & X_{2}
\end{array}\right] U^{*}
$$

for arbitrary unitary matrix $U=\left[\begin{array}{ll}U_{1} & U_{2}\end{array}\right]$, with $U_{1} \in \mathbb{C}^{n \times k}, U_{2} \in \mathbb{C}^{n \times(n-k)}$. We denote

$$
A U=\left[\begin{array}{ll}
A_{1} & A_{2}
\end{array}\right], U^{*} B=\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right]
$$

where $A_{1} \in \mathbb{C}^{m \times k}, A_{2} \in \mathbb{C}^{m \times(n-k)}, B_{1} \in \mathbb{C}^{k \times l}, B_{2} \in \mathbb{C}^{(n-k) \times l}$. So,

$$
\begin{align*}
A X B=C & \Longleftrightarrow A U\left[\begin{array}{cc}
X_{1} & 0 \\
0 & X_{2}
\end{array}\right] U^{*} B=C \\
& \Longleftrightarrow\left[\begin{array}{cc}
A_{1} & A_{2}
\end{array}\right]\left[\begin{array}{cc}
X_{1} & 0 \\
0 & X_{2}
\end{array}\right]\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right]=C \\
& \Longleftrightarrow A_{1} X_{1} B_{1}+A_{2} X_{2} B_{2}=C \tag{3.10}
\end{align*}
$$

Then, the two equations (3.1) and (3.10) are equivalent, now we adopt the following notations:

$$
\begin{array}{r}
S_{1}=\left\{X_{1} \in \mathbb{C}^{k \times k} \mid A_{1} X_{1} B_{1}+A_{2} X_{2} B_{2}=C\right\} \\
S_{2}=\left\{X_{2} \in \mathbb{C}^{(n-k) \times(n-k)} \mid A_{1} X_{1} B_{1}+A_{2} X_{2} B_{2}=C\right\} .
\end{array}
$$

From Lemma 3.1 we have
(3.11) $\max _{X_{1} \in S_{1}} r\left(X_{1}\right)=\min \left\{\begin{array}{c}r, 2 k+r\left[\begin{array}{cc}C & A_{2}\end{array}\right]-r\left[\begin{array}{cc}A_{1} & A_{2}\end{array}\right]-r\left(B_{1}\right), \\ 2 k+r\left[\begin{array}{c}B_{2} \\ C\end{array}\right]-r\left[\begin{array}{c}B_{1} \\ B_{2}\end{array}\right]-r\left(A_{1}\right) .\end{array}\right\}$

$$
\begin{gather*}
\max _{X_{2} \in S_{2}} r\left(X_{2}\right) \tag{3.13}\\
=\min \left\{\begin{array}{c}
n-k, 2(n-r)+r\left[\begin{array}{cc}
C & A_{1}
\end{array}\right]-r\left[\begin{array}{ll}
A_{1} & A_{2}
\end{array}\right]-r\left(B_{2}\right) \\
2(n-k)+r\left[\begin{array}{c}
B_{1} \\
C
\end{array}\right]-r\left[\begin{array}{c}
B_{1} \\
B_{2}
\end{array}\right]-r\left(A_{2}\right)
\end{array}\right\} \\
\min _{X_{2} \in S_{2}} r\left(X_{2}\right)=r\left[\begin{array}{ll}
C & A_{1}
\end{array}\right]+r\left[\begin{array}{c}
B_{1} \\
C
\end{array}\right]-r\left[\begin{array}{cc}
C & A_{1} \\
B_{1} & 0
\end{array}\right] . \tag{3.14}
\end{gather*}
$$

$$
\min _{X_{1} \in S_{1}} r\left(X_{1}\right)=r\left[\begin{array}{ll}
C & A_{2}
\end{array}\right]+r\left[\begin{array}{c}
B_{2} \tag{3.12}\\
C
\end{array}\right]-r\left[\begin{array}{cc}
C & A_{2} \\
B_{2} & 0
\end{array}\right]
$$

From Lemmas 1.1 and 1.2 we can simplify:

$$
\begin{align*}
r\left[\begin{array}{ll}
C & A_{2}
\end{array}\right] & =r\left[\begin{array}{lll}
C & 0 & A_{2}
\end{array}\right] \\
& =r\left[\begin{array}{ll}
C & \frac{1}{2} A\left(I_{n}-P\right) U
\end{array}\right] \\
& =r\left[\begin{array}{ll}
C & A\left(I_{n}-P\right)
\end{array}\right] \tag{3.15}\\
r\left[\begin{array}{ll}
C & A_{1}
\end{array}\right] & =r\left[\begin{array}{lll}
C & A_{1} & 0
\end{array}\right]
\end{align*}
$$

$$
\begin{align*}
r\left[\begin{array}{cc}
C & A_{1} \\
B_{1} & 0
\end{array}\right] & =\left[\begin{array}{ccc}
C & A_{1} & 0 \\
B_{1} & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& =r\left[\begin{array}{cc}
C & \frac{1}{2} A\left(I_{n}+P\right) U \\
\frac{1}{2} U^{*}\left(I_{n}+P\right) B & 0
\end{array}\right] \\
& =r\left[\begin{array}{cc}
C & A\left(I_{n}+P\right) \\
\left(I_{n}+P\right) B & 0
\end{array}\right] \tag{3.20}
\end{align*}
$$

Substituting (3.15)-(3.20) into (3.11)-(3.14) yields results of Theorem 3.1.
b) Obvious from formulas (3.4)-(3.5) of Lemma (3.2) and necessary changes from (3.15)-(3.20).

Corollary 3.1. Let $A \in \mathbb{C}^{m \times n}, B \in \mathbb{C}^{n \times l}, C \in \mathbb{C}^{m \times l}$ are given, we suppose that the matrix equation (3.1) has a reflexive solution. Then
a) Equation (3.1) has a reflexive solution of the form $X=U\left[\begin{array}{cc}X_{1} & 0 \\ 0 & 0\end{array}\right] U^{*}$ if and only if

$$
r\left[\begin{array}{cc}
C & A\left(I_{n}+P\right) \\
\left(I_{n}+P\right) B & 0
\end{array}\right]=r\left[\begin{array}{cc}
C & A\left(I_{n}+P\right)
\end{array}\right]+r\left[\begin{array}{c}
\left(I_{n}+P\right) B \\
C
\end{array}\right]
$$

b) All reflexive solutions of equation (3.1) have the form $X=U\left[\begin{array}{cc}X_{1} & 0 \\ 0 & 0\end{array}\right] U^{*}$ if and only if

$$
\begin{aligned}
r\left[\begin{array}{cc}
C & \left.A\left(I_{n}+P\right)\right]
\end{array}\right. & =r(A)+r\left(\left(I_{n}-P\right) B\right)-2(n-k), \\
r\left[\begin{array}{c}
\left(I_{n}+P\right) B \\
C
\end{array}\right] & =r(B)+r\left(A\left(I_{n}-P\right)\right)-2(n-k) .
\end{aligned}
$$

c) Equation (3.1) has a reflexive solution of the form $X=U\left[\begin{array}{cc}0 & 0 \\ 0 & X_{2}\end{array}\right] U^{*}$ if and only if

$$
r\left[\begin{array}{cc}
C & A\left(I_{n}-P\right) \\
\left(I_{n}-P\right) B & 0
\end{array}\right]=r\left[\begin{array}{cc}
C & A\left(I_{n}-P\right)
\end{array}\right]+r\left[\begin{array}{c}
\left(I_{n}-P\right) B \\
C
\end{array}\right]
$$

d) All reflexive solutions of equation (3.1) have the form $X=U\left[\begin{array}{cc}0 & 0 \\ 0 & X_{2}\end{array}\right] U^{*}$ if and only if

$$
\begin{aligned}
r\left[\begin{array}{cc}
C & \left.A\left(I_{n}-P\right)\right]
\end{array}\right. & =r(A)+r\left(\left(I_{n}+P\right) B\right)-2 k, \\
r\left[\begin{array}{c}
\left(I_{n}-P\right) B \\
C
\end{array}\right] & =r(B)+r\left(A\left(I_{n}+P\right)\right)-2 k
\end{aligned}
$$

e) Equation (3.1) has a null reflexive solution if and only if

$$
\begin{aligned}
& r\left[\begin{array}{cc}
C & A\left(I_{n}+P\right) \\
\left(I_{n}+P\right) B & 0
\end{array}\right]=r\left[\begin{array}{ll}
C & A\left(I_{n}+P\right)
\end{array}\right]+r\left[\begin{array}{c}
\left(I_{n}+P\right) B \\
C
\end{array}\right] \\
& \text { and } r\left[\begin{array}{cc}
C & A\left(I_{n}-P\right) \\
\left(I_{n}-P\right) B & 0
\end{array}\right]=r\left[\begin{array}{ll}
C & A\left(I_{n}-P\right)
\end{array}\right]+r\left[\begin{array}{c}
\left(I_{n}-P\right) B \\
C
\end{array}\right] .
\end{aligned}
$$

f) All reflexive solutions of equation (3.1) are nulls if and only if

$$
\begin{aligned}
r\left[\begin{array}{cc}
C & A\left(I_{n}+P\right)
\end{array}\right] & =r(A)+r\left(\left(I_{n}-P\right) B\right)-2(n-k), \\
r\left[\begin{array}{c}
\left(I_{n}+P\right) B \\
C
\end{array}\right] & =r(B)+r\left(A\left(I_{n}-P\right)\right)-2(n-k)
\end{aligned}
$$

and

$$
\begin{aligned}
r\left[\begin{array}{cc}
C & A\left(I_{n}-P\right)
\end{array}\right] & =r(A)+r\left(\left(I_{n}+P\right) B\right)-2 k, \\
r\left[\begin{array}{c}
\left(I_{n}-P\right) B \\
C
\end{array}\right] & =r(B)+r\left(A\left(I_{n}+P\right)\right)-2 k
\end{aligned}
$$

Acknowledgments

The authors are grateful for the detailed comments from the referees, which significantly improved the quality of the paper.

REFERENCES

1. A. Ben-Israel and T. N. E. Greville: Generalized Inverses: Theory and Applications. $2^{\text {nd }}$ ed, Springer, 2003.
2. H. Chen: Generalized reflexive matrices: Special properties and applications. SIAM J. Matrix Anal. Appl 19 (1998), 140-153.
3. C. Chen and A. Sameh: Numerical linear algebra algorithms on the cedar system. Parallel computations and their impact on mechanics, AMD. The American Society of Mechanical Engineers. 86 (1987), 101-125.
4. D. S. Cvetković-Ilić: The reflexive solutions of the matrix equation $A X B=C$. Comput. Math. Appl. 51 (2006), 897-902.
5. M. Dehghan and M. Hajarian: On the reflexive solution of the matrix equation $A X B+C Y D=E$. Bull. Korean Math. Soc. 46 No 3 (2009), 511-519.
6. M. Dehghan and M. Hajarian: The reflexive and anti reflexive solutions of a linear matrix equation and systems of matrix equations.Rocky Mountain journal of mathematics. 40 No 3 (2010), 825-848.
7. F. Ding and T. Chen: Hierarchical gradient-based identification of multivariable discrete-time systems. Automatica J. IFAC. 41 No 2 (2005), 315-325.
8. X. Liv: Hermitian and nonnegative definite reflexive and anti-reflexive solutions to $A X=B$. Int. J. Comput. Math. 95 No 8 (2018), 1666-1671.
9. X. Liu and Y. Yuan: Generalized reflexive and anti-reflexive solutions of $A X=B$. Calcolo. 53 (2016), 59-66.
10. X. Liu: The common (P, Q) generalized reflexive and anti-reflexive solutions to $A X=$ B and $X C=D$. Calcolo. 53 (2016), 227-234.
11. X. Liu: The Extremal Ranks and Inertias of Matrix Expressions with Respect to Generalized Reflexive and Anti-Reflexive Matrices with Applications. Filomat. 32 No 19 (2018), 6653-6666.
12. Y. X. Peng, X. Y. Hu and L. Zhang: An iteration method for the symmetric solutions and the optimal approximation solution of the matrix equation $A X B=C$. Appl. Math. Comp. 160 (2005), 763-777.
13. Z. Y. Peng: An iterative method for the least squares symmetric solution of the linear matrix equation $A X B=C$. Appl. Math. Comp. 170 (2005), 711-723.
14. X. Peng, X. Hu and L. Zhang: The reflexive and anti-reflexive solutions of the matrix equation $A^{H} X B=C$. J. Comput. Appl. Math. 200 (2007), 749-760.
15. P. S. Stanimirović: G-inverses and canonical forms. Facta universitatis (Nis) Ser. Math. Inform. 15 (2000), 1-14.
16. Y. Tian: The solvability of two linear matrix equations. Linear Multilinear Algebra. 48 (2000), 123-147.
17. Y. TIAN: Ranks and independence of solutions of the matrix equation $A X B+C Y D=$ M. Acta Math. Univ. Comenianae. 1 (2006), 75-84.
18. Y. Tian and W. Hongxing: Characterizations of EP matrices and weighted-EP matrices. Linear Algebra Appl. 434 No 5 (2011), 1295-1318.
19. Q. W. Wang and J. Jiang: Extreme ranks of (skew-) Hermitian solutions to a quaternion matrix equation. Electron. J. Linear Algebra. 20 (2010), 552-573.
20. Q. W. Wang and C. K. Li: Ranks and the least-norm of the general solution to a system of quaternion matrix equations. Linear. Algebra. Appl. 430 (2009), 1626-1640.

[^0]: Received September 22, 2022, revised: November 04, 2023, accepted: November 19, 2023
 Communicated by Predrag Stanimirović
 Corresponding Author: Sihem Guerarra. E-mail addresses: guerarra.siham@univ-oeb.dz (S. Guerarra), radja.belkhiri@univ-oeb.dz (R. Belkhiri)
 2010 Mathematics Subject Classification. Primary 15A24; Secondary 15A03, 15A09, 15B57.

