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THE GROWTH OF SOLUTIONS OF SOME LINEAR DIFFERENTIAL
EQUATIONS WITH COEFFICIENTS BEING LACUNARY SERIES OF
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Abstract. In this paper, we study the growth of meromorphic solutions of certain linear
differential equations with entire coefficients being Lacunary series. We extend some
previous results due to L. M. Li and T. B. Cao [9] and S. Z. Wu and X. M. Zheng [13] and
others.
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1. Introduction and main results

We assume that the reader is familiar with the fundamental results and the standard
notations of Nevanlinna’s theory (see e.g. [5, 8, 15]). For r ∈ [0,+∞), we define
exp1 r := er and expp+1 r := exp(expp r), p ∈N. For all r sufficiently large, we define
log1 r = log r and logp+1 r := log(logp r), p ∈ N. We also denote exp0 r = r = log0 r,
log−1 r = exp1 r and exp−1 r = log1 r. Furthermore, we define the linear measure of
a set E ⊂ [0,+∞) by m(E) =

∫
E

dt and the logarithmic measure of a set F ⊂ [1,+∞)
by ml(F) =

∫
F

dt
t . Now, we shall introduce the definition of meromorphic functions

of (p, q)-order, where p, q are positive integers satisfying p ≥ q ≥ 1, (see e.g. [9, 10]).

Definition 1.1. The (p, q)-order of a meromorphic function f (z) is defined by

σ(p.q)( f ) = lim
r→∞

logp T(r, f )

logq r
,

where T(r, f ) is the characteristic function of Nevanlinna of the function f . If f is an
entire function, then

σ(p.q)( f ) = lim
r→∞

logp+1 M(r, f )

logq r
,
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where M(r, f ) is the maximum modulus of f in the circle |z| = r.

Definition 1.2. The (p, q)-exponent of convergence of the sequence of a-points of a
meromorphic function f (z) is defined by

λ(p.q)( f − a) = lim
r→∞

logp N(r, 1
f−a )

logq r

and the (p, q)-exponent of convergence of the sequence of distinct a-points of a
meromorphic function f (z) is defined by

λ̄(p.q)( f − a) = lim
r→∞

logp N(r, 1
f−a )

logq r
.

If a = 0, the (p, q)-exponent of convergence of zeros of a meromorphic function f (z)
is defined by

λ(p.q)( f ) = lim
r→∞

logp N(r, 1
f )

logq r

and the (p, q)-exponent of convergence of distinct zeros of a meromorphic function
f (z) is defined by

λ̄(p.q)( f ) = lim
r→∞

logp N(r, 1
f )

logq r
.

If a = ∞, the (p, q)-exponent of convergence of the sequence of poles of a meromor-
phic function f (z) is defined by

λ(p.q)

(
1
f

)
= lim

r→∞
logp N(r, f )

logq r
.

Through the past years, many authors investigated the growth of solutions
of the higher order linear differential equations

(1.1) f (k) + Ak−1(z) f (k−1) + · · · + A1(z) f ′ + A0(z) f = 0,

and

(1.2) f (k) + Ak−1(z) f (k−1) + · · · + A1(z) f ′ + A0(z) f = F(z),

when Aj(z) ( j = 0, 1, . . . , k− 1), F(z) are entire functions and obtained some valuable
results (see e.g. [8, 9, 10, 11, 12, 13, 14, 16]). In 2013, J. Tu, H. Y. Xu, H. M. Liu and
Y. Liu [12] investigated (1.2) and obtained the properties of solutions of (1.2) when
some coefficient Ad (0 ≤ d ≤ k − 1) is dominant and being Lacunary series.
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Theorem 1.1. [12] Let Aj(z) ( j = 0, 1, . . . , k−1), F(z) be entire functions of finite iterated
order and satisfying

max{σp(Aj), j � d} ≤ σp(Ad) < ∞
and

max{τp(Aj) : σp(Aj) = σp(Ad)} < τp(Ad) (0 ≤ d ≤ k − 1).

Suppose that Ad(z) =
∞∑

n=0
cλnz

λn is an entire function such that the sequence of exponents

{λn} satisfies

(1.3)
λn

n
> (log n)2+η, (η > 0, n ∈N),

then, one has

(i) If σp(F) < σp(Ad) or σp(F) = σp(Ad) and τp(F) < τp(Ad), then every transcendental
solution f (z) of (1.2) satisfies σp+1( f ) = σp(Ad); furthermore if F(z) � 0, then every
transcendental solution f (z) of (1.2) satisfies

λ̄p+1( f ) = λp+1( f ) = σp+1( f ) = σp(Ad).

(ii) If σp(F) > σp(Ad) and σp+1(F) ≤ σp(Ad), then all solutions of (1.2) satisfy σp( f ) ≥ σp(F)
and σp+1( f ) ≤ σp(Ad).

(iii) If σp+1(F) > σp(Ad), then all solutions of (1.2) satisfy σp+1( f ) = σp+1(F) and λ̄p+1( f ) =
λp+1( f ) = σp+1(F) holds for all solutions of (1.2) with at most one exceptional solution f0
satisfying λp+1( f0) < σp+1(F).

Remark 1.1. Suppose that Ad(z) =
∞∑

n=0
cλn zλn is an entire function of infinite order such that

the sequence of exponents {λn} satisfies the gap condition (1.3), then the series
∞∑

n=0
cλnzλn is

called Lacunary series.

In the following result, Zhan and Zheng [16] investigated the growth of solu-
tions of (1.2) when the coefficients are meromorphic functions and extended the
results in Theorem 1.1 to the (p, q)-order case.

Theorem 1.2. [16] Suppose that A0(z), . . . ,Ak−1(z), F(z) are meromorphic functions sat-
isfying that there exists some d ∈ {0, 1, . . . , k − 1} such that

σ1 = max{σ(p,q)(Aj), ( j � d), σ(p,q)(F)} < μ(p,q)(Ad) ≤ σ(p,q)(Ad) < ∞.

Suppose that Ad(z) =
∞∑

n=0
cλnz

λn is also an entire function such that the sequence of ex-

ponents {λn} satisfies the gap condition (1.3). If f (z) is a meromorphic solution to (1.2)
satisfying λ(p,q)

(
1
f

)
< μ(p,q)(Ad), then the following results hold:
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(a) If f (z) is a rational solution, then f (z) must be a polynomial with deg f ≤ d − 1.

(b) If f (z) is a transcendental solution, then f (z) satisfies

μ(p+1,q)( f ) = μ(p,q)(Ad) ≤ σ(p+1,q)( f ) = σ(p,q)(Ad).

Furthermore, if F(z) � 0, then we have

λ(p+1,q)( f ) = μ(p+1,q)( f ) = μ(p,q)(Ad) ≤ σ(p,q)(Ad) = σ(p+1,q)( f ) = λ̄(p+1,q)( f ).

In [9], Li and Cao have considered the equation (1.2) with meromorphic
coefficients of finite (p, q)-order and obtained the following results.

Theorem 1.3. [9] Assume that A0(z),A1(z), . . . ,Ak−1(z), F(z)� 0 are meromorphic func-
tions in the plane satisfying

max{σ(p,q)(Aj), λ(p,q)

( 1
A0

)
, σ(p+1,q)(F) : j = 1, 2, . . . , k − 1} < σ(p,q)(A0),

then all meromorphic solutions f (z), whose poles are of uniformly bounded multiplicities,
of (1.2), satisfy

λ̄(p+1,q)( f ) = λ(p+1,q)( f ) = σ(p+1,q)( f ) = σ(p,q)(A0),

with at most one exceptional solution f0 satisfying σ(p+1,q)( f0) < σ(p,q)(A0).

Theorem 1.4. [9] Let A0(z),A1(z), . . . ,Ak−1(z), F(z) � 0 be meromorphic functions in
the plane satisfying

max{σ(p,q)(Aj) : j = 0, 1, . . . , k − 1} < σ(p+1,q)(F).

Suppose that all solutions of (1.2) are meromorphic functions whose poles are of uniformly
bounded multiplicities, then σ(p+1,q)( f ) = σ(p+1,q)(F) holds for all solutions of (1.2).

Recently, Wu and Zheng [13] have considered the linear differential equa-
tions

(1.4) Ak(z) f (k) + Ak−1(z) f (k−1) + · · · + A1(z) f ′ + A0(z) f = 0,

and

(1.5) Ak(z) f (k) + Ak−1(z) f (k−1) + · · · + A1(z) f ′ + A0(z) f = F(z),

where Aj(z) ( j = 0, 1, . . . , k), F(z) are entire functions, such that

A0(z)Ak(z)F(z) � 0 and obtained the following result when the coefficient Ak(z) is of
maximal order and Fabry gap series.
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Theorem 1.5. [13] Suppose that k ≥ 2, Aj(z) ( j = 0, 1, . . . , k) are entire functions
satisfying Ak(z)A0(z) � 0 and σ(Aj) < σ(Ak) < ∞, j = 0, 1, . . . , k − 1. Suppose that

Ak(z) =
∞∑

n=0
cλnz

λn and the sequence of exponents {λn} satisfies the Fabry gap condition

(1.6)
λn

n
→ ∞, (n→ ∞).

Then every rational solution f (z)(� 0) of (1.4) is a polynomial with deg f ≤ k − 1 and
every transcendental meromorphic solution f (z), whose poles are of uniformly bounded
multiplicities, of (1.4) such that λ

(
1
f

)
< μ( f ), satisfies

λ̄( f − ϕ) = λ( f − ϕ) = σ( f ) = ∞,
λ̄2( f − ϕ) = λ2( f − ϕ) = σ2( f ) = σ(Ak),

where ϕ is a finite order meromorphic function and doesn’t solve (1.4).

Remark 1.2. Suppose that Ak(z) =
∞∑

n=0
cλn zλn is an entire function of finite order such that

the sequence of exponents {λn} satisfies Fabry gap condition (1.6), then the series
∞∑

n=0
cλn zλn

is called Fabry gap series.

Thus, natural questions arises : What can we say about the growth of solutions
of equations of the form (1.4) and (1.5) when the coefficient Ak(z) is of maximal (p, q)-
order and being Lacunary series and can we have similar results as in Theorems
1.3, 1.4 and 1.5 using the concept of (p, q)-order. In this paper, we proceed this way
and we obtain the following results.

Theorem 1.6. Suppose that k ≥ 2, Aj(z) ( j = 0, 1, . . . , k) are entire functions satisfying
Ak(z)A0(z) � 0 and

max{σ(p,q)(Aj) : j = 0, 1, . . . , k − 1} < σ(p,q)(Ak) < ∞.

Suppose that Ak(z) =
∞∑

n=0
cλnz

λn and the sequence of exponents {λn} satisfies the gap

condition (1.3). Then every rational solution f (z)(� 0) of (1.4) is a polynomial with
deg f ≤ k − 1 and every transcendental meromorphic solution f (z), of (1.4) such that
λ(p,q)

(
1
f

)
< μ(p,q)( f ), satisfies

λ̄(p+1,q)( f − ϕ) = λ(p+1,q)( f − ϕ) = σ(p+1,q)( f ) = σ(p,q)(Ak),

where ϕ(z) is a meromorphic function satisfying σ(p,q)(ϕ) < ∞ and doesn’t solve (1.4).

Theorem 1.7. Suppose that k ≥ 2, Aj(z) ( j = 0, 1, . . . , k) and F(z) are entire functions
satisfying Ak(z)A0(z)F(z) � 0 and

max{σ(p,q)(Aj), σ(p,q)(F) : j = 0, 1, . . . , k − 1} < σ(p,q)(Ak) < ∞.
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Suppose that Ak(z) =
∞∑

n=0
cλnz

λn and the sequence of exponents {λn} satisfies (1.3). Then

every rational solution f (z) of (1.5) is a polynomial with deg f ≤ k− 1 and every transcen-
dental meromorphic solution f (z) of (1.5) such that λ(p,q)

(
1
f

)
< μ(p,q)( f ), satisfies

λ̄(p+1,q)( f − ϕ) = λ(p+1,q)( f − ϕ) = σ(p+1,q)( f ) = σ(p,q)(Ak),

where ϕ(z) is a meromorphic function satisfying σ(p,q)(ϕ) < ∞ and does not solve (1.5).

Theorem 1.8. Suppose that k ≥ 2, Aj(z) ( j = 0, 1, . . . , k) are entire functions satisfying
hypotheses of Theorem 1.6 and F(z) � 0 is an entire function.

(i) If σ(p+1,q)(F) < σ(p,q)(Ak), then every transcendental meromorphic solution f (z) of (1.5),
satisfies

σ(p+1,q)( f ) = σ(p,q)(Ak),

with at most one exceptional solution f0 satisfying σ(p+1,q)( f0) < σ(p,q)(Ak).

(ii) If σ(p+1,q)(F) > σ(p,q)(Ak), then every transcendental meromorphic solution f (z) of (1.5)
satisfies σ(p+1,q)( f ) = σ(p+1,q)(F).

2. Preliminary lemmas

Lemma 2.1. [2] Let f be a transcendental meromorphic function in the plane, and let
α > 1 be a given constant. Then there exist a set E1 ⊂ (1,+∞) that has a finite logarithmic
measure, and a constant B > 0 depending only on α and (m, n) (m, n ∈ {0, 1, . . . , k}) m < n
such that for all z with |z| = r � [0, 1]∪ E1, we have

∣∣∣∣∣∣
f (n)(z)
f (m)(z)

∣∣∣∣∣∣ ≤ B
(
T(αr, f )

r
(logα r) log T(αr, f )

)n−m

.

By using similar proof of Lemma 2.5 in [4], we can easily extend Lemma 3.3 in
[16] to the case σ(p,q)(�) = σ(p,q)( f ) = +∞.

Lemma 2.2. Let f (z) = �(z)
d(z) be a meromorphic function, where �(z) and d(z) are entire

functions satisfying μ(p,q)(�) = μ(p,q)( f ) = μ ≤ σ(p,q)(�) = σ(p,q)( f ) ≤ ∞ and λ(p,q)(d) =
σ(p,q)(d) = λ(p,q)

(
1
f

)
< μ. Then there exists a set E2 ⊂ (1,+∞) of finite logarithmic measure

such that for all |z| = r � [0, 1] ∪ E2 and
∣∣∣�(z)

∣∣∣ =M(r, �) we have

∣∣∣∣∣∣
f (z)

f (k)(z)

∣∣∣∣∣∣ ≤ r2k, (k ∈N).
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Lemma 2.3. [7] Let f (z) =
∞∑

n=0
cλnz

λn be an entire function and the sequence of exponents

{λn} satisfies the gap condition (1.3). Then for any given ε > 0,

log L(r, f ) > (1 − ε) log M(r, f )

holds outside a set E3 of finite logarithmic measure, where

M(r, f ) = sup
|z|=r

∣∣∣ f (z)
∣∣∣ , L(r, f ) = inf

|z|=r

∣∣∣ f (z)
∣∣∣ .

Lemma 2.4. [10] Let f (z) be an entire function of (p, q)-order satisfying 0 < σ(p,q)( f ) =
σ < ∞. Then for any given ε > 0, there exists a set E4 ⊂ (1,+∞)having infinite logarithmic
measure such that for all r ∈ E4, we have

σ = lim
r→∞,r∈E4

logp T(r, f )

logq r
= lim

r→∞,r∈E4

logp+1 M(r, f )

logq r

and

M(r, f ) > expp+1{(σ − ε) logq r}.

Lemma 2.5. [1, 3] Let � : [0,+∞)→ R and h : [0,+∞)→ R be monotone nondecreasing
functions. If (i) �(r) ≤ h(r) outside of an exceptional set of finite linear measure, or (ii)
�(r) ≤ h(r), r � E5 ∪ [0, 1] where E5 ⊂ (1,+∞) is a set of finite logarithmic measure, then
for any α > 1, there exists an r0 = r0(α) > 0 such that �(r) ≤ h(αr) for all r > r0.

Lemma 2.6. [9] Let A0(z),A1(z), . . . ,Ak−1(z) and F(z) � 0 be meromorphic functions. If
f (z) is a meromorphic solution to (1.2) satisfying

max{σ(p+1,q)(F), σ(p+1,q)(Aj) : j = 0, 1, . . . , k − 1} < σ(p+1,q)( f ),

then we have

λ̄(p+1,q)( f ) = λ(p+1,q)( f ) = σ(p+1,q)( f ).

By using similar proof of Lemma 3.5 in [11], we can easily extend Lemma 3.6
in [16] to the case σ(p,q)(�) = σ(p,q)( f ) = +∞.

Lemma 2.7. Let f (z) = �(z)
d(z) be a meromorphic function, where �(z) and d(z) are entire

functions satisfying

μ(p,q)(�) = μ(p,q)( f ) = μ ≤ σ(p,q)(�) = σ(p,q)( f ) ≤ ∞
and

λ(p,q)(d) = σ(p,q)(d) = λ(p,q)

(
1
f

)
< μ.
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Then there exists a set E6 ⊂ (1,+∞) of finite logarithmic measure such that for all |z| = r �
[0, 1]∪ E6 and

∣∣∣�(z)
∣∣∣ =M(r, �) we have

f (n)(z)
f (z)

=

(
ν�(r)

z

)n

(1 + o(1)), (n ∈N),

where ν�(r) is the central index of �(z).

Lemma 2.8. [16] Let f (z) be a meromorphic function satisfying σ(p,q)( f )= σ<∞. Then
there exist entire functions π1(z), π2(z) and D(z) such that

f (z) =
π1(z)eD(z)

π2(z)

and

σ(p,q)( f ) = max{σ(p,q)(π1), σ(p,q)(π2), σ(p,q)(eD(z))}.
Moreover, for any given ε > 0, we have

∣∣∣ f (z)
∣∣∣ ≤ expp+1{(σ + ε) logq r}, r � E7,

where E7 is a set of r of finite linear measure.

Lemma 2.9. [6] Let f (z) be an entire function of (p, q)-order, and let ν f (r) be a central
index of f (z). Then

σ(p,q)( f ) = lim
r→∞

logp ν f (r)

logq r
.

Lemma 2.10. [9] If f (z) is a meromorphic function, then σ(p,q)( f ′) = σ(p,q)( f ).

3. Proof of Theorem 1.6

Proof. Assume that f (z) � 0 is a rational solution of (1.4). If either f (z) is a rational
function, which has a pole at z0 of degree λ ≥ 1, or f (z) is a polynomial with
deg f ≥ k, then f (k)(z) � 0. Since

max{σ(p,q)(Aj) : j = 0, 1, . . . , k − 1} < σ(p,q)(Ak) < ∞,
then

σ(p,q)(0) = σ(p,q)(Ak(z) f (k) + Ak−1(z) f (k−1) + . . . + A1(z) f ′ + A0(z) f )
= σ(p,q)(Ak) > 0,

which is a contradiction. Thus, f (z) is a polynomial with deg f ≤ k − 1.
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Now, we assume that f (z) is a transcendental meromorphic solution of (1.4)
such that λ(p,q)

(
1
f

)
< μ(p,q)( f ). By Lemma 2.1, there exists a constant B > 0 and a

set E1 ⊂ (1,+∞) of finite logarithmic measure such that for all z satisfying |z| = r �
[0, 1]∪ E1,we have

(3.1)

∣∣∣∣∣∣
f ( j)(z)
f (z)

∣∣∣∣∣∣ ≤ B
(
T(2r, f )

)k+1 , j = 0, 1, . . . , k.

Since λ(p,q)

(
1
f

)
< μ(p,q)( f ), then by Hadamard’s factorization theorem, we can write

f as f (z) = �(z)
d(z) , where �(z) and d(z) are entire functions satisfying

μ(p,q)(�) = μ(p,q)( f ) = μ ≤ σ(p,q)(�) = σ(p,q)( f ),

λ(p,q)(d) = σ(p,q)(d) = λ(p,q)

(
1
f

)
< μ.

Then by Lemma 2.2, there exists a set E2 ⊂ (1,+∞) of finite logarithmic measure
such that for all |z| = r � [0, 1]∪ E2 and

∣∣∣�(z)
∣∣∣ =M(r, �), we have

(3.2)

∣∣∣∣∣∣
f (z)

f (k)(z)

∣∣∣∣∣∣ ≤ r2k.

Set
α = max{σ(p,q)(Aj) : j = 0, 1, . . . , k − 1} < σ(p,q)(Ak) = σ < ∞.

Then, for any given ε (0 < 2ε < σ − α), we have

(3.3)
∣∣∣Aj(z)

∣∣∣ ≤ expp+1{(α + ε) logq r}, j = 0, 1, . . . , k − 1.

By Lemma 2.3 and Lemma 2.4, there exists a set E8 ⊂ (1,+∞) of infinite logarithmic
measure such that for all |z| = r ∈ E8, we have

|Ak(z)| ≥ L(r,Ak) > (M(r,Ak))1−ε > (expp+1{(σ −
ε
2

) logq r})1−ε

(3.4) ≥ expp+1{(σ − ε) logq r}.
It follows from (1.4)

(3.5) |Ak(z)| ≤
∣∣∣∣∣∣

f

f (k)

∣∣∣∣∣∣
[
|Ak−1(z)|

∣∣∣∣∣∣
f (k−1)

f

∣∣∣∣∣∣ + · · · + |A1(z)|
∣∣∣∣∣ f ′

f

∣∣∣∣∣ + |A0(z)|
]
.

Hence, by substituting (3.1)-(3.4) into (3.5), for all |z| = r ∈ E8\([0, 1]∪ E1 ∪ E2), we
obtain

(3.6) expp+1{(σ − ε) logq r} ≤ r2k expp+1{(α + ε) logq r}kB
(
T(2r, f )

)k+1 .
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By Lemma 2.5 and (3.6), we have σ − ε ≤ σ(p+1,q)( f ). Since ε > 0 is arbitrary, we
obtain σ(p+1,q)( f ) ≥ σ(p,q)(Ak). On the other hand, by (1.4), we have

(3.7)

∣∣∣∣∣∣
f (k)

f

∣∣∣∣∣∣ ≤
∣∣∣∣∣Ak−1(z)

Ak(z)

∣∣∣∣∣
∣∣∣∣∣∣
f (k−1)

f

∣∣∣∣∣∣ + · · · +
∣∣∣∣∣A1(z)
Ak(z)

∣∣∣∣∣
∣∣∣∣∣ f ′

f

∣∣∣∣∣ +
∣∣∣∣∣A0(z)
Ak(z)

∣∣∣∣∣ .
By Lemma 2.7, there exists a set E6 ⊂ (1,+∞) of finite logarithmic measure such
that for all |z| = r � [0, 1]∪ E6 and

∣∣∣�(z)
∣∣∣ =M(r, �), we have

(3.8)
f ( j)(z)
f (z)

=

(
ν�(r)

z

) j

(1 + o(1)),
(
j = 0, . . . , k

)
.

Since
max

{
σ(p,q)(

Ak−1

Ak
), . . . , σ(p,q)(

A0

Ak
)
}
= σ(p,q)(Ak) = σ < ∞,

then by Lemma 2.8, there exists a set E7 ⊂ (1,+∞) of finite logarithmic measure
such that for all |z| = r � E7 and for sufficiently large r, we have

(3.9)

∣∣∣∣∣∣
Aj(z)
Ak(z)

∣∣∣∣∣∣ ≤ expp+1{(σ + ε) logq r}, (
j = 0, . . . , k − 1

)
,

Then, it follows from (3.7), (3.8) and (3.9), for sufficiently large r � [0, 1] ∪ E6 ∪ E7

(3.10)
(
ν�(r)

r

)
|1 + o(1)| ≤ k |1 + o(1)| expp+1{(σ + ε) logq r}.

By (3.10), Lemma 2.5 and Lemma 2.9, one can verify

σ(p+1,q)( f ) = σ(p+1,q)(�) ≤ σ(p,q)(Ak) + ε.

Since ε > 0 is arbitrary, we get σ(p+1,q)( f ) ≤ σ(p,q)(Ak). Thus, we have

σ(p+1,q)( f ) = σ(p,q)(Ak).

Next, we prove that

λ̄(p+1,q)( f − ϕ) = λ(p+1,q)( f − ϕ) = σ(p+1,q)( f ).

Set �(z) = f (z) − ϕ(z). Then

σ(p+1,q)(�) = σ(p+1,q)( f ).

By substituting f (z) = �(z) + ϕ(z) into (1.4), we get

�(k) +
Ak−1(z)
Ak(z)

�(k−1) + · · · + A1(z)
Ak(z)

�′ +
A0(z)
Ak(z)

�

= −
[
ϕ(k) +

Ak−1(z)
Ak(z)

ϕ(k−1) + · · · + A1(z)
Ak(z)

ϕ′ +
A0(z)
Ak(z)

ϕ

]
.
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Since ϕ(z) doesn’t solve (1.4), then we have

ϕ(k) +
Ak−1(z)
Ak(z)

ϕ(k−1) + · · · + A1(z)
Ak(z)

ϕ′ +
A0(z)
Ak(z)

ϕ � 0.

Then by Lemma 2.6 and σ(p,q)(ϕ) < ∞,we have

λ̄(p+1,q)(�) = λ(p+1,q)(�) = σ(p+1,q)(�),

that is

λ̄(p+1,q)( f − ϕ) = λ(p+1,q)( f − ϕ) = σ(p+1,q)( f ) = σ(p,q)(Ak).

4. Proof of Theorem 1.7

Proof. Assume that f (z) is a rational solution of (1.5). If either f (z) is a rational
function, which has a pole at z0 of degree λ ≥ 1, or f (z) is a polynomial with
deg f ≥ k, then f (k)(z) � 0. Since

max{σ(p,q)(Aj), σ(p,q)(F) : j = 0, 1, . . . , k − 1} < σ(p,q)(Ak) < ∞,
then

σ(p,q)(Ak) = σ(p,q)(Ak(z) f (k))

= σ(p,q)(F (z) − (Ak−1(z) f (k−1) + · · · + A1(z) f ′ + A0(z) f ))
≤ max{σ(p,q)(Aj), σ(p,q)(F) : j = 0, 1, . . . , k − 1} < σ(p,q)(Ak),

which is a contradiction. Thus, f (z) is a polynomial with deg f ≤ k − 1.

Now, we assume that f (z) is a transcendental meromorphic solution of (1.5)
such that λ(p,q)

(
1
f

)
< μ(p,q)( f ). Set

β = max{σ(p,q)(Aj), σ(p,q)(F) : j = 0, 1, . . . , k − 1} < σ(p,q)(Ak) = σ < ∞.
Then, for any given ε (0 < 2ε < σ − β),we have

(4.1)
∣∣∣Aj(z)

∣∣∣ ≤ expp+1{(β + ε) logq r} ( j = 0, 1, . . . , k − 1
)
,

(4.2) |F(z)| ≤ expp+1{(β + ε) logq r}.
Since

σ(p,q)(d) = λ(p,q)

(
1
f

)
< μ(p,q)( f ) = μ(p,q)(�),
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then for any given ε (0 < 2ε < μ(p,q)( f ) − λ(p,q)

(
1
f

)
) and for sufficiently large r we

have

(4.3)
1∣∣∣ f (z)

∣∣∣ =
∣∣∣∣∣d(z)
�(z)

∣∣∣∣∣ ≤
expp+1{(λ(p,q)

(
1
f

)
+ ε) logq r}

expp+1{(μ(p,q)( f ) − ε) logq r} ≤ 1.

It follows from (1.5)

(4.4) |Ak(z)| ≤
∣∣∣∣∣∣

f

f (k)

∣∣∣∣∣∣
[
|Ak−1(z)|

∣∣∣∣∣∣
f (k−1)

f

∣∣∣∣∣∣ + · · · + |A1(z)|
∣∣∣∣∣ f ′

f

∣∣∣∣∣ + |A0(z)| + |F(z)|
∣∣∣∣∣1f

∣∣∣∣∣
]
.

Hence, by substituting (3.1), (3.2), (3.4), (4.1)-(4.3) into (4.4), for sufficiently large z
such that

|z| = r ∈ E8\([0, 1]∪ E1 ∪ E2),

we obtain

(4.5) expp+1{(σ − ε) logq r} ≤ r2k expp+1{(β + ε) logq r}(k + 1)B
(
T(2r, f )

)k+1 .

By Lemma 2.5 and (4.5), we have σ − ε ≤ σ(p+1,q)( f ). Since ε > 0 is arbitrary, we
obtain σ(p+1,q)( f ) ≥ σ(p,q)(Ak). On the other hand, by (1.5), we have

(4.6)

∣∣∣∣∣∣
f (k)

f

∣∣∣∣∣∣ ≤
∣∣∣∣∣Ak−1(z)

Ak(z)

∣∣∣∣∣
∣∣∣∣∣∣
f (k−1)

f

∣∣∣∣∣∣ + · · · +
∣∣∣∣∣A1(z)
Ak(z)

∣∣∣∣∣
∣∣∣∣∣ f ′

f

∣∣∣∣∣ +
∣∣∣∣∣A0(z)
Ak(z)

∣∣∣∣∣ +
∣∣∣∣∣ F(z)
Ak(z)

∣∣∣∣∣
∣∣∣∣∣ 1f

∣∣∣∣∣ .
By Lemma 2.7, there exists a set E6 ⊂ (1,+∞) of finite logarithmic measure such
that for all |z| = r � [0, 1]∪ E6 and

∣∣∣�(z)
∣∣∣ =M(r, �), we have

(4.7)
f ( j)(z)
f (z)

=

(
ν�(r)

z

) j

(1 + o(1)), j = 0, . . . , k.

Since
max

{
σ(p,q)(

Ak−1

Ak
), . . . , σ(p,q)(

A0

Ak
), σ(p,q)(

F
Ak

)
}
= σ(p,q)(Ak) = σ < ∞,

then by Lemma 2.8, there exists a set E7 ⊂ (1,+∞) of finite logarithmic measure
such that for all |z| = r � E7 and for sufficiently large r, we have

(4.8)

∣∣∣∣∣∣
Aj(z)
Ak(z)

∣∣∣∣∣∣ ≤ expp+1{(σ + ε) logq r} (
j = 0, . . . , k − 1

)
,

(4.9)
∣∣∣∣∣ F(z)
Ak(z)

∣∣∣∣∣ ≤ expp+1{(σ + ε) logq r}.

Then, it follows from (4.3), (4.6)-(4.9), for sufficiently large r � [0, 1]∪ E6 ∪ E7

(4.10)
(
ν�(r)

r

)
|1 + o(1)| ≤ (k + 1) |1 + o(1)| expp+1{(σ + ε) logq r}.



The Growth of Solutions of some Linear Differential Equations 619

By (4.10), Lemma 2.5 and Lemma 2.9, we obtain

σ(p+1,q)( f ) = σ(p+1,q)(�) ≤ σ(p,q)(Ak) + ε.

Since ε > 0 is arbitrary, we get σ(p+1,q)( f ) ≤ σ(p,q)(Ak). Thus, we have

σ(p+1,q)( f ) = σ(p,q)(Ak).

Next, we prove that

λ̄(p+1,q)( f − ϕ) = λ(p+1,q)( f − ϕ) = σ(p+1,q)( f ).

Set �(z) = f (z) − ϕ(z). Then σ(p+1,q)(�) = σ(p+1,q)( f ). By substituting f (z) = �(z) + ϕ(z)
into

f (k) +
Ak−1(z)
Ak(z)

f (k−1) + · · · + A1(z)
Ak(z)

f ′ +
A0(z)
Ak(z)

f =
F(z)
Ak(z)

,

we get

�(k) +
Ak−1(z)
Ak(z)

�(k−1) + · · · + A1(z)
Ak(z)

�′ +
A0(z)
Ak(z)

�

=
F(z)
Ak(z)

−
[
ϕ(k) +

Ak−1(z)
Ak(z)

ϕ(k−1) + · · · + A1(z)
Ak(z)

ϕ′ +
A0(z)
Ak(z)

ϕ

]
.

Since ϕ(z) doesn’t solve (1.5), then we have

F(z)
Ak(z)

− ϕ(k) − Ak−1(z)
Ak(z)

ϕ(k−1) − · · · − A1(z)
Ak(z)

ϕ′ − A0(z)
Ak(z)

ϕ � 0.

Then by Lemma 2.6 and σ(p,q)(ϕ) < ∞,we have

λ̄(p+1,q)(�) = λ(p+1,q)(�) = σ(p+1,q)(�),

that is

λ̄(p+1,q)( f − ϕ) = λ(p+1,q)( f − ϕ) = σ(p+1,q)( f ) = σ(p,q)(Ak).

5. Proof of Theorem 1.8

Proof. (i) We assume that f (z) is a transcendental meromorphic solution of (1.5) and
{ f1, f2, . . . , fk} is a meromorphic solution base of the corresponding homogeneous
equation (1.4) of (1.5). By Theorem 1.6, we get that

σ(p+1,q)( f j) = σ(p,q)(Ak),
(
j = 1, 2, . . . , k

)
.



620 A. Ferraoun and B. Belaı̈di

By the elementary theory of differential equations, all solutions of (1.5) can be
represented in the form

(5.1) f (z) = f0(z) + B1 f1(z) + B2 f2(z) + · · · + Bk fk(z),

where B1, . . . ,Bk ∈ C and the function f0 has the form

(5.2) f0(z) = C1(z) f1(z) + C2(z) f2(z) + · · · + Ck(z) fk(z),

where C1(z), . . . ,Ck(z) are suitable meromorphic functions satisfying

(5.3) C′j = F.Gj( f1, . . . , fk).
[
W( f1, . . . , fk)

]−1 , j = 1, 2, . . . , k,

where Gj( f1, . . . , fk) are differential polynomials in f1, . . . , fk and their derivatives
with constant coefficients, and W( f1, . . . , fk) is the Wronskian of f1, . . . , fk. Since the
Wronskian W( f1, . . . , fk) is a differential polynomial in f1, . . . , fk, it is easy to obtain

(5.4) σ(p+1,q)(W) ≤ max{σ(p+1,q)( f j) : j = 1, 2, . . . , k} = σ(p,q)(Ak).

Also, we have that Gj( f1, . . . , fk) are differential polynomials in f1, . . . , fk and their
derivatives with constant coefficients, then

(5.5) σ(p+1,q)(Gj) ≤ max{σ(p+1,q)( f j) : j = 1, 2, . . . , k} = σ(p,q)(Ak), ( j = 1, 2, . . . , k).

By Lemma 2.10, (5.4) and (5.5) for j = 1, . . . , k, we have from (5.3)

(5.6) σ(p+1,q)(Cj) = σ(p+1,q)(C′j) ≤ max{σ(p+1,q)(F), σ(p,q)(Ak)} = σ(p,q)(Ak).

Hence, from (5.1), (5.2) and (5.6), we obtain

σ(p+1,q)( f ) ≤ max{σ(p+1,q)(Cj), σ(p+1,q)( f j) : j = 1, 2, . . . , k} = σ(p,q)(Ak).

Now, we assert that all meromorphic solutions f of equation (1.5) satisfy σ(p+1,q)( f )=
σ(p,q)(Ak), with at most one exceptional solution f0 with σ(p+1,q)( f0) < σ(p,q)(Ak). In
fact, if there exists another meromorphic solution f1 of (1.5) satisfying

σ(p+1,q)( f1)<σ(p,q)(Ak),

then f0− f1 is a nonzero meromorphic solution of (1.4) and satisfies σ(p+1,q)( f0− f1) <
σ(p,q)(Ak). But by Theorem 1.6 we have every nonzero meromorphic solution of
(1.4) satisfies σ(p+1,q)( f ) = σ(p,q)(Ak). This is a contradiction. Therefore, we have that
all meromorphic solutions f of equation (1.5) satisfy σ(p+1,q)( f ) = σ(p,q)(Ak), with at
most one exceptional solution f0 with σ(p+1,q)( f0) < σ(p,q)(Ak).

(ii) From (1.5), by a simple consideration of order, we get σ(p+1,q)( f ) ≥ σ(p+1,q)(F). By
Lemma 2.10 and (5.3)-(5.5), for j = 1, . . . , k, we have

(5.7) σ(p+1,q)(Cj) = σ(p+1,q)(C′j) ≤ max{σ(p+1,q)(F), σ(p,q)(Ak)} = σ(p+1,q)(F).

By (5.1), (5.2) and (5.7), we have

σ(p+1,q)( f ) ≤ max{σ(p+1,q)(Cj), σ(p+1,q)( f j) : j = 1, 2, . . . , k} ≤ σ(p+1,q)(F).

Therefore, we have σ(p+1,q)( f ) = σ(p+1,q)(F).
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