ON THE GRUNDY BONDAGE NUMBERS OF GRAPHS

Seyedeh M. Moosavi Majd ${ }^{1}$, Hamid R. Maimani ${ }^{2}$ and Abolfazl Tehranian ${ }^{1}$
${ }^{1}$ Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Mathematics Section, Department of Basic Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran

Abstract

For a graph $G=(V, E)$, a sequence $S=\left(v_{1}, \ldots, v_{k}\right)$ of distinct vertices of G it is called a dominating sequence if $N_{G}\left[v_{i}\right] \backslash \bigcup_{j=1}^{i-1} N\left[v_{j}\right] \neq \varnothing$. The maximum length of dominating sequences is denoted by $\gamma_{g r}(G)$. We define the Grundy bondage numbers $b_{g r}(G)$ of a graph G to be the cardinality of a smallest set E of edges for which $\gamma_{g r}(G-E)>\gamma_{g r}(G)$. In this paper the exact values of $b_{g r}(G)$ are determined for several classes of graphs.

Keywords: Grundy Domination Number,Grundy Bondage Number.

1. Introduction

In this paper, G is a simple graph with the vertex set $V=V(G)$ and the edge set $E=E(G)$. For notation and graph theoretical terminology, we generally follow [8]. The order $|V|$ and the size $|E|$ of G is denoted by $n=n(G)$ and $m=m(G)$, respectively. For every vertex $v \in V$, the open neighborhood $N_{G}(v)$ of v is the set $\{u \in V(G): u v \in E(G)\}$ and the closed neighborhood of v is the set $N_{G}[v]=$ $N_{G}(v) \cup\{v\}$. The degree of a vertex $v \in V$ is $\operatorname{deg}_{G}(v)=d_{G}(v)=\left|N_{G}(v)\right|$. The minimum degree and the maximum degree of a graph G are denoted by $\delta=\delta(G)$ and $\Delta=\Delta(G)$, respectively. We write P_{n} for the path of order n, C_{n} for the cycle of order n, K_{n} for the complete graph of order n and $K_{m, n}$ for complete bipartite graph. Also $K_{1, n}$ is called star graph and is denoted by S_{n}.

[^0]© 2023 by University of Niš, Serbia | Creative Commons License: CC BY-NC-ND

The cartesian product of graphs $G=G_{1} \times G_{2}$, are sometimes simply called the graph product of graphs G_{1} and G_{2} with point sets V_{1} and V_{2} and edge sets E_{1} and E_{2} is the graph with the point set $V_{1} \times V_{2}$ and $u=\left(u_{1}, u_{2}\right)$ is adjacent with $v=\left(v_{1}, v_{2}\right)$ whenever ($u_{1}=v_{1}$ and u_{2} adjacent v_{2}) or (u_{1} adjacent v_{1} and $u_{2}=v_{2}$). The join of two graphs G and H is denoted by $G \vee H$ is a graph with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H) \cup\{x y \mid x \in V(G), y \in V(H)\}$. The graph $K_{1} \vee C_{n-1}$ is called wheel graph and is denoted by W_{n}.
Let G be a graph of order n and let $H_{1}, H_{2}, \cdots, H_{n}$, be n graphs. The generalized corona product, is the graph obtained by taking one copy of graphs $G, H_{1}, H_{2}, \cdots, H_{n}$ and joining the i th vertex of G to every vertex of H_{i}. This product is denoted by $G \circ \wedge_{i=1}^{n} H_{i}$. If each H_{i} is isomorphic to a graph H, then generalized corona product is called the corona product of G and H and is denoted by $G \circ H$.

A subset D of $V(G)$ is called a dominating set of G if every vertex of G is either in D or adjacent to at least one vertex in D. The domination number of G, denoted by $\gamma(G)$, is the number of vertices in a smallest dominating set of G. A dominating set of cardinality $\gamma(G)$ is called a γ-set. For further information about various domination sets in graphs, we refer reader to $[9,10]$.

Based on the domination number, Grundy domination invariants has been introduced in recent years by some authors $[1,5,6]$ and then they continued the study of these concepts in $[3,2,4,7]$.

In [5] the first type of Grundy dominating sequence was introduced. Let $S=$ $\left(v_{1}, \ldots, v_{k}\right)$ be a sequence of distinct vertices of a graph G. The corresponding set $\left\{v_{1}, \ldots, v_{k}\right\}$ of vertices from the sequence S will be denoted by \widehat{S}. A sequence $S=\left(v_{1}, \ldots, v_{k}\right)$ is called a closed neighborhood sequence if, for each i,

$$
N_{G}\left[v_{i}\right] \backslash \bigcup_{j=1}^{i-1} N_{G}\left[v_{j}\right] \neq \varnothing
$$

If for a closed neighborhood sequence S, the set \widehat{S} is a dominating set of G, then S is called a dominating sequence of G. Clearly, if $S=\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ is a dominating sequence for G, then $k \geq \gamma(G)$. We call the maximum length of a dominating sequence in G the Grundy domination number of G and denote it by $\gamma_{g r}(G)$. The corresponding sequence is called a Grundy dominating sequence of G or $\gamma_{g r}$-sequence of G.

The Grundy bondage number $b_{g r}(G)$ of a non-empty graph G is the cardinality of a smallest set of edges whose removal from G results in a graph with Grundy domination number greater than $\gamma_{g r}(G)$. For empty graph G, we define $b_{g r}(G)=0$.

In this paper we introduced this concept and in Section 2, we obtain $b_{g r}(G)$ for some families of graphs.

2. Main results

In this section, we compute the Grundy bondage numbers of some special family of graph. First, we state some necessary known results.

Proposition 2.1. [5] Let n be a positive integer. Then
i) For $n \geq 3, \gamma_{g r}\left(C_{n}\right)=n-2$, while for $n \geq 2, \gamma_{g r}\left(P_{n}\right)=n-1$.
ii) For $n \geq 1$, we have $\gamma_{g r}\left(K_{n}\right)=1$, while for complete bipartite graphs $K_{r, s}$ we have $\gamma_{g r}\left(K_{r, s}\right)=s$ if $r \leq s$.
iii) If G is the join of G_{1} and G_{2}, Then

$$
\gamma_{g r}(G)=\max \left\{\gamma_{g r}\left(G_{1}\right), \gamma_{g r}\left(G_{2}\right)\right\}
$$

In the following theorem we study some families of graphs with Grundy bondage numbers are equal 1

Theorem 2.1. Let G be a graph of order $n \geq 4$. If $G \in\left\{K_{n}, C_{n}, W_{n}, K_{2} \times C_{n}\right\}$, then $b_{g r}(G)=1$.

Proof. We have $\gamma_{g r}\left(K_{n}\right)=1$, by Proposition 2.1 [ii]. Let $e=x y$. It is not difficult to see that $S=(x, y)$ is a dominating sequence for $K_{n}-e$. So we conclude that $\gamma_{g r}\left(K_{n}-e\right)>\gamma_{g r}\left(K_{n}\right)$ and thus $b_{g r}\left(K_{n}\right)=1$.

Now consider the graph C_{n}. By Proposition 2.1, we have $\gamma_{g r}\left(C_{n}\right)=n-2$. Consider the edge e from C_{n}, Hence $C_{n}=P_{n}$ and therefore $\gamma_{g r}\left(C_{n}-e\right)>\gamma_{g r}\left(C_{n}\right)$. Hence, $b_{g r}\left(C_{n}\right)=1$.

Let $G=W_{n}$. Since $W_{n}=K_{1}+C_{n-1}$, by Proposition 2.1, we have

$$
\gamma_{g r}\left(W_{n}\right)=\max \left\{\gamma_{g r}\left(K_{1}\right), \gamma_{g r}\left(C_{n-1}\right)\right\}
$$

So, $\gamma_{g r}\left(W_{n}\right)=n-3$. Consider an edge e from C_{n-1}. Then

$$
\gamma_{g r}\left(W_{n}-e\right)=\gamma_{g r}\left(K_{1}+P_{n-1}\right)=n-2
$$

Thus, $b_{g r}\left(W_{n}\right)=1$.
Now Consider $K_{2} \times P_{n}$. Let $V\left(K_{2} \times P_{n}\right)=\left\{v_{i j} \mid \quad 1 \leq i \leq 2, \quad 1 \leq j \leq n\right\}$. The Grundy domination number of $K_{2} \times C_{n}$ is equal to $2 n-4$. Now consider $K_{2} \times C_{n}-v_{11} v_{1 n}$. Hence

$$
\left(v_{11}, v_{21}, v_{12}, v_{22}, \cdots, v_{1 n-1}\right)
$$

is a Grundy sequences in $K_{2} \times C_{n}-v_{11} v_{1 n}$ of size $2 n-3$. Hence $\gamma_{g r}\left(\left(K_{2} \times C_{n}\right)-\right.$ $\left.v_{11} v_{1 n}\right)>\gamma_{g r}\left(K_{2} \times C_{n}\right)$ and we conclude that $b_{g r}\left(K_{2} \times C_{n}\right)=1$.

Theorem 2.2. Let G be a caterpillar of order $n \geq 2$. Then $b_{g r}(G)=n-1$.
Proof. Note that for a graph H, we have $\gamma_{g r}(H)=n$ if and only if H is an empty graph. Hence if E_{0} is a subset of edge set G, such that $\gamma_{g r}\left(G-E_{0}\right)>\gamma_{g r}(G)$, then $G-E_{0}$ is an empty graph. Therefore $\left|E_{0}\right| \geq n-1$ and we conclude that $b_{g r}(G)=n-1$.

Corollary 2.1. $\quad b_{g r}\left(P_{n}\right)=b_{g r}\left(S_{n}\right)=n-1$.
Proof. The results follows from Theorem 2.2, since paths and stars are caterpillar.

Theorem 2.3. Let $2 \leq m \leq n$. Then $b_{g r}\left(K_{m, n}\right) \leq n-1$.
Proof. Let $G=K_{m, n}$ and V_{1} and V_{2} are two parts of G of sizes m and n, respectively. Suppose that $V_{2}=\left\{w_{1}, w_{2}, \cdots, w_{n}\right\}$. Consider the arbitrary vertex $v_{1} \in V_{1}$ and edge set $E_{0}=\left\{v_{1} w_{i} \mid 1 \leq i \leq n\right\}$. Clearly $K_{m, n}-E_{0}=K_{1} \bigcup K_{m-1, n}$ and hence $\gamma_{g r}\left(K_{m, n}-E_{0}\right)=n+1$. This implies that $b_{g r}\left(K_{m, n}\right) \leq n-1$.

The following lemma is a useful result for computing $b_{g r}\left(K_{2} \times P_{n}\right)$.
Lemma 2.1. Let G be a connected graph of order $n \geq 2$. Then $\gamma_{g r}(G)=n-1$ if and only if G is a caterpillar.

Proof. We prove by induction on n. For $n=2$, the result is true. Suppose that result is true for any connected graph of order $n-1$ and G is a connected graph of order $n \geq 3$ with $\gamma_{g r}(G)=n-1$. Let $\left(v_{1}, v_{2}, \cdots, v_{n-2}, v_{n-1}\right)$ be a dominating sequences of G. Hence there exists

$$
x \in\left(N_{G}\left[v_{n-1}\right] \backslash \bigcup_{j=1}^{n-2} N_{G}\left[v_{j}\right]\right)
$$

Note that $x \neq v_{j}$ for $1 \leq j \leq n-2$. If $x=v_{n}$, then v_{n} is not adjacent to any v_{j} for $1 \leq j \leq n-2$ and this fact implies that $\operatorname{deg}\left(v_{n}\right)=1$. Hence ($v_{1}, v_{2}, \cdots, v_{n-3}, v_{n-2}$) is a dominating sequences for $G-v_{n}$. The graph $G-v_{n}$ is a connected graph of order $n-1$ with $\gamma_{g r}\left(G-v_{n}\right)=n-2$. Hence $G-v_{n}$ is a caterpillar and this fact implies that G is a caterpillar. If $x=v_{n-1}$, then v_{n-1} is not adjacent to any v_{j} for $1 \leq j \leq n-2$. Since G is connected, we conclude that v_{n-1} is adjacent to v_{n} and $\operatorname{deg}\left(v_{n-1}\right)=1$. By changing the the dominating sequence $\left(v_{1}, v_{2}, \cdots, v_{n-2}, v_{n-1}\right)$ to dominating sequence $\left(v_{1}, v_{2}, \cdots, v_{n-2}, v_{n}\right)$ and a same argument the result can be obtained.
The converse of lemma obtained by 2.1 .
Theorem 2.4. Let $n \geq 2$. Then $b_{g r}\left(K_{2} \times P_{n}\right)=n-1$.

Proof. Let $V\left(K_{2} \times P_{n}\right)=\left\{v_{i j} \mid \quad 1 \leq i \leq 2, \quad 1 \leq j \leq n\right\}$. We know that $\gamma_{g r}\left(K_{2} \times P_{n}\right)=2 n-2[2]$. Consider the set $E_{0}=\left\{v_{1 i} v_{2 i} \mid \quad 1 \leq i \leq n-1\right\}$. Clearly $E_{0} \subseteq E\left(K_{2} \times P_{n}\right)$ and $K_{2} \times P_{n}-E_{0}=P_{2 n}$. Hence $\gamma_{g r}\left(K_{2} \times P_{n}-E_{0}\right)=$ $2 n-1$. Thus $b_{g r}\left(K_{2} \times P_{n}\right) \leq n-1$. On the other hand, if $E_{0} \subseteq E\left(K_{2} \times P_{n}\right)$ such that $\gamma_{g r}\left(K_{2} \times P_{n}-E_{0}\right)=2 n-1$, then $\left(K_{2} \times P_{n}\right)-E_{0}$ is a forest such that all components except one are a single vertex. Hence $\left|E_{0}\right| \geq n-1$ and we conclude that $b_{g r}\left(K_{2} \times P_{n}\right)=n-1$.

An additional variant of the Grundy domination number was introduced in [1]. Let G be a graph without isolated vertices. A sequence $S=\left(v_{1}, \ldots, v_{k}\right)$, where $v_{i} \in V(G)$, is called a Z - sequence if for each i,

$$
N_{G}\left(v_{i}\right) \backslash \bigcup_{j=1}^{i-1} N_{G}\left[v_{j}\right] \neq \emptyset
$$

Then the Z-Grundy domination number $\gamma_{g r}^{Z}(G)$ of the graph G is the length of a longest Z-sequence.

The following results are known
Proposition 2.2. [5, 1] For $n \geq 3, \gamma_{g r}\left(C_{n}\right)=\gamma_{g r}^{Z}\left(C_{n}\right)=n-2$, while for $n \geq 2$, $\gamma_{g r}\left(P_{n}\right)=\gamma_{g r}^{Z}\left(P_{n}\right)=n-1$.

Theorem 2.5. [11] Let G and $H_{1}, H_{2}, \ldots, H_{n}$ be $n+1$ graphs with without isolated vertices. Then

$$
\gamma_{g r}\left(G \circ \wedge_{i=1}^{n} H_{i}\right)=\sum_{i=1}^{n} \gamma_{g r}\left(H_{i}\right)+\gamma_{g r}^{Z}(G)
$$

Theorem 2.6. Let G and $H_{1}, H_{2}, \ldots, H_{n}$ be $n+1$ graphs with without isolated vertices. If $G=C_{n}$ or $H_{1}=C_{n}$, then $b_{g r}\left(G \circ \wedge_{i=1}^{n} H_{i}\right)=1$.

Proof. Suppose that $G=C_{n}$ and consider an edge e from G. Hence $G-e=P_{n}$ and therefor by Proposition 2.2 and Theorem 2.5
$\gamma_{g r}\left(G \circ \wedge_{i=1}^{n} H_{i}\right)=\sum_{i=1}^{n} \gamma_{g r}\left(H_{i}\right)+n-2<\gamma_{g r}\left(G-e \circ \wedge_{i=1}^{n} H_{i}\right)=\sum_{i=1}^{n} \gamma_{g r}\left(H_{i}\right)+n-1$.
Thus $b_{g r}\left(G \circ \wedge_{i=1}^{n} H_{i}\right)=1$.

REFERENCES

1. B. Brešar, Cs. Bujtas, T. Gologranc, S. Klavzar, G. Kosmrlj, B. Patkos, Z. Tuza and M. Vizer: Grundy dominating sequences and zero forcing sets, Discrete Optim., 26 (2017), 66-77.
2. B. Brešar, C. Bujtas, T. Gologranc, S. Klavzar, G. Kosmrlj, B. Patkos, Z. Tuza and M. Vizer: Dominating sequences in grid-like and toroidal graphs, Electron. J. Combin., 23 (2016), P4. 34 (19 pages).
3. B. Brešar, T. Gologranc and T. Kos: Dominating sequences under atomic changes with applications in Sierpinski and interval graphs, Appl. Anal. Discrete Math., 10 (2016), 518-531.
4. B. Brešar, Kos and Terros: Grundy domination and zero forcing in Kneser graphs, Ars Math. Contemp., 17 (2019), 419-430.
5. B. Brešar, T. Gologranc, M. Milanič, D. F. Rall and R. Rizzi: Dominating sequences in graphs, Discrete Math., 336 (2014), 22-36.
6. B. Brešar, M. A. Henning and D. F. Rall: Total dominating sequences in graphs, Discrete Math., 339 (2016) 1165-1676.
7. B. Brešar, T. Kos, G. Nasini and P. Torres: Total dominating sequences in trees, split graphs, and under modular decomposition, Discrete Optim., 28 (2018), 16-30.
8. G. Chartrand and L. Lesniak: Graphs and digraphs, Third Edition, CRC Press,(1996).
9. T. W. Haynes, S. Hedetniemi and P. Slater: Fundamentals of Domination in Graphs, CRC Press, (1998).
10. M. A. Henning and A. Yeo: Total domination in graphs, (Springer Monographs in Mathematics.) ISBN-13: 987-1461465249 (2013).
11. S. M. Moosavi Majd and H. R. Maimani: Grundy domination sequences in generalized corona products of graphs, Facta Universitatis Ser: Math. Inform., Vol. 35, No 4 (2020) 1231-1237.

[^0]: Received October 10, 2022. accepted February 08, 2023.
 Communicated by Alireza Ashrafi, Hassan Daghigh, Marko Petković
 Corresponding Author: Hamid R. Maimani, Mathematics Section, Department of Basic Sciences, Shahid Rajaee Teacher Training University, P.O. Box 16785-163, Tehran, Iran | E-mail: maimani@ipm.ir
 2010 Mathematics Subject Classification. Primary 05C69; Secondary 05C76

