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Abstract. In this examination, we take g-helices into consideration. By g-helices, we
mean curves due to the quasi-frame (abbv. g-frame) whose vector fields make constant
angles with a non-zero fixed axis. One by one, all types of these g-helices we study in
the work are therefore classified in three dimensional Euclidean space. Additionally, we
study Darboux g-helices by using Darboux vector obtained with respect to g-frames
fields of a curve. For a curve enclosed with g-frame as a general case, we reach some
results for Darboux g-helices.
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1. Introduction

A necessary and sufficient condition for a curve to be of constant slope is that
the ratio of curvature to torsion be constant. This expression is a famous theorem
characterizing helices which was proposed by M.A. Lancret in 1802, but its first
proof was given by B. de Saint Venant in 1845 in his work published at Journal Ec.
Polyt. 30, 1845, p. 26. [20].

Slant helices as more general forms of helices were conceptualized by Izumiya and

Takeuchi [9]. Several authors introduced different types of helices and investigated
their properties [10, 11, 12, 21].
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Researches are increasing on k—type slant helices with their various aspects
[13, 16, 17, 21]. The meaning of k—type slant helices is related to the class of curves
having a property that the scalar product of frame’s vector field and a fixed axis is
constant [8]. For example, general helices are 0—type helices and also 1-type slant
helix is one whose normal vector field makes a constant angle with a non zero fixed
axis. This subject 7 k—type slant helices” has been studied and developed in different
types of spaces such as Euclidean, Galilean, and Lorentzian spaces [1, 13, 15, 18].
Another approach called as "k-type Darboux slant helices” is based on the idea that
Darboux vector obtained by the frame fields in which curves’ behaviour is taken
into consideration makes a constant angle with a non-zero fixed axis is seen in the
works [13, 16, 17, 23, 25].

The different suggestions to frame a curve such as parallel transport frame,
Frenet frame, and etc. are prevalent approaches in differential geometry of curves
[2, 3, 4, 5, 6, 22, 24]. The way to establish the quasi-frame was firstly paved with
introducing the quasi normal vector of a space curve by Coquillart [3]. Then Shin
et al. defined the quasi-normal vector for each point of the curve which lies in the
plane perpendicular to the tangent of the curve at this point [19]. The local theory
of space curves via g-frame was studied by Dede in [4].

In this research, g-helices by which we mean curves whose g-frame fields make
a constant angle with a non-zero fixed axis. We give the necessary and sufficient
conditions for curves due to the g-frame to be g-helices. Then we obtain some
results of the relations between g-helices and Darboux g-helices. Also we classify
Darboux g-helices as special ones whose Darboux vector makes a constant angle
with a non-zero fixed axis by choosing the curve as one of the types of g-helices,
and also the general case.

2. Preliminaries

The three dimensional Euclidean space E? is a real vector space R3 equipped
with
(2.1) g = dz? + da3 + da3,

where (21, z2,23) is a rectangular coordinate system of E3.

Let v : I — E? be an arc-length parametrized curve which has at least four
continuous derivatives, then the curve v has a natural frame called as Frenet frame
with the equations below:

T/ = kN
(2.2) N =—-xkT+7B
B' = —-N

where x and 7 are the curvature and the torsion functions of the curve ~, respec-
tively. We designate unit tangent vector field with T, unit principle normal vector
field with N and the unit binormal vector field with B. We exclude the condition
T’ (s) = 0 for some s € I along with this paper [7].

The quasi-frame (abbv. g-frame) as an alternative frame to Frenet trihedron has
been introduced as follows: Given a space curve y(t), the g-frame composes of three
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orthonormal vectors. These vectors are the unit tangent vector T, the quasi-normal
N, and the quasi-binormal vector By, respectively. The g-frame {T,N,, By, k} is
given by

(2.3) T=

’
¥ __  TAk _
T Na = Ay Be = TAN,

where k is the projection vector.

For clarity, the projection vector k has been chosen as k = (0,0,1) along with
the paper. Nevertheless, the g-frame is singular in all cases where t and k become
parallel. Hence, in those cases where t and k are parallel, the projection vector k
can be chosen as k = (0,1,0) or k = (1,0,0).

Let v(s) be a curve that is parameterized by arc length s. The variation equa-
tions of the g-frame is given ([4]) as

T 0 k1 ke T
(2.4) N, | =| k& 0 ks N, |,
B, —ks —ks O B,
where the g-curvatures are
_ (T'Ny) _ (T'B,) _ _(N.Bp)
(2:5) M= k=R k=

3. The g-helices

In this section, we study different types of g-helices which means k—type slant
helices of curves via g-frame in Euclidean 3-space E3. By q-helices, we intend the
curves whose g-frame vector fields make a constant angle with a non-zero fixed axis.
These types of helices within the g-frame are enclosed as depending on a constant
angle between the tangent vector field T and the fixed vector U, the quasi-normal
vector field N, and the fixed vector U, and the quasi-binormal vector field B, and
the fixed vector U.

Definition 3.1. A curve v in E? given by the ¢-frame {T,N,, B, } is called a slant
helix of type—0, a slant helix of type—1 and a slant helix of type—2 if there exists
a non zero fixed direction U € E3 such that satisfies, respectively,

(3.1) (T,U) =cosby, (N, U)=cosbs, (By,U)=cosbs,

where 61,60> and 03 are constant angles. The fixed direction U is called axis of the
q-helices.

The vector U can be written as a combination of g-frame fields as subsequent
(32) U=MT+ /\QNq + /\3Bq,

where

AL = (T, U, A = (N, U), A3 = (B, U).
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Since U is a fixed vector field, its differentiation vanishes, that is,

(3 3) U = (/\/1—/\2]411 — )\3/452)T + ( /2+/\1]C1 — /\3]{}3)Nq + (/\g-i-/\lkg + )\2/4}3)Bq
' =0.

By (3.3), the following system is obtained as

N —Aoki — Askz = 0,
(3.4) N+ A1ky — Aghks = 0,
Ny A1k + Aok = 0.

In the following subsections, we study g-helices based on the system of differen-
tial equations (3.4).

3.1. The g-helices of type-0

Theorem 3.1. Let v be a curve due to the g-frame in E3. Then v is a g-heliz of
type-0 if and only if

kokg
A S

(3.5) (e*f%ds [ kel %‘“ds) B+ (e RS [ e [T ds) k> = 0.

Proof. A g-helix of type-0 satisfies the condition
(3.6) A1 = (T, U) = cos by,

where 6 is a constant angle. Therefore, by substituting A\; = cos 6; into the system
(3.4), it turns into
Aok1 + Agky =0,
(3.7) )\/2 — A3kz+cosfik; =0,
)\é + Aoks+cosfiky = 0.
From (3.7)1,
(3.8) As=—fh, A= -

By using (3.8) in the equations (3.7)1, and (3.7)2, we get the following linear
differential equations of first order:

(39) /2 + kllvi];?’)\gz —cos bk,
(310) )\/3 - kif’fs)\gz — COS 91]62.
The solution of (3.9) is
ki1k ki1k
(3.11) Ay = —cos@le_f izgdsfklef izgdsds,

and the solution of (3.10) is

kok: koks ;.
(3.12) As = —cosByel T [ hye” I TH g,
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Substituting (3.11) and (3.12) into (3.7); gives the condition to be g-helices of
type-0 as follows:

3

(3.13) (eif atds fklef %dsds) k1 + (ef s szeif e dsds) ko = 0.

Conversely, suppose that the relation (3.5) holds, also the fixed vector filed U
can be composed of

klks

U =cost, T — (cosﬁle_f dsfk ef 5 dsds)

(3.14)
— cos@lef R ds kege T e s s\ B,
q

We obtain U’= 0 by using (3.6). Hence ~ is a g-helices of type-0. O

Corollary 3.1. If~ is a g-helix of type-0, an axis of 7y is

kq ks

3ds fklef k}cﬁdsds)
+ (— cos@lef Hds " [ ko e_f e dsds)

Do =cos0, T + (— cosbie
(3.15)

Remark 3.1. If the tangent vector field T of the curve v and the fixed axis Dg are
orthogonal to each other, that is, cos61 = cos 3 = 0, then the g-helix of type-0 can not
occur since the vanishing of the axis Do.

3.2. The g-helices of type-1

Theorem 3.2. Let v be a curve due to the g-frame in E3. Then v is a g-heliz of
type-1 if and only if

(3.16) (¢f %“fkle*f%ds(zs) ki (e RS [ el g s) s = 0.

Proof. A g-helix of type-1 satisfies the condition
(3.17) A2 = (Ng, U) = cos 0,

where 65 is a constant angle. Therefore, by substituting Ay = cos 65 into the system
(3.4), it turns into
N —Xok1 — Azka =0,
(3.18) Ak1 — Agks =0,
)\é-i-)\lkig + Aoks = 0.
From (3.18)a,
(3.19) As=12A, 0 A= B

By using (3.19) in the equations (3.18); and (3.18)3, we get the following linear
differential equations of first order:

(3.20) Ny — Bk \) = cos Ok,
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(3.21) )\ngkz—’f?’)\g = —cosbaks.

The solution of (3.20) is

kik kik
(322) /\1 = COS Gzef %ds fkle_f i32de$,
and the solution of (3.21) is
kok: kok:
(3.23) A3 = — cos Ggeff Fyds fk)g@f Frrds s,

Substituting (3.22), and (3.23) into (3.18)2 gives the condition to be g-helices of
type-1 as follows:

kik kik kok kok

(3.24) (e 2 [ e is”sds) by + (e‘f [ el %f‘“ds) ks = 0.
Conversely, suppose that the relation (3.16) holds, also the fixed vector field U

can be composed of

kyka g g kiR g
U= (cosﬂgef %d‘sfkle J Tt ds) T + cos 62N,
kg

(3.25) . ot
— (Cosf)ge_f k13d5fk36f %dsds) B,.

We obtain U’= 0 by using (3.17). Hence v is a g-helix of type-1. [

Corollary 3.2. If v is a g-helix of type-1, an axis of vy is

kqk
k3

ki1k
D, = (cos fse stfkle_fiiagdsds) T + cos 6N,

(326) kok kok
+ (f cos fpe” I 08 fkgef %&dsd5> B,.

Remark 3.2. If the tangent vector field N, of the curve v and the fixed axis D; are
orthogonal to each other, that is, cosf2 = cos 3 =0, then the g-helix of type-1 can not
occur since the vanishing of the axis D;.

3.3. The g-helices of type-2

Theorem 3.3. Let v be a curve due to the g-frame in E3. Then v is a g-heliz of
type-2 if and only if

k1ka kikg

(3:27) (7 KA [ hed TR as) ey 4 (ef T [ hgem SR s) by = 0.

Proof. A g-helix of type-2 satisfies the condition

(3.28) A3 = (Bg, U) = cosbs,
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where 03 is a constant angle. Therefore, by substituting A3 = cos 63 into the system
(3.4), it turns into

)\1k32 + )\2]63 =0.
(3.29) N =Xoki — Asky = 0,
N+ A1ky — Agks = 0.

From (3.29),
(3.30) Ao =—12A, A=

By using (3.30) in the equations (3.29), and (3.29)3, we get the following linear
differential equations of first order:

(3.31) )\’1+k}c—.’§2)\1 = cos O3ko,
(3.32) No—2Es Xy = cos O3ks.
The solutions of (3.31) and (3.32) are
kik kik

(3.33) A = cos ng_f%dsfkgef%dsds,

ki1k ki1k
(3.34) Ay = cos fzed F2 9 fkge_fkifdsds,
respectively.

Substituting (3.33) and (3.34) into (3.29); gives the condition to be g-helices of
type-2 as follows:

(3.35) (e*f%ds [ kped %‘“ds) B+ (ef T [ e %dsds) ks = 0.

Conversely, suppose that the relation (3.27) holds, also the fixed vector field U
can be composed of

kqk
k3

U= (COS fge™/ TH2 s [ kpe! 2dsd8) T

(3.36) " "
+ (cos fze] s [ kse” I i72gdsds> N, + cos65B,.

We obtain U’= 0 by using (3.27) and (3.28). Hence 7 is a g-helix of type-2. O

Corollary 3.3. If~ is a g-helix of type-2, an axis of 7y is

kyko kqko

D, = (cos@;,eif k3 dsfkgef s dsds) T
Biks g ks gy
+ (cos 93€f %dé‘[k‘iﬁ@ J5° d‘sds) N, + cos05B,.

(3.37)

Remark 3.3. If the tangent vector field B, of the curve v and the fixed axis D> are
orthogonal to each other, that is, cosf3 = cos 3 =0, then the g-helix of type-2 can not
occur since the vanishing of the axis Do.
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3.4. The relations of g-helices to each other

In this part, we give the relations of g-helices to each other based on the conse-
quences of Theorems 3.1, 3.2 and 3.3.

Corollary 3.4. Let v be a g-heliz of type-0 in E2. Then v is a g-heliz of type-1 if
and only if
(338) ]ﬁ =0 or k‘g = Ck’3,

where ¢ 1s a constant.

Proof. Using (3.14) at the condition to be a g-helix of type-1 as follows:

-k kiks

(3.39) (Ng,U) = —cos Ore” ) B dsfklef w45 s,

The expression in (3.39) becomes constant if the cases (3.38) are satisified. O

Corollary 3.5. Let v be a g-heliz of type-0 in E3. Then v is a g-heliz of type-2 if
and only if
(340) k‘g =0 or k‘l = —Ck‘3

where ¢ is a constant.
Proof. Using (3.14) at the condition to be a g-helix of type-2 as follows:

(3.41) (B,,U) = — cosfpel Tt fk:geffiilddsds.

The expression in (3.41) becomes constant if the cases (3.40) are satisified. [

Corollary 3.6. Let v be a g-heliz of type-1 in E3. Then v is a g-heliz of type-0 if
and only if
(342) kl =0 or kg = 7Ck2

where ¢ is a constant.

Proof. Using (3.25) at the condition to be a g-helix of type-0 as follows:

kik

kiko 2
(3.43) (T, U) = cos ngf T s fkle_f Fs 95 (s,

The expression in (3.43) becomes constant if the cases (3.42) are satisified. [

Corollary 3.7. Let v be a g-helix of type-1 in E>. Then v is a g-heliz of type-2 if
and only if
(3.44) ks=0 or k= —cko

where ¢ is a constant.
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Proof. Using (3.25) at the condition to be a g-helix of type-2 as follows:

kokg

kok

(3.45) (By, U) = —cosGQG_I%lgdsfkge “ro %8s

The expression in (3.45) becomes constant if the cases (3.44) are satisified. [
Corollary 3.8. Let v be a g-helix of type-2 in E>. Then v is a g-heliz of type-0 if

and only if
(346) ]{12 =0 or kg = Ck'l.

where ¢ is a constant.

Proof. Using (3.36) at the condition to be a g-helix of type-0 as follows:

k kyko

(3.47) (T,U) = cosfze” B dsfkgef w9,

The expression in (3.47) becomes constant if the cases (3.46) are satisified. O

Corollary 3.9. Let v be a g-heliz of type-2 in E3. Then v is a g-heliz of type-1 if
and only if
(348) kg =0 or k‘z = —Ckl.

where ¢ is a constant.

Proof. Using (3.36) at the condition to be a g-helix of type-1 as follows:

(3.49) (Ng,U) = cos 93ef M2 ds fk;le_f 2 s s,
The expression in (3.49) becomes constant if the cases (3.48) are satisified. [
The above results can be put together with the following corollary:
Corollary 3.10. Let vy be a curve via g-frame in E3. Then
(i) The curve 7y is both a g-heliz of type-0 and type-1 provided that
ki=0 or ko= Aks,
where A is an arbitrary constant.
(ii) The curve v is both a g-helix of type-0 and type-2 provided that
ke =0 or ki = Bks,
where B is an arbitrary constant.
(iii) The curve v is both a g-heliz of type-1 and type-2 provided that
ks=0 or ko =Cky,

where C' is an arbitrary constant.



60 Y. Unliitiirk, C. Ekici and D. Unal

4. The Darboux g-helices

In this part of our research, we classify the Darboux g-helices. First we study
the conditions of g-helices of type-0, type-1 and type-2 to be Darboux g-helices,
respectively. Finally, we obtain the general case for g-helices to be Darboux helices.

From [4], the Darboux vector of a curve due to the g-frame is as follows:
(4.1) 0 =k3T—kaN, + k1 By.
We have to give the description of Darboux g-helices as follows:

Definition 4.1. A unit speed curve ~ framed by g-frame whose Darboux vector
0 is said to be a Darboux helix provided that there exists a non-zero fixed direction
U €E? such that satisfies

(4.2) (0,U) = cos p,

 is a constant angle between the vectors 0 and U.

Differentiating (4.2) and rearranging the equation gives the system

N~ Aok1 — Agks = 0,
(43) )\/24-)\1:1{51 — A3k3 =0,
Mo+A1ke + A2ks = 0.

Based upon the system (4.3), we take the g-helices of type-0, type-1 and type-2,
and a curve frame by a g-frame to be Darboux helices into consideration, respec-
tively, in the subsequent four cases:

Case 1: Let v be a g-helix of type-0. Hence the equation (3.6) holds. Then we
have the equation
(4.4) (0", U) = Ak — Aokl + A3k) = 0.

Using (3.6) and (4.4) in the system (4.3) results in the following system:

cos 01k — Aok 4+ A3k =0,
Aok + Azks = 0,

)\/2_|_ COS 01k1 - /\3](13 = O,
)\:/34* COS 91k2 + )\2]{}3 =0.

(4.5)

Applying (4.5)2 into the equations (4.5)3 and (4.5)4, the functions Ay and A3 are
found as in (3.11) and (3.12). If the values obtained are substituted to the equation
(4.5)1, then it follows that

(4.6) K, +k§e_f%dsfklef s g _ k’lef Hytds sze_f%dsds =0.

Also from (3.13), we have

(4.7) (e %dsfkge_f%dsdg = —% (e—f M ds f/ﬁef %dsds> :
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Substituting (4.7) into (4.6) gives

(4.8) K+ (1 + klk)(e_fklk3 [ kel “ds) =0

which is the condition for a g-helix of type-0 to be a Darboux helix.

Conversely, suppose that the relation (4.8) holds, it can be seen that the axis
given in (3.14) is a fixed one.

Case 2: Let v be a g-helix of type-1. Hence the equation (3.17) holds. Using (3.17),
and (4.4) in the system (4.3), we find the system

)\1]{?5 — COS 92]6/2 + )\3]61 =0,
N~ Aok1 — Agks = 0,

Ak1 — A3ks =0,

As+Arke + A2ks = 0.

(4.9)

Applying (4.9)3 into the equations (4.9)2 and (4.9)4, the functions A\; and A3 are
found as in (3.22) and (3.23). If the values obtained are substituted to the equation
(4.9)1, then it follows that

(4.20) phel THH [ pyem S TGy g pre T [ el g5 = 0

Also from (3.24), we obtain

(4.11) ( stfk efﬂdsds) = f% ( ks 2dgfk: e_f dsds)

Substituting (4.11) into (4.10), we attain the equation

(4.12) B+ (M5 — k) (ef B fhyem IR as) =0

which is the condition for a g-helix of type-1 to be a Darboux helix.

Conversely, suppose that the relation (4.12) holds. It can be seen that the axis
given in (3.25) is a fixed one.

Case 3: Let v be a g-helix of type-2. So the equation (3.28) holds. Using (3.28)
and (4.4) in the system (4.3), the system is as follows:

)\1]@% — )\2](3’2 —+ cos 93]{5,1 = O,
N~ Aok1 — Agkz = 0,
)\/2+)\1/€1 — A3k3 =0,

ko + Aoks = 0.

(4.13)

Applying (4.13)4 into the equations (4.13)2 and (4.13)3, the functions A; and Ag are
obtained as in (3.33) and (3.34). If the values obtained are put into the equation
(4.13)4, then it is followed that
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kik
(4.14) kée_f tas fk 6 k3 k/ fk e—f k2 d5+k'1 —0.
Also from (3.35), we obtain

(4.15) (e klk?dsfkgef b dsds) =— ( sy dsfkg,e*f%dsds).

Replacing (4.15) into (4.14), we reach the result

(4.16) B = (g 55 (ef 0 [ hgem IR as) = 0

which is the condition for a g-helix of type-2 to be a Darboux helix.

Conversely, suppose that the relation (4.16) holds. It can be seen that the axis
given in (3.36) is a fixed one.

Case 4 (General Case): Let v be a curve due to the g-frame in E3. From (4.2),
we obtain
(417) /\1]{13 — )\gkz + )\3]€1 = COS .

Differentiating (4.17) and after some arrangements, we find
(4.18) ALkl — A2k 4+ Aski = 0.
With the aid of (4.17) and (4.18), we arrive

(Kb ks —kakf ) Ao —cos ok

(4.19) A3 = e ;

and (kbky—kak})A k!
- —COS

(4.20) A= k:kll—kjk’l =

respectively. Substituting (4.19) and (4.20) into (4.3)2 delivers the linear DE as

’ ’
/ Ebk? —koki k) +kbk2—kakakl _ cosp(k1ki+kskb)
(4.21) Nyt ( Lo yy = DEpEERR)
The solution of (4.21) is
koki k| thokgkl —khk? —kbk2 ds (k & , khk? —kokq k) +EREZ — kokshkh g
_ KGRy~ kgh) 1k thsky) [ Khk1—kgk), s
)\2 = COos pe 17" f We 1773 ds.
(4.22)
Using (4.17) and (4.18), we obtain
(K1 ko —k1k)) As+cos ok
(4.23) A\ = W hok ,
a,nd ’ ’ ’
(4.24) Ny = (K1 ks—k1ky) As+cos ok

KL ks —kz k) )
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respectively. Replacing (4.23) and (4.24) into (4.3)3, we have the following differ-
ential equation

, ki k3 —kikokb 4k k3 —kikaky _ cos pkakbtcos pkskl
(4.25) A3+ ( Rl Fos — koK, Az = kaokl —kbks :

The solution of (4.25) is

/ ’ 7.2 7.2 7.2 N / 7.2 ’
kukokhthykahh “MAG=RIKS o, AR ke ko kg RSk kakh o
khkg—kokl 2kytksky khk3—kokl ds
Fea kit — kL Fs :

A3 = COos e
(4.26)
From (4.17) and (4.18), we attain

(Kbk1—ksk} ) A1 +cos ok}
(4.27) A2 = kb k1 —kak] )

and

(4 28) A3 = (kék?’—kzké)kl—cos okl

(ki ko —k1k}) ’

respectively. Usage of the equations (4.27) and (4.28) at (4.3); allows the equation

/ k3k/17kgk1+kék37k2ké __ cos <pk1ki+cos <pk2k'2
(4.29) X+ (Lekimpi gk M = St ehaly

The solution of (4.29) is
kgkl—kgk’l—k'zngerkédg

oy I, — k) op f cos pk1k}+cos pkak
Tex kb —K7 ks

okl A /7 NN
C kgkl—ksk}+k%k3—k2k3 ds
ki1k5—k% k ©

2e 1hg =k k2 ds.

A1 = cos pe
(4.30)
Substituting (4.22), (4.26) and (4.30) into (4.18) gives the condition for a curve to
be a Darboux g-helix as follows:

i A 1.2 /.2 1.2 A 1.2 A
P ST BT B L SLLU L LT
e kb k3 — ko kl ELRELE Y koks—kaky ds | K}

3
Teak—FL ks €

khky—kgky —khks+kokh kak)] —kbhky+khky —kokh
f31 3% 2F3 2‘5ds 3% 371 2R3 2‘5ds

- kik| +kok!, [ — 7
(4.31) + (e k1kh =k ko 7kiki_k§k§e k1 kh =k ko ds | k4

I koky k) +kokgkl—kbhk? —khk3

/3.2 ’ ! 3.2 ’
k3 ¢ kpkf —hgky k] +kpkE —kokaky o
khky—k3k] )

’ /
| Unkithaks) ds | kb.

=1¢€ Wk —ksk,

Conversely, suppose that the relation (4.31) holds, the fixed vector filed U can
also be composed of

I kékl—k3k/1—k'2k3+k2kéds T okl f kgki —kbki+kbkg—kokh ds
k1kh—kik cos pk1 COS pR2 kikh—klk
cos pe 1R =y k2 Ik o 2e 1k =y ko ds | T
1Ry — R k2
’ . / /.2 712 7.2 ’ 7.2 A
kgkyky+hokgkl—kokf—kok3 oo (k K 4k k/) I Kok —hoky k) +RoRS —kokaky o
+ CcOS e ké"’l*k.’ik/l f& ké’“l*kl?»kll ds N
¥ Lk —ksk, q

! k1 kakh 12t 2 12 ol 12 g /
kikokpthykaki—ki kG -k k3 o L e L L e L s LELL

K ks — kg k) kaok)+ksks J kL kg — Kok’
+ | cos e 2ks—haky Faki—RL ks © 2k3—k2k; ds | By

(4.32)
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We obtain U’= 0 by using (4.17) and (4.31). Hence ~ is a Darboux g-helix.

We can give the following theorem containing the cases above:
Theorem 4.1. Let v be a curve due to the g-frame in Euclidean 3-space E3. Then

(i) v is a Darbouz q-heliz satisfying the condition to be g-heliz of type-0 if and
only if the equation (4.8) is satisfied.

(ii) v is a Darbouz g-heliz satisfying the condition to be g-heliz of type-1 if and
only if the equation (4.12) is satisfied.

(i4i) v is a Darbouzx g-heliz satisfying the condition to be g-helix of type-2 if and
only if the equation (4.16) is satisfied.

(i) ~v is a Darbouz g-helix if and only if the equation (4.81) is satisfied, and the
fized azxis is given as in (4.32).

5. Conclusion

Helices are very special curves by which many patterns can be modelled in
nature. In the present examination, we considered these special curves from the
point of view of frame fields which describe the behaviour of the curves. The original
aspect of our research is to deal quasi-frame (abbv. g-frame) in Euclidean 3-space.
For all vector fields of the mentioned frame, slant helices, which are recalled, in
the context of the paper, as g-helices, have been worked out in Euclidean 3-space.
Additionally, the Darboux g-helices are obtained by Darboux vector which has been
formed by g-frame fields.
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