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Abstract. In this examination, we take q-helices into consideration. By q-helices, we
mean curves due to the quasi-frame (abbv. q-frame) whose vector fields make constant
angles with a non-zero fixed axis. One by one, all types of these q-helices we study in
the work are therefore classified in three dimensional Euclidean space. Additionally, we
study Darboux q-helices by using Darboux vector obtained with respect to q-frames
fields of a curve. For a curve enclosed with q-frame as a general case, we reach some
results for Darboux q-helices.
Keywords: q-frame, q-helices, the relations between q-helices, Darboux q-helices.

1. Introduction

A necessary and sufficient condition for a curve to be of constant slope is that
the ratio of curvature to torsion be constant. This expression is a famous theorem
characterizing helices which was proposed by M.A. Lancret in 1802, but its first
proof was given by B. de Saint Venant in 1845 in his work published at Journal Ec.
Polyt. 30, 1845, p. 26. [20].

Slant helices as more general forms of helices were conceptualized by Izumiya and
Takeuchi [9]. Several authors introduced different types of helices and investigated
their properties [10, 11, 12, 21].
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Researches are increasing on k−type slant helices with their various aspects
[13, 16, 17, 21]. The meaning of k−type slant helices is related to the class of curves
having a property that the scalar product of frame’s vector field and a fixed axis is
constant [8]. For example, general helices are 0−type helices and also 1-type slant
helix is one whose normal vector field makes a constant angle with a non zero fixed
axis. This subject ”k−type slant helices” has been studied and developed in different
types of spaces such as Euclidean, Galilean, and Lorentzian spaces [1, 13, 15, 18].
Another approach called as ”k-type Darboux slant helices” is based on the idea that
Darboux vector obtained by the frame fields in which curves’ behaviour is taken
into consideration makes a constant angle with a non-zero fixed axis is seen in the
works [13, 16, 17, 23, 25].

The different suggestions to frame a curve such as parallel transport frame,
Frenet frame, and etc. are prevalent approaches in differential geometry of curves
[2, 3, 4, 5, 6, 22, 24]. The way to establish the quasi-frame was firstly paved with
introducing the quasi normal vector of a space curve by Coquillart [3]. Then Shin
et al. defined the quasi-normal vector for each point of the curve which lies in the
plane perpendicular to the tangent of the curve at this point [19]. The local theory
of space curves via q-frame was studied by Dede in [4].

In this research, q-helices by which we mean curves whose q-frame fields make
a constant angle with a non-zero fixed axis. We give the necessary and sufficient
conditions for curves due to the q-frame to be q-helices. Then we obtain some
results of the relations between q-helices and Darboux q-helices. Also we classify
Darboux q-helices as special ones whose Darboux vector makes a constant angle
with a non-zero fixed axis by choosing the curve as one of the types of q-helices,
and also the general case.

2. Preliminaries

The three dimensional Euclidean space E3 is a real vector space R3 equipped
with

g = dx2
1 + dx2

2 + dx3
3,(2.1)

where (x1, x2, x3) is a rectangular coordinate system of E3.

Let γ : I −→ E3 be an arc-length parametrized curve which has at least four
continuous derivatives, then the curve γ has a natural frame called as Frenet frame
with the equations below:

T′ = κN
N′ = −κT+ τB
B′ = −τN

(2.2)

where κ and τ are the curvature and the torsion functions of the curve γ, respec-
tively. We designate unit tangent vector field with T, unit principle normal vector
field with N and the unit binormal vector field with B. We exclude the condition
T′ (s) = 0 for some s ∈ I along with this paper [7].

The quasi-frame (abbv. q-frame) as an alternative frame to Frenet trihedron has
been introduced as follows: Given a space curve γ(t), the q-frame composes of three
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orthonormal vectors. These vectors are the unit tangent vector T, the quasi-normal
Nq and the quasi-binormal vector Bq, respectively. The q-frame {T,Nq,Bq,k} is
given by

T = γ′

∥γ′∥ ,Nq = T∧k
∥T∧k∥ ,Bq = T ∧Nq(2.3)

where k is the projection vector.

For clarity, the projection vector k has been chosen as k = (0, 0, 1) along with
the paper. Nevertheless, the q-frame is singular in all cases where t and k become
parallel. Hence, in those cases where t and k are parallel, the projection vector k
can be chosen as k = (0, 1, 0) or k = (1, 0, 0).

Let γ(s) be a curve that is parameterized by arc length s. The variation equa-
tions of the q-frame is given ([4]) as T′

N′
q

B′
q

 =

 0 k1 k2
−k1 0 k3
−k2 −k3 0

 T
Nq

Bq

 ,(2.4)

where the q-curvatures are

k1 =
⟨T′,Nq⟩

∥γ′∥ , k2 =
⟨T′,Bq⟩
∥γ′∥ , k3 = −⟨Nq,B

′
q⟩

∥γ′∥ .(2.5)

3. The q-helices

In this section, we study different types of q-helices which means k−type slant
helices of curves via q-frame in Euclidean 3-space E3. By q-helices, we intend the
curves whose q-frame vector fields make a constant angle with a non-zero fixed axis.
These types of helices within the q-frame are enclosed as depending on a constant
angle between the tangent vector field T and the fixed vector U, the quasi-normal
vector field Nq and the fixed vector U, and the quasi-binormal vector field Bq and
the fixed vector U.

Definition 3.1. A curve γ in E3 given by the q-frame {T,Nq,Bq} is called a slant
helix of type−0, a slant helix of type−1 and a slant helix of type−2 if there exists
a non zero fixed direction U ∈ E3 such that satisfies, respectively,

⟨T,U⟩ = cos θ1, ⟨Nq,U⟩ = cos θ2, ⟨Bq,U⟩ = cos θ3,(3.1)

where θ1, θ2 and θ3 are constant angles. The fixed direction U is called axis of the
q-helices.

The vector U can be written as a combination of q-frame fields as subsequent

U = λ1T+ λ2Nq + λ3Bq,(3.2)

where
λ1 = ⟨T,U⟩ , λ2 = ⟨Nq,U⟩ , λ3 = ⟨Bq,U⟩ .
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Since U is a fixed vector field, its differentiation vanishes, that is,

U′ = (λ′
1−λ2k1 − λ3k2)T+ (λ′

2+λ1k1 − λ3k3)Nq + (λ′
3+λ1k2 + λ2k3)Bq

= 0.
(3.3)

By (3.3), the following system is obtained as

λ′
1−λ2k1 − λ3k2 = 0,

λ′
2+λ1k1 − λ3k3 = 0,

λ′
3+λ1k2 + λ2k3 = 0.

(3.4)

In the following subsections, we study q-helices based on the system of differen-
tial equations (3.4).

3.1. The q-helices of type-0

Theorem 3.1. Let γ be a curve due to the q-frame in E3. Then γ is a q-helix of
type-0 if and only if(

e−
∫ k1k3

k2
ds ∫ k1e

∫ k1k3
k2

dsds
)
k1 +

(
e
∫ k2k3

k1
ds ∫ k2e

−
∫ k2k3

k1
dsds

)
k2 = 0.(3.5)

Proof. A q-helix of type-0 satisfies the condition

λ1 = ⟨T,U⟩ = cos θ1,(3.6)

where θ1 is a constant angle. Therefore, by substituting λ1 = cos θ1 into the system
(3.4), it turns into

λ2k1 + λ3k2 = 0,
λ′
2 − λ3k3+cos θ1k1 = 0,

λ′
3 + λ2k3+cos θ1k2 = 0.

(3.7)

From (3.7)1,
λ3 = −k1

k2
λ2, λ2 = −k2

k1
λ3.(3.8)

By using (3.8) in the equations (3.7)1, and (3.7)2, we get the following linear
differential equations of first order:

λ′
2 +

k1k3

k2
λ2= − cos θ1k1,(3.9)

λ′
3 − k2k3

k1
λ3= − cos θ1k2.(3.10)

The solution of (3.9) is

λ2 = − cos θ1e
−

∫ k1k3
k2

ds ∫ k1e
∫ k1k3

k2
dsds,(3.11)

and the solution of (3.10) is

λ3 = − cos θ1e
∫ k2k3

k1
ds ∫ k2e

−
∫ k2k3

k1
dsds.(3.12)
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Substituting (3.11) and (3.12) into (3.7)1 gives the condition to be q-helices of
type-0 as follows:(

e−
∫ k1k3

k2
ds ∫ k1e

∫ k1k3
k2

dsds
)
k1 +

(
e
∫ k2k3

k1
ds ∫ k2e

−
∫ k2k3

k1
dsds

)
k2 = 0.(3.13)

Conversely, suppose that the relation (3.5) holds, also the fixed vector filed U
can be composed of

U =cos θ1T−
(
cos θ1e

−
∫ k1k3

k2
ds ∫ k1e

∫ k1k3
k2

dsds
)
Nq

−
(
cos θ1e

∫ k2k3
k1

ds ∫ k2e
−

∫ k2k3
k1

dsds
)
Bq.

(3.14)

We obtain U′= 0 by using (3.6). Hence γ is a q-helices of type-0.

Corollary 3.1. If γ is a q-helix of type-0, an axis of γ is

D0 = cos θ1T+
(
− cos θ1e

−
∫ k1k3

k2
ds ∫ k1e

∫ k1k3
k2

dsds
)
Nq

+
(
− cos θ1e

∫ k2k3
k1

ds ∫ k2e
−

∫ k2k3
k1

dsds
)
Bq.

(3.15)

Remark 3.1. If the tangent vector field T of the curve γ and the fixed axis D0 are
orthogonal to each other, that is, cos θ1 = cos π

2
= 0, then the q-helix of type-0 can not

occur since the vanishing of the axis D0.

3.2. The q-helices of type-1

Theorem 3.2. Let γ be a curve due to the q-frame in E3. Then γ is a q-helix of
type-1 if and only if(

e
∫ k1k2

k3
ds ∫ k1e

−
∫ k1k2

k3
dsds

)
k1 +

(
e−

∫ k2k3
k1

ds ∫ k3e
∫ k2k3

k1
dsds

)
k3 = 0.(3.16)

Proof. A q-helix of type-1 satisfies the condition

λ2 = ⟨Nq,U⟩ = cos θ2,(3.17)

where θ2 is a constant angle. Therefore, by substituting λ2 = cos θ2 into the system
(3.4), it turns into

λ′
1−λ2k1 − λ3k2 = 0,

λ1k1 − λ3k3 = 0,
λ′
3+λ1k2 + λ2k3 = 0.

(3.18)

From (3.18)2,
λ3 = k1

k3
λ1, λ1 = k3

k1
λ3.(3.19)

By using (3.19) in the equations (3.18)1 and (3.18)3, we get the following linear
differential equations of first order:

λ′
1 − k1k2

k3
λ1 = cos θ2k1,(3.20)
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λ′
3+

k2k3

k1
λ3 = − cos θ2k3.(3.21)

The solution of (3.20) is

λ1 = cos θ2e
∫ k1k2

k3
ds ∫ k1e

−
∫ k1k2

k3
dsds,(3.22)

and the solution of (3.21) is

λ3 = − cos θ2e
−

∫ k2k3
k1

ds ∫ k3e
∫ k2k3

k1
dsds.(3.23)

Substituting (3.22), and (3.23) into (3.18)2 gives the condition to be q-helices of
type-1 as follows:

(
e
∫ k1k2

k3
ds ∫ k1e

−
∫ k1k2

k3
dsds

)
k1 +

(
e−

∫ k2k3
k1

ds ∫ k3e
∫ k2k3

k1
dsds

)
k3 = 0.(3.24)

Conversely, suppose that the relation (3.16) holds, also the fixed vector field U
can be composed of

U =
(
cos θ2e

∫ k1k2
k3

ds ∫ k1e
−

∫ k1k2
k3

dsds
)
T+ cos θ2Nq

−
(
cos θ2e

−
∫ k2k3

k1
ds ∫ k3e

∫ k2k3
k1

dsds
)
Bq.

(3.25)

We obtain U′= 0 by using (3.17). Hence γ is a q-helix of type-1.

Corollary 3.2. If γ is a q-helix of type-1, an axis of γ is

D1 =
(
cos θ2e

∫ k1k2
k3

ds ∫ k1e
−

∫ k1k2
k3

dsds
)
T+ cos θ2Nq

+
(
− cos θ2e

−
∫ k2k3

k1
ds ∫ k3e

∫ k2k3
k1

dsds
)
Bq.

(3.26)

Remark 3.2. If the tangent vector field Nq of the curve γ and the fixed axis D1 are
orthogonal to each other, that is, cos θ2 = cos π

2
= 0, then the q-helix of type-1 can not

occur since the vanishing of the axis D1.

3.3. The q-helices of type-2

Theorem 3.3. Let γ be a curve due to the q-frame in E3. Then γ is a q-helix of
type-2 if and only if(

e−
∫ k1k2

k3
ds ∫ k2e

∫ k1k2
k3

dsds
)
k2 +

(
e
∫ k1k3

k2
ds ∫ k3e

−
∫ k1k3

k2
dsds

)
k3 = 0.(3.27)

Proof. A q-helix of type-2 satisfies the condition

λ3 = ⟨Bq,U⟩ = cos θ3,(3.28)
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where θ3 is a constant angle. Therefore, by substituting λ3 = cos θ3 into the system
(3.4), it turns into

λ1k2 + λ2k3 = 0.
λ′
1−λ2k1 − λ3k2 = 0,

λ′
2+λ1k1 − λ3k3 = 0.

(3.29)

From (3.29)1,
λ2 = −k2

k3
λ1, λ1 = −k3

k2
λ2.(3.30)

By using (3.30) in the equations (3.29)2, and (3.29)3, we get the following linear
differential equations of first order:

λ′
1+

k1k2

k3
λ1 = cos θ3k2,(3.31)

λ′
2−k1k3

k2
λ2 = cos θ3k3.(3.32)

The solutions of (3.31) and (3.32) are

λ1 = cos θ3e
−

∫ k1k2
k3

ds ∫ k2e
∫ k1k2

k3
dsds,(3.33)

λ2 = cos θ3e
∫ k1k3

k2
ds ∫ k3e

−
∫ k1k3

k2
dsds,(3.34)

respectively.

Substituting (3.33) and (3.34) into (3.29)1 gives the condition to be q-helices of
type-2 as follows:(

e−
∫ k1k2

k3
ds ∫ k2e

∫ k1k2
k3

dsds
)
k2 +

(
e
∫ k1k3

k2
ds ∫ k3e

−
∫ k1k3

k2
dsds

)
k3 = 0.(3.35)

Conversely, suppose that the relation (3.27) holds, also the fixed vector field U
can be composed of

U =
(
cos θ3e

−
∫ k1k2

k3
ds ∫ k2e

∫ k1k2
k3

dsds
)
T

+
(
cos θ3e

∫ k1k3
k2

ds ∫ k3e
−

∫ k1k3
k2

dsds
)
Nq + cos θ3Bq.

(3.36)

We obtain U′= 0 by using (3.27) and (3.28). Hence γ is a q-helix of type-2.

Corollary 3.3. If γ is a q-helix of type-2, an axis of γ is

D2 =
(
cos θ3e

−
∫ k1k2

k3
ds ∫ k2e

∫ k1k2
k3

dsds
)
T

+
(
cos θ3e

∫ k1k3
k2

ds ∫ k3e
−

∫ k1k3
k2

dsds
)
Nq + cos θ3Bq.

(3.37)

Remark 3.3. If the tangent vector field Bq of the curve γ and the fixed axis D2 are
orthogonal to each other, that is, cos θ3 = cos π

2
= 0, then the q-helix of type-2 can not

occur since the vanishing of the axis D2.
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3.4. The relations of q-helices to each other

In this part, we give the relations of q-helices to each other based on the conse-
quences of Theorems 3.1, 3.2 and 3.3.

Corollary 3.4. Let γ be a q-helix of type-0 in E3. Then γ is a q-helix of type-1 if
and only if

k1 = 0 or k2 = ck3,(3.38)

where c is a constant.

Proof. Using (3.14) at the condition to be a q-helix of type-1 as follows:

⟨Nq,U⟩ = − cos θ1e
−

∫ k1k3
k2

ds ∫ k1e
∫ k1k3

k2
dsds.(3.39)

The expression in (3.39) becomes constant if the cases (3.38) are satisified.

Corollary 3.5. Let γ be a q-helix of type-0 in E3. Then γ is a q-helix of type-2 if
and only if

k2 = 0 or k1 = −ck3(3.40)

where c is a constant.

Proof. Using (3.14) at the condition to be a q-helix of type-2 as follows:

⟨Bq,U⟩ = − cos θ1e
∫ k2k3

k1
ds ∫ k2e

−
∫ k2k3

k1
dsds.(3.41)

The expression in (3.41) becomes constant if the cases (3.40) are satisified.

Corollary 3.6. Let γ be a q-helix of type-1 in E3. Then γ is a q-helix of type-0 if
and only if

k1 = 0 or k3 = −ck2(3.42)

where c is a constant.

Proof. Using (3.25) at the condition to be a q-helix of type-0 as follows:

⟨T,U⟩ = cos θ2e
∫ k1k2

k3
ds ∫ k1e

−
∫ k1k2

k3
dsds.(3.43)

The expression in (3.43) becomes constant if the cases (3.42) are satisified.

Corollary 3.7. Let γ be a q-helix of type-1 in E3. Then γ is a q-helix of type-2 if
and only if

k3 = 0 or k1 = −ck2(3.44)

where c is a constant.
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Proof. Using (3.25) at the condition to be a q-helix of type-2 as follows:

⟨Bq,U⟩ = − cos θ2e
−

∫ k2k3
k1

ds ∫ k3e
∫ k2k3

k1
dsds.(3.45)

The expression in (3.45) becomes constant if the cases (3.44) are satisified.

Corollary 3.8. Let γ be a q-helix of type-2 in E3. Then γ is a q-helix of type-0 if
and only if

k2 = 0 or k3 = ck1.(3.46)

where c is a constant.

Proof. Using (3.36) at the condition to be a q-helix of type-0 as follows:

⟨T,U⟩ = cos θ3e
−

∫ k1k2
k3

ds ∫ k2e
∫ k1k2

k3
dsds.(3.47)

The expression in (3.47) becomes constant if the cases (3.46) are satisified.

Corollary 3.9. Let γ be a q-helix of type-2 in E3. Then γ is a q-helix of type-1 if
and only if

k3 = 0 or k2 = −ck1.(3.48)

where c is a constant.

Proof. Using (3.36) at the condition to be a q-helix of type-1 as follows:

⟨Nq,U⟩ = cos θ3e
∫ k1k2

k3
ds ∫ k1e

−
∫ k1k2

k3
dsds.(3.49)

The expression in (3.49) becomes constant if the cases (3.48) are satisified.

The above results can be put together with the following corollary:

Corollary 3.10. Let γ be a curve via q-frame in E3. Then

(i) The curve γ is both a q-helix of type-0 and type-1 provided that

k1 = 0 or k2 = Ak3,

where A is an arbitrary constant.

(ii) The curve γ is both a q-helix of type-0 and type-2 provided that

k2 = 0 or k1 = Bk3,

where B is an arbitrary constant.

(iii) The curve γ is both a q-helix of type-1 and type-2 provided that

k3 = 0 or k2 = Ck1,

where C is an arbitrary constant.
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4. The Darboux q-helices

In this part of our research, we classify the Darboux q-helices. First we study
the conditions of q-helices of type-0, type-1 and type-2 to be Darboux q-helices,
respectively. Finally, we obtain the general case for q-helices to be Darboux helices.

From [4], the Darboux vector of a curve due to the q-frame is as follows:

∂ =k3T−k2Nq + k1Bq.(4.1)

We have to give the description of Darboux q-helices as follows:

Definition 4.1. A unit speed curve γ framed by q-frame whose Darboux vector
∂ is said to be a Darboux helix provided that there exists a non-zero fixed direction
U ∈E3 such that satisfies

⟨∂,U⟩ = cosφ,(4.2)

φ is a constant angle between the vectors ∂ and U.

Differentiating (4.2) and rearranging the equation gives the system

λ′
1−λ2k1 − λ3k2 = 0,

λ′
2+λ1k1 − λ3k3 = 0,

λ′
3+λ1k2 + λ2k3 = 0.

(4.3)

Based upon the system (4.3), we take the q-helices of type-0, type-1 and type-2,
and a curve frame by a q-frame to be Darboux helices into consideration, respec-
tively, in the subsequent four cases:

Case 1: Let γ be a q-helix of type-0. Hence the equation (3.6) holds. Then we
have the equation

⟨∂′,U⟩ = λ1k
′
3 − λ2k

′
2 + λ3k

′
1 = 0.(4.4)

Using (3.6) and (4.4) in the system (4.3) results in the following system:

cos θ1k
′
3 − λ2k

′
2 + λ3k

′
1 = 0,

λ2k1 + λ3k2 = 0,
λ′
2+cos θ1k1 − λ3k3 = 0,

λ′
3+cos θ1k2 + λ2k3 = 0.

(4.5)

Applying (4.5)2 into the equations (4.5)3 and (4.5)4, the functions λ2 and λ3 are
found as in (3.11) and (3.12). If the values obtained are substituted to the equation
(4.5)1, then it follows that

k′3 + k′2e
−

∫ k1k3
k2

ds ∫ k1e
∫ k1k3

k2
dsds− k′1e

∫ k2k3
k1

ds ∫ k2e
−

∫ k2k3
k1

dsds = 0.(4.6)

Also from (3.13), we have(
e
∫ k2k3

k1
ds ∫ k2e

−
∫ k2k3

k1
dsds

)
= −k1

k2

(
e−

∫ k1k3
k2

ds ∫ k1e
∫ k1k3

k2
dsds

)
.(4.7)
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Substituting (4.7) into (4.6) gives

k′3 +
(
k′2 +

k1k
′
1

k2

)(
e−

∫ k1k3
k2

ds ∫ k1e
∫ k1k3

k2
dsds

)
= 0(4.8)

which is the condition for a q-helix of type-0 to be a Darboux helix.

Conversely, suppose that the relation (4.8) holds, it can be seen that the axis
given in (3.14) is a fixed one.

Case 2: Let γ be a q-helix of type-1. Hence the equation (3.17) holds. Using (3.17),
and (4.4) in the system (4.3), we find the system

λ1k
′
3 − cos θ2k

′
2 + λ3k

′
1 = 0,

λ′
1−λ2k1 − λ3k2 = 0,

λ1k1 − λ3k3 = 0,
λ′
3+λ1k2 + λ2k3 = 0.

(4.9)

Applying (4.9)3 into the equations (4.9)2 and (4.9)4, the functions λ1 and λ3 are
found as in (3.22) and (3.23). If the values obtained are substituted to the equation
(4.9)1, then it follows that

k′3e
∫ k1k2

k3
ds ∫ k1e

−
∫ k1k2

k3
dsds− k′2 − k′1e

−
∫ k2k3

k1
ds ∫ k3e

∫ k2k3
k1

dsds = 0(4.10)

Also from (3.24), we obtain

(
e−

∫ k2k3
k1

ds ∫ k3e
∫ k2k3

k1
dsds

)
= −k1

k3

(
e
∫ k1k2

k3
ds ∫ k1e

−
∫ k1k2

k3
dsds

)
(4.11)

Substituting (4.11) into (4.10), we attain the equation

k′2 +
(

k1k
′
1

k3
− k′3

)(
e
∫ k1k2

k3
ds ∫ k1e

−
∫ k1k2

k3
dsds

)
= 0(4.12)

which is the condition for a q-helix of type-1 to be a Darboux helix.

Conversely, suppose that the relation (4.12) holds. It can be seen that the axis
given in (3.25) is a fixed one.

Case 3: Let γ be a q-helix of type-2. So the equation (3.28) holds. Using (3.28)
and (4.4) in the system (4.3), the system is as follows:

λ1k
′
3 − λ2k

′
2 + cos θ3k

′
1 = 0,

λ′
1−λ2k1 − λ3k2 = 0,

λ′
2+λ1k1 − λ3k3 = 0,

λ1k2 + λ2k3 = 0.

(4.13)

Applying (4.13)4 into the equations (4.13)2 and (4.13)3, the functions λ1 and λ2 are
obtained as in (3.33) and (3.34). If the values obtained are put into the equation
(4.13)1, then it is followed that
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k′3e
−

∫ k1k2
k3

ds ∫ k2e
∫ k1k2

k3
dsds− k′2e

∫ k1k3
k2

ds ∫ k3e
−

∫ k1k3
k2

dsds+ k′1 = 0.(4.14)

Also from (3.35), we obtain(
e−

∫ k1k2
k3

ds ∫ k2e
∫ k1k2

k3
dsds

)
= −k3

k2

(
e
∫ k1k3

k2
ds ∫ k3e

−
∫ k1k3

k2
dsds

)
.(4.15)

Replacing (4.15) into (4.14), we reach the result

k′1 −
(
k′2 +

k3k
′
3

k2

)(
e
∫ k1k3

k2
ds ∫ k3e

−
∫ k1k3

k2
dsds

)
= 0(4.16)

which is the condition for a q-helix of type-2 to be a Darboux helix.

Conversely, suppose that the relation (4.16) holds. It can be seen that the axis
given in (3.36) is a fixed one.

Case 4 (General Case): Let γ be a curve due to the q-frame in E3. From (4.2),
we obtain

λ1k3 − λ2k2 + λ3k1 = cosφ.(4.17)

Differentiating (4.17) and after some arrangements, we find

λ1k
′
3 − λ2k

′
2 + λ3k

′
1 = 0.(4.18)

With the aid of (4.17) and (4.18), we arrive

λ3 =
(k′

2k3−k2k
′
3)λ2−cosφk′

3

k′
1k3−k1k′

3
,(4.19)

and

λ1 =
(k′

2k1−k2k
′
1)λ2−cosφk′

1

k′
3k1−k3k′

1
,(4.20)

respectively. Substituting (4.19) and (4.20) into (4.3)2 delivers the linear DE as

λ′
2+
(

k′
2k

2
1−k2k1k

′
1+k′

2k
2
3−k2k3k

′
3

k′
3k1−k3k′

1

)
λ2 =

cosφ(k1k
′
1+k3k

′
3)

k′
3k1−k3k′

1
.(4.21)

The solution of (4.21) is

λ2 = cosφe
∫ k2k1k′

1+k2k3k′
3−k′

2k2
1−k′

2k2
3

k′
3k1−k3k′

1
ds ∫ (k1k

′
1+k3k

′
3)

k′
3k1−k3k′

1
e
∫ k′

2k2
1−k2k1k′

1+k′
2k2

3−k2k3k′
3

k′
3k1−k3k′

1
ds
ds.

(4.22)
Using (4.17) and (4.18), we obtain

λ1 =
(k′

1k2−k1k
′
2)λ3+cosφk′

2

k′
2k3−k2k′

3
,(4.23)

and

λ2 =
(k′

1k3−k1k
′
3)λ3+cosφk′

3

k′
2k3−k2k′

3
,(4.24)
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respectively. Replacing (4.23) and (4.24) into (4.3)3, we have the following differ-
ential equation

λ′
3+
(

k′
1k

2
2−k1k2k

′
2+k′

1k
2
3−k1k3k

′
3

k′
2k3−k2k′

3

)
λ3 =

cosφk2k
′
2+cosφk3k

′
3

k2k′
3−k′

2k3
.(4.25)

The solution of (4.25) is

λ3 = cosφe
∫ k1k2k′

2+k1k3k′
3−k′

1k2
3−k′

1k2
2

k′
2k3−k2k′

3
ds ∫ k2k

′
2+k3k

′
3

k2k′
3−k′

2k3
e
∫ k′

1k2
2−k1k2k′

2+k′
1k2

3−k1k3k′
3

k′
2k3−k2k′

3
ds
ds.

(4.26)
From (4.17) and (4.18), we attain

λ2 =
(k′

3k1−k3k
′
1)λ1+cosφk′

1

k′
2k1−k2k′

1
,(4.27)

and

λ3 =
(k′

2k3−k2k
′
3)λ1−cosφk′

2

(k′
1k2−k1k′

2)
,(4.28)

respectively. Usage of the equations (4.27) and (4.28) at (4.3)1 allows the equation

λ′
1 +

(
k3k

′
1−k′

3k1+k′
2k3−k2k

′
3

k1k′
2−k′

1k2

)
λ1 =

cosφk1k
′
1+cosφk2k

′
2

k1k′
2−k′

1k2
.(4.29)

The solution of (4.29) is

λ1 = cosφe
∫ k′

3k1−k3k′
1−k′

2k3+k2k′
3

k1k′
2−k′

1k2
ds ∫ cosφk1k

′
1+cosφk2k

′
2

k1k′
2−k′

1k2
e
∫ k3k′

1−k′
3k1+k′

2k3−k2k′
3

k1k′
2−k′

1k2
ds
ds.

(4.30)
Substituting (4.22), (4.26) and (4.30) into (4.18) gives the condition for a curve to
be a Darboux q-helix as follows:(

e
∫ k1k2k′

2+k1k3k′
3−k′

1k2
3−k′

1k2
2

k′
2k3−k2k′

3
ds ∫ k2k

′
2+k3k

′
3

k2k′
3−k′

2k3
e
∫ k′

1k2
2−k1k2k′

2+k′
1k2

3−k1k3k′
3

k′
2k3−k2k′

3
ds
ds

)
k′1

+

(
e
∫ k′

3k1−k3k′
1−k′

2k3+k2k′
3

k1k′
2−k′

1k2
ds ∫ k1k

′
1+k2k

′
2

k1k′
2−k′

1k2
e
∫ k3k′

1−k′
3k1+k′

2k3−k2k′
3

k1k′
2−k′

1k2
ds
ds

)
k′3

=

(
e
∫ k2k1k′

1+k2k3k′
3−k′

2k2
1−k′

2k2
3

k′
3k1−k3k′

1
ds ∫ (k1k

′
1+k3k

′
3)

k′
3k1−k3k′

1
e
∫ k′

2k2
1−k2k1k′

1+k′
2k2

3−k2k3k′
3

k′
3k1−k3k′

1
ds
ds

)
k′2.

(4.31)

Conversely, suppose that the relation (4.31) holds, the fixed vector filed U can
also be composed of

U =(
cosφe

∫ k′
3k1−k3k′

1−k′
2k3+k2k′

3
k1k′

2−k′
1k2

ds ∫ cosφk1k
′
1+cosφk2k

′
2

k1k′
2−k′

1k2
e
∫ k3k′

1−k′
3k1+k′

2k3−k2k′
3

k1k′
2−k′

1k2
ds
ds

)
T

+

(
cosφe

∫ k2k1k′
1+k2k3k′

3−k′
2k2

1−k′
2k2

3
k′
3k1−k3k′

1
ds ∫ (k1k

′
1+k3k

′
3)

k′
3k1−k3k′

1
e
∫ k′

2k2
1−k2k1k′

1+k′
2k2

3−k2k3k′
3

k′
3k1−k3k′

1
ds
ds

)
Nq

+

(
cosφe

∫ k1k2k′
2+k1k3k′

3−k′
1k2

3−k′
1k2

2
k′
2k3−k2k′

3
ds ∫ k2k

′
2+k3k

′
3

k2k′
3−k′

2k3
e
∫ k′

1k2
2−k1k2k′

2+k′
1k2

3−k1k3k′
3

k′
2k3−k2k′

3
ds
ds

)
Bq

(4.32)
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We obtain U′= 0 by using (4.17) and (4.31). Hence γ is a Darboux q-helix.

We can give the following theorem containing the cases above:

Theorem 4.1. Let γ be a curve due to the q-frame in Euclidean 3-space E3. Then

(i) γ is a Darboux q-helix satisfying the condition to be q-helix of type-0 if and
only if the equation (4.8) is satisfied.

(ii) γ is a Darboux q-helix satisfying the condition to be q-helix of type-1 if and
only if the equation (4.12) is satisfied.

(iii) γ is a Darboux q-helix satisfying the condition to be q-helix of type-2 if and
only if the equation (4.16) is satisfied.

(iv) γ is a Darboux q-helix if and only if the equation (4.31) is satisfied, and the
fixed axis is given as in (4.32).

5. Conclusion

Helices are very special curves by which many patterns can be modelled in
nature. In the present examination, we considered these special curves from the
point of view of frame fields which describe the behaviour of the curves. The original
aspect of our research is to deal quasi-frame (abbv. q-frame) in Euclidean 3-space.
For all vector fields of the mentioned frame, slant helices, which are recalled, in
the context of the paper, as q-helices, have been worked out in Euclidean 3-space.
Additionally, the Darboux q-helices are obtained by Darboux vector which has been
formed by q-frame fields.
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5. M. Dede, C. Ekı̇cı̇ and İ. Güven: Directional Bertrand Curves. GU. J. Sci. 31
(2018), 202–211.
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