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LAGRANGE SPACESWITH GENERALIZED (γ, β)-METRIC

Suresh K. Shukla, P. N. Pandey and Shivalika Saxena

Abstract. The present paper deals with the differential geometry of a Lagrange space
endowed with generalized (γ, β)-metric, where γ is an mth-root metric and β is a 1-
form. We obtain fundamental tensor, its inverse, Euler-Lagrange equations, semispray
coefficients and canonical nonlinear connection for a Lagrange space with generalized
(γ, β)-metric. Several other properties of such a space are also discussed.
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1. Introduction

Lagrange spaces with (α, β)-metric were studied by several authors such as Miron
[4], Nicolaescu [1, 2], Shukla and Pandey [6]. Recently, Shukla and Pandey [7]
discussed Lagrange spaces with (γ, β)-metric and obtained various results. An
n-dimensional Lagrange space Ln =

(
M, L(x, y)

)
is said to be endowed with (γ, β)-

metric if Lagrangian L(x, y) is a function of γ(x, y) and β(x, y), where γ(x, y) is a

cubic metric and β(x, y) is a 1-form, i.e. γ = 3
√
ai j k(x)yiyjyk and β(x, y) = bi(x)yi. The

aim of the present paper is to generalize the notion of (γ, β)-metric by considering
γ(x, y) as an mth-root metric. We call such metric as generalized (γ, β)-metric.

The paper is organized as follows. Section Two consists of some preliminary
results required for the discussion of subsequent sections. It includes the notion
of a Lagrange space with generalized (γ, β)-metric. In Section Three, we discuss
some properties of a Lagrange space with generalized (γ, β)-metric and obtain the
expression for the fundamental metric tensor �i j and its inverse �i j. In Section Four,
we consider the variational problem in Lagrange spaces with generalized (γ, β)-
metric and obtain various forms of Euler-Lagrange equations. Section Five deals
with the semispray of a Lagrange space with generalized (γ, β)-metric. Section
Six discusses the nonlinear connection in a Lagrange space with generalized (γ, β)-
metric. In Section Seven, we give concluding remarks on the results obtained in the
paper anddiscuss thepossibilitiesof furtherworkon the spaceunder consideration.
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2. Preliminaries

LetM be ann-dimensional smoothmanifold and letTM be its tangent bundle. Let
(xi) and (xi, yi) be the local coordinates onM and TM respectively. A Lagrangian is a
function L : TM→ Rwhich is a smooth function on T̃M = TM� {0} and continuous
on the null section. The Lagrangian L(x, y) is said to be regular if rank

(
�i j(x, y)

)
= n,

where

(2.1) �i j(x, y) =
1
2
∂̇i∂̇ jL

is a covariant symmetric tensor called the fundamental tensor of the Lagrangian
L(x, y) and ∂̇i ≡ ∂

∂yi . A Lagrange space is a pair Ln =
(
M, L(x, y)

)
, L(x, y) being a

regular Lagrangian whose fundamental tensor �i j has constant signature on T̃M.

The integral of action of the Lagrangian L(x, y) along a smooth curve c : [0, 1]→
M leads to the Euler-Lagrange equations:

(2.2) Ei(L) ≡ ∂L
∂xi
− d

dt

(
∂L
∂yi

)
= 0, yi =

dxi

dt
.

The coefficients of the semispray S of a Lagrange space Ln =
(
M, L(x, y)

)
are

given by

(2.3) Gi(x, y) =
1
4
�ih

(
yk∂̇h∂kL − ∂hL

)
, ∂k ≡ ∂

∂xk
.

The semispray S is called a canonical semispray as its coefficients depend on L(x, y)
only.

The coefficients of canonical nonlinear connection N
(
Ni

j(x, y)
)
of a Lagrange

space Ln =
(
M, L(x, y)

)
are given by

(2.4) Ni
j = ∂̇ jG

i.

A Lagrangian L(x, y) is said to be a generalized (γ, β)-metric if it is a function
of γ and β, i.e.

(2.5) L(x, y) = L(γ, β),

where

(2.6) γm = ai1 i2 ... im (x)y
i1yi2 . . . yim

and

(2.7) β(x, y) = bi(x)yi.
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We call the space Ln =
(
M, L(x, y)

)
determined by the Lagrangian (2.5) a Lagrange

space with generalized (γ, β)-metric.

In particular, form = 3, γ(x, y) is a cubicmetric and the space becomes a Lagrange
space with (γ, β) -metric (cf. [7]). For m = 2, the space becomes the well known

Lagrange space with (α, β) -metric , where α(x, y) =
√
aij(x)yiyj and β(x, y) = bi(x)yi

(cf. [1, 2]).

For basic notations and terminology related to a Lagrange space, we refer to the
books [3] and [5].

3. Fundamental tensor

If we differentiate (2.6) partiallywith respect to yj and use the symmetry of ai1 i2 ... im
in its indices, we obtain

(3.1) ∂̇ jγ = γ
−(m−1)aj(x, y),

where aj(x, y) = aj i2 ... im (x)y
i2 . . . yim .

Again differentiating (3.1) partially with respect to yh, using symmetry of
ai1 i2 ... im(x) in its indices and simplifying, we find

(3.2) ∂̇ j∂̇hγ = (m − 1)γ−(m−1)ajh(x, y) − (m − 1)γ−(2m−1)aj ah,

where ajh = aj h i3 ... im (x)y
i3 . . . yim .

Further differentiation of (3.2) with respect to yl yields

∂̇ j∂̇h∂̇lγ = (m − 1) (2m− 1)γ−(3m−1)aj ah al
− (m − 1)2γ−(2m−1)S

jhl
{aj ahl} + (m − 1) (m − 2)ajhl ,

(3.3)

where aj h l(x, y) = aj h l i4 ... im(x)y
i4 . . . yim andS

jhl
represents the cyclic sumwith respect

to the indices j, h & l.

Differentiating (2.7) partially with respect to yj, we have

(3.4) ∂̇ jβ = bj(x).

Further differentiating (3.4) partially with respect to yh, we get

(3.5) ∂̇ j∂̇hβ = 0.

Thus, we have
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Proposition 3.1. In a Lagrange space Ln with generalized (γ, β)-metric, the following
hold good:

∂̇ jγ = γ
−(m−1)aj(x, y),

∂̇ j∂̇hγ = (m − 1)γ−(m−1)ajh(x, y)− (m − 1)γ−(2m−1)aj ah ,

∂̇ j∂̇h∂̇lγ = (m − 1) (2m− 1)γ−(3m−1)aj ah al
− (m − 1)2γ−(2m−1)S

j h l
{aj ahl} + (m − 1) (m − 2)ajhl ,

∂̇ jβ = bj(x), ∂̇ j∂̇hβ = 0,

where

aj(x, y) = aj i2 ... im (x)y
i2 . . . yim ,

ajh = aj h i3 ... im (x)y
i3 . . . yim ,

aj h l(x, y) = aj h l i4 ... im (x)y
i4 . . . yim .

The moments of Lagrangian L(x, y) are given by

(3.6) pi :=
1
2
∂̇iL.

In our case, the LagrangianL(x, y) is a function of γ and βonly (vide (2.5)). Therefore,
we have

(3.7) pi =
1
2
(Lγ∂̇iγ + Lβ∂̇iβ),

where Lγ = ∂L∂γ , Lβ = ∂L∂β .

Using (3.1) and (3.4) in (3.7), we obtain

(3.8) pi =
1
2
(γ−(m−1)Lγai + Lβbi).

Thus, we have

Theorem 3.1. In a Lagrange space Ln with generalized (γ, β)-metric, the moments of
Lagrangian L(x, y) are given by

(3.9) pi = ρai + ρ1bi,

where

(3.10) ρ =
1
2
γ−(m−1)Lγ

and

(3.11) ρ1 =
1
2
Lβ.
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Remarks 3.2. The scalars ρ and ρ1 appearing in Theorem 3.1 are called the principal
invariants of the space Ln.

Differentiating (3.10) and (3.11) partially with respect to yj and simplifying, we
respectively have

(3.12) ∂̇ jρ =
1
2
γ−2(m−1)

(
Lγ γ − (m − 1)γ−1Lγ

)
aj +

1
2
γ−(m−1)Lγβbj

and

(3.13) ∂̇ jρ1 =
1
2
γ−(m−1)Lβ γaj +

1
2
Lβ βbj,

where

Lγγ =
∂2L
∂γ2
, Lγβ =

∂2L
∂γ∂β

=
∂2L
∂β∂γ

= Lβ γ, Lβ β =
∂2L
∂β2
.

Thus, we have the following:

Proposition 3.2. The derivatives of the principal invariants of a Lagrange space Ln with
generalized (γ, β)-metric are given by

(3.14) ∂̇ jρ = ρ−2aj + ρ−1bj, ∂̇ jρ1 = ρ−1aj + ρ0bj,

with

(3.15) ρ−2 =
1
2
γ−2(m−1)

(
Lγ γ − (m − 1)γ−1Lγ

)
, ρ−1 =

1
2
γ−(m−1)Lγβ

and

(3.16) ρ0 =
1
2
Lβ β .

The energy of Lagrangian L(x, y) is defined as

(3.17) EL := yi∂̇iL − L.

Using (2.5) in (3.17), we have

(3.18) EL = yi(Lγ ∂̇iγ + Lβ ∂̇iβ) − L.

Since γ and β are positively homogeneous of degree one in yi, by virtue of Euler’s
theorem on homogeneous functions, we have

(3.19) yi∂̇iγ = γ and yi∂̇iβ = β.

In view of (3.19), (3.18) takes the form

(3.20) EL = γLγ + βLβ − L.

Thus, we have
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Theorem 3.3. In a Lagrange space with generalized (γ, β)-metric, the energy of the La-
grangian L(x, y) is given by (3.20).

Now, we find expression for the fundamental tensor �i j(x, y) of a Lagrange space
with generalized (γ, β)-metric. Using (2.5) in (2.1), we have

�i j =
1
2

[ (
Lγγ ∂̇iγ + Lγβ ∂̇iβ

)
∂̇ jγ + Lγ ∂̇i ∂̇ j γ

+
(
Lβγ ∂̇iγ + Lββ ∂̇iβ

)
∂̇ jβ + Lβ ∂̇i ∂̇ jβ

]
.

(3.21)

In view of Proposition 3.1, (3.21) takes the form

(3.22) �i j(x, y) = (m − 1)ρaij + ρ−2aiaj + ρ−1(aibj + ajbi) + ρ0bibj.

Equation (3.22) can be written as

(3.23) �i j(x, y) = (m − 1)ρaij + cicj,

where

(3.24) ci = q−1ai + q0bi

and q−1, q0 satisfy

(3.25) (a) q0q−1 = ρ−1, (b) (q−1)2 = ρ−2, (c) q20 = ρ0.

Thus, we have

Theorem 3.4. The fundamental tensor of a Lagrange space with generalized (γ, β)-metric
is given by (3.23).

The following result gives the expression for the inverse of �i j.

Theorem 3.5. The inverse �i j of the fundamental tensor �i j of a Lagrange space with
generalized (γ, β)-metric is given by

(3.26) �i j =
1

(m − 1) ρ

(
aij − 1

(m − 1) ρ + c2
cicj

)
,

where

(3.27) (a) ci = aircr, (b) c2 = aij cicj.

Proof. Let (aij) be the inverse of the nonsingular matrix (aij). Consider the matrix
(�i j) given by (3.26). Now

�i j �
jk =

[
(m − 1) ρ aij + ci cj

] 1
(m − 1) ρ

(
ajk − cj ck

(m − 1) ρ + c2

)

= δ jk −
aij cj ck

(m − 1)ρ + c2
+

ajk ci cj
(m − 1)ρ

− ci cj cj ck

(m − 1)ρ{(m − 1) ρ + c2}
= δ jk −

ci ck

(m − 1) ρ + c2
+

ci ck

(m − 1)ρ
− c2 ci ck

(m − 1) ρ{(m − 1) ρ + c2}
= δ jk .
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This shows that the matrix (�i j) given by (3.23) is nondegenerate and its inverse
(�i j) is given by (3.26).

Remarks 3.6. Substituting m = 3 and m = 2 in the expressions obtained in Propo-
sition 3.1, Theorem 3.1, Proposition 3.2, Theorem 3.4 and Theorem 3.5, we obtain the
corresponding results for a Lagrange space with (γ, β)- and (α, β)-metrics, respectively (cf.
[1, 2, 7])

4. Euler-Lagrange equations

Using (2.5) in (2.2), we obtain

(4.1) Ei(L) ≡ ∂L
∂xi
− d

dt

(
∂L
∂yi

)
= 0, yi =

dxi

dt
.

For the Lagrangian L given by (2.5), we have

d
dt

(
∂L
∂yi

)
=

(
Lγ γ

dγ
dt
+ Lγβ

dβ
dt

)
∂γ

∂yi
+

(
Lβ γ

dγ
dt
+ Lβ β

dβ
dt

)
∂β

∂yi

+ Lγ
d
dt

(
∂γ

∂yi

)
+ Lβ

d
dt

(
∂β

∂yi

)
.

(4.2)

In view of ∂iL = Lγ∂iγ + Lβ∂iβ and (4.2), (4.1) takes the form

Ei(L) =LγEi(γ) + LβEi(β) −
(
Lγ γ

dγ
dt
+ Lγβ

dβ
dt

)
∂γ

∂yi

−
(
Lβγ

dγ
dt
+ Lβ β

dβ
dt

)
∂β

∂yi
.

(4.3)

Since

Ei(γm) = mγm−1Ei(γ) −m
∂γ

∂yi
dγm−1

dt
,

we get

(4.4) Ei(γ) =
1
m
γ−(m−1)Ei(γm) + γ−(m−1)

∂γ

∂yi
dγm−1

dt
.

From Ei(β) =
∂β
∂xi − d

dt

(
∂β
∂yi

)
, we have

(4.5) Ei(β) = 2Firyr, yr =
dxr

dt
,

where

(4.6) Fir =
1
2

(
∂br
∂xi
− ∂bi
∂xr

)
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is the electromagnetic tensor field of the potentials bi.

Using (4.4) and (4.5) in (4.3), we obtain

Ei(L) =
2
m

(1
2
γ−(m−1)Lγ

)
Ei(γm) + 2

(1
2
γ−(m−1)Lγ

) ∂γ
∂yi

dγm−1

dt

+ 4
(1
2
Lβ

)
Firyr − ∂γ

∂yi

(
Lγ γ

dγ
dt
+ Lγβ

dβ
dt

)

− ∂β
∂yi

(
Lβγ

dγ
dt
+ Lβ β

dβ
dt

)
.

(4.7)

Thus, we have

Theorem 4.1. The Euler-Lagrange equations of a Lagrange space with generalized (γ, β)-
metric are of the following form:

Ei(L) ≡ 2
m
ρEi(γm) + 2ρ

∂γ

∂yi
dγm−1

dt
+ 4ρ1Firyr − ∂γ

∂yi

(
Lγγ

dγ
dt
+ Lγβ

dβ
dt

)

− ∂β
∂yi

(
Lβγ

dγ
dt
+ Lβ β

dβ
dt

)
= 0 , yi =

dxi

dt
.

(4.8)

For the natural parametrization of the curve c : t ∈ [0, 1] �→ xi(t) ∈ M with
respect to the mth-root metric ai1 ... im (x), γ

(
x, dxdt

)
= 1.

Thus, we have the following:

Theorem 4.2. In the natural parametrization, the Euler-Lagrange equations of a La-
grange space with generalized (γ, β)-metric are

(4.9) Ei(L) ≡ 2
m
ρEi(γm) + 4ρ1Firyr − ∂γ

∂yi
Lγ β

dβ
ds
− ∂β
∂yi

Lβ β
dβ
ds
= 0.

If β is constant on the integral curve c of the Euler-Lagrange equations with
natural parametrization, then (4.9) takes the form

(4.10) Ei(L) ≡ 2
m
ρEi(γm) + 4ρ1Firyr = 0.

Thus, we have

Theorem 4.3. If β is constant along the integral curve of the Euler-Lagrange equations
with natural parametrization, then the Euler-Lagrange equations of the Lagrange space
with generalized (γ, β)-metric are given by (4.10).

Remarks 4.4. Substitutingm = 3 andm = 2 in theEuler-Lagrange equations inTheorem
4.1, Theorem 4.2 and Theorem 4.3, we obtain corresponding forms of Euler-Lagrange
equations in Lagrange space with (γ, β)- and (α, β)-metrics, respectively (cf. [1, 2, 7]).
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5. Canonical semispray

In this section, we obtain the coefficients of the canonical semispray of a Lagrange
space with generalized (γ, β)-metric.

Using (2.5) in (2.3), we obtain

(5.1) Gi(x, y) =
1
4
�ih

(
yk∂̇h∂kL − ∂hL

)
.

Since γm = ai1 i2 ... im (x)y
i1yi2 . . . yim and β = bi(x) yi, we have

(5.2) ∂hγ = Ahγ
−(m−1), ∂hβ = Bh,

where

(5.3) Ah =
1
m
(∂hai1 i2 ... im )y

i1yi2 . . . yim , Bh = (∂hbi)yi.

Using (3.10), (3.11) and (5.2) in ∂kL = Lγ∂kγ + Lβ∂kβ, we get

(5.4) ∂kL = 2ρAk + 2ρ1Bk.

Differentiating (5.4) partially with respect to yh and simplifying, we have

(5.5) ∂̇h∂kL = 2(ρ−2ah + ρ−1bh)Ak + 2ρAkh + 2(ρ−1ah + ρ0bh)Bk + 2ρ1bkh,

where

(5.6) (a) Akh = ∂̇hAk, (b) bkh = ∂̇hBk.

Using (5.4) and (5.5) in (5.1), we obtain

Gi =
1
2
�ih

[
(ρ−2A0 + ρ−1B0)ah + (ρ−1A0 + ρ0B0)bh + ρA0h

+ ρ1b0h − (ρAh + ρ1Bh)
]
,

(5.7)

where

(i) A0 = Ak(x, y)yk, (ii) B0 = Bk(x, y)yk,

(iii) A0h = Akh(x, y)yk, (iv) b0h = bkh(x, y)yk.
(5.8)

Thus, we have

Theorem 5.1. The local coefficients of canonical semispray of a Lagrange space with
generalized (γ, β)-metric are given by (5.7).
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6. Canonical nonlinear connection

In this section, we obtain the local coefficients of the canonical nonlinear connec-
tion of a Lagrange space with generalized (γ, β)-metric.

Partial differentiation of �ih�is = δhs , with respect to yj, yields

(6.1) ∂̇ j�
ih = −2�rhCi

r j.

If we partially differentiate the quantities appearing in (3.15) and (5.8) with respect
to yj, we find the following quantities:

(6.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂̇ jρ−2 = μ−3aj + μ−2bj, ∂̇ jρ−1 = μ−2aj + μ−1bj,

∂̇ jρ0 = μ−1aj + μ0bj,

∂̇ jA0 = Aj + A0 j, ∂̇ jB0 = S
s j
{∂sbj}ys,

∂̇ jA0h = 2A0hj + Ajh, ∂̇ jb0h = bjh,

where

(6.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ−3 =
1
2
γ−3(m−1)

[
Lγγγ − 3(m − 1)γ−1Lγγ + (2m − 1) (m− 1)γ−2Lγ

]
,

μ−2 =
1
2
γ−2(m−1)

[
Lγγβ − (m − 1)γ−1Lγβ

]
,

μ−1 =
1
2
γ−(m−1)Lγγβ, μ0 =

1
2
Lβββ,

A0hj = Arhjyr, Arhj = ∂rahj.

Also, we have

(6.4) ∂̇ jah = (m − 1) ajh.

Now, applying (5.7) in (2.4), we get

Ni
j =

1
2

(
∂̇ j�

ih
)
(
(
ρ−2A0 + ρ−1B0

)
ah +

(
ρ−1A0 + ρ0B0

)
bh + ρ−2(∂̇hA0)

+ ρA0h + ρ1b0h − (
ρAh + ρ1Bh

)
) +

1
2
�ih

[
((∂̇ jρ−2)A0 + (∂̇ jρ−1)B0

+ ρ−1(∂̇ jB0))ah + (ρ−2A0 + ρ−1B0)∂̇ jah + ((∂̇ jρ−1)A0 + ρ−1(∂̇ jA0)

+ (∂̇ jρ0)B0 + ρ0(∂̇ jB0))bh + (∂̇ jρ)A0h + (∂̇ jρ1)b0h + ρ∂̇ jA0h

+ ρ1∂̇ jb0h − ((∂̇ jρ)Ah + ρ(∂̇ jAh) + (∂̇ jρ1)Bh + ρ1(∂̇ jBh))
]
.

(6.5)
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Using (3.14), (5.6), (5.8), (6.1), (6.2) and (6.4) in (6.5) and simplifying, we obtain

Ni
j = − 2Ci

rjG
r +

1
2
�ih

[
ρ−2((Aj + A0 j)ah + (A0h − Ah)aj + (m − 1)A0ajh)

+ ρ−1((Aj + A0 j)bh + (A0h − Ah)bj + ajb0h +S
s j
{∂sbj}ysah

+ (m − 1)B0ajh − ajBh) + ρ0

(
S
s j
{∂sbj}ysbh − bjBh + bjb0h

)
+ ρ1M

j h
{bjh} + ρ

(
2A0hj + Ajh − Ahj

)
+ μ−3A0ajah + μ−2(A0bjah

+ aj(B0ah + A0bh)) + μ−1
(
bj (B0ah + A0bh) + ajB0bh

)
+ μ0B0bjbh

]
,

(6.6)

whereM
j h

stands for interchange of indices j & h and difference.

Thus, we have

Theorem 6.1. The local coefficients of the canonical nonlinear connection of a Lagrange
space with generalized (γ, β)-metric are given by (6.6).

Remarks 6.2. Substituting m = 3 and m = 2 in (6.6), we obtain the local coefficients of
the nonlinear connection in Lagrange space with (γ, β)- and (α, β)-metrics, respectively (cf.
[1, 2, 7]).

7. Conclusions

In the paper, we have developed the theory of Lagrange spaces with general-
ized (γ, β)-metric. It presents a significant generalization of the earlier works of
Nicolaescu [1, 2], and Shukla and Pandey [7]. The expressions for the geometric
objects obtained in the paper may be useful in further work on the spaces under
consideration. The importance of the results lies in the study of canonical metrical
d-connection, curvatures and torsions in such spaces. The expressions for canon-
ical semispray and nonlinear connection, obtained respectively in Section 5 and
Section 6 may be applicable in geodesic correspondences between two Lagrange
spaces with different generalized (γ, β)-metrics on the same underlying manifold.
It is a matter of later investigations to look into the aforesaid applications of the
results obtained in the paper.
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