THE n-DUAL STRUCTURE OF THE SPACE OF p-SUMMABLE SEQUENCE SPACES

Pradeep Kumar Singh and J K Srivastava

Abstract. In this paper, we shall investigate the n-dual structure of the sequence space \(l^p \) regarded as normed space and n-normed space, where the given norm is derived by n-norm and they have been studied in [5, 6, 7].

Keywords: Sequence space, normed space, multilinear n-functional, isometric linear bijection.

1. Introduction

Similar to the theory of the space of the bounded linear functionals defined on a normed space, bounded multilinear n-functionals have been defined on an n-normed space and these theories have been studied by White [1], Gunawan [9, 10].

The concept of 2-normed spaces was initially investigated by Gahler [8]. After that, it has been generalized to n-normed spaces and has been studied by many others (see [2, 3, 4, 5, 6, 7]).

Definition 1.1. Let \(X \) be a vector space over \(\mathbb{K}(= \mathbb{R} \text{ or } \mathbb{C}) \) of dimension \(d \geq n(n \geq 2) \). A non-negative real valued function \(\| \cdot , \ldots , \cdot \| \) defined on \(X^n \) satisfying the four conditions:

(N1) \(\| x^1, x^2, \ldots, x^n \| = 0 \) if and only if \(x^1, x^2, \ldots, x^n \) are linearly dependent;

(N2) \(\| x^1, x^2, \ldots, x^n \| \) is invariant under any permutation of \(x^1, x^2, \ldots, x^n \);

(N3) \(\| \alpha \cdot x^1, x^2, \ldots, x^n \| = \| \alpha \| \cdot \| x^1, x^2, \ldots, x^n \| \);

(N4) \(\| x^1 + y, x^2, \ldots, x^n \| \leq \| x^1, x^2, \ldots, x^n \| + \| y, x^2, \ldots, x^n \| \);

for all \(x^1, x^2, \ldots, x^n, y \in X \) and for all \(\alpha \in \mathbb{K} \), is called an \(n \)-norm on \(X \), and the pair \((X, \| \cdot , \ldots , \cdot \|) \) is called an \(n \)-normed space.
Definition 1.2. Let \((X, \|\cdot\|)\) be an \(n\)-normed space and \(\{e^1, \ldots, e^n\}\) is a linearly independent set of \(n\) vectors, let us define:

1. \(\|x\|_o = \max \{\|x, e^1, \ldots, e^{n-1}\| : \{t_1, \ldots, t_{n-1}\} \subset \{1, \ldots, n\}\}\)
2. \(\|x\|_q = \left(\sum_{|t_1| + \ldots + |t_{n-1}| = 1} |x, e^1, \ldots, e^{n-1}|^{|t|} \right)^{1/q} ; \quad 1 \leq q < \infty.\)

In [3, 4], Gunawan proved that these two functions \((\|\cdot\|_o, \|\cdot\|_q)\) define norms (known as derived norms) on the vector space \(X\) and they are equivalent.

Definition 1.3. Let \((X, \|\cdot\|)\) is a normed space then a linear functional \(f : X \to K\) is said to be bounded if \(\exists\) a real number \(k > 0\) such that

\[|f(x)| \leq k\|x\|, \quad \text{for all } x \in X.\]

The linear functional \(f\) is said to be continuous at a point \(x_0 \in X\) if for every given \(\epsilon > 0, \exists\delta > 0\) such that

\[x \in X, \|x - x_0\| < \delta \implies |f(x) - f(x_0)| < \epsilon.\]

Lemma 1.1. Let \((X, \|\cdot\|)\) is a normed space then a linear functional \(f : X \to K\) is bounded if and only if \(f\) is continuous.

Analogous to the above definitions a bounded multilinear \(n\)-functional has been defined on \(n\)-normed space (for detail see [1, 9, 10]).

Definition 1.4. Let \(X\) be a vector space then a scalar valued function \(f : X^n \to K\) is called a multilinear \(n\)-functional if it satisfies:

1. \(f(x^1 + y^1, \ldots, x^n + y^n) = \sum_{h \in [x^1, \ldots, x^n]} f(h^1, \ldots, h^n),\)
2. \(f(\alpha_1 x^1, \ldots, \alpha_n x^n) = \alpha_1 \ldots \alpha_n f(x^1, x^2, \ldots, x^n),\)

for every \(x^1, x^2, \ldots, x^n \in X\) and for every \(\alpha_i \in K\).

A multilinear \(n\)-functional \(f\) defined on a normed space \((X, \|\cdot\|)\) is said to be bounded (i.e. bounded with respect norm) if \(\exists K > 0\) such that

\[|f(x^1, x^2, \ldots, x^n)| \leq K\|x^1\| \ldots \|x^n\|, \quad \text{for every } x^1, x^2, \ldots, x^n \in X.\]

Similarly, a multilinear \(n\)-functional \(f\) defined on an \(n\)-normed space \((X, \|\cdot\|)\) is said to be bounded (i.e. bounded with respect \(n\)-norm) if \(\exists K > 0\) such that

\[|f(x^1, x^2, \ldots, x^n)| \leq K\|x^1, x^2, \ldots, x^n\|, \quad \text{for every } x^1, x^2, \ldots, x^n \in X.\]

As we know that, the set \(B(X, K)\) of all bounded linear functional \(f\) defined on the normed space \((X, \|\cdot\|)\) forms a normed space with norm defined by

\[\|f\| = \sup \{|f(x)| : x \in X, \|x\| = 1\}.\]
The normed space \(\mathbf{B}(X, K) \) is called \textit{dual space} of the normed space \((X, \| \cdot \|) \) and is usually denoted by \(X^* \).

Similarly, the space of bounded multilinear \(n \)-functionals on \((X, \| \cdot \|) \) on \((X, \| \cdot \|, \ldots, \| \cdot \|) \) is called the \textit{n-dual space} of the normed space \((X, \| \cdot \|) \) \(\text{[the n-dual space of the n-normed space \((X, \| \cdot \|, \ldots, \| \cdot \|) \)} \) respectively see \([9, 10]\), with norms

\[
\| f \|_{n,1} := \sup_{\| x^1 \|, \ldots, \| x^n \| \neq 0} \frac{|f(x^1, x^2, \ldots, x^n)|}{\|x^1\| \cdots \|x^n\|};
\]

\[
\| f \|_{n,n} := \sup_{\| x^1, x^2, \ldots, x^n \| \neq 0} \frac{|f(x^1, x^2, \ldots, x^n)|}{\|x^1, x^2, \ldots, x^n\|} \quad \text{respectively}.
\]

Here, we shall consider the well-known sequence space \(l^p \), \(1 \leq p < \infty \); where

\[
l^p = \left\{ x = (x_i)_{i=0}^{\infty} \mid \sum_{i=0}^{\infty} |x_i|^p < \infty \quad \text{and} \quad x_i \in K; i = 0, 1, 2, \ldots \right\}
\]

with norms

\[
\| x \|_p = \left(\sum_{i=0}^{\infty} |x_i|^p \right)^{1/p}
\]

and

\[
\| x \|_\infty = \sup_{0 \leq i < \infty} |x_i|.
\]

We know that \((l^p, \| \cdot \|_p) \) is a Banach space whereas \((l^p, \| \cdot \|_\infty) \) is not a Banach space.

In \([5]\), for our convenience and need, we have denoted the set of whole numbers as \(\mathbb{N} = \{0, 1, 2, 3, \ldots \} \) will also be written in the form of a sequence \(\mathbb{N} = (0, 1, 2, 3, \ldots) \) as well as in the form of \(n \)-consecutive terms notation as:

\[
\mathbb{N} = (nl, nl + 1, \ldots, nl + (n - 1))_{i=0}^{\infty}
\]

where “\(n \)” is fixed positive integer and refer to the integer “\(n \)” of \(n \)-normed space.

Taking \(\mathbb{N} = (\overline{m}_{nk}, \overline{m}_{nk+1}, \ldots, \overline{m}_{nk+(n-1)})_{i=0}^{\infty} \) as a rearrangement of the sequence \(\mathbb{N} \). In \([5]\), we have seen that \((l^p, \| \cdot \|_p, \ldots, \| \cdot \|_p) \), \(1 \leq p < \infty \) is an \(n \)-normed space, but not complete where

\[
\| x^1, x^2, \ldots, x^n \|_p = \sup \left\{ \left\| \overline{x}^1, \overline{x}^2, \ldots, \overline{x}^l \right\| : \overline{x}^1, \overline{x}^2, \ldots, \overline{x}^l \text{ are parallel rearrangements of } x^1, x^2, \ldots, x^n \text{ respectively} \right\}
\]

(1.3)

and
where their derived norms are non-equivalent. It is easy to check that the sequence\(f \) is bounded with respect to the linearly independent set\(\{e^1, \ldots, e^n\} \) are equivalent to\(\|\cdot\|_{\infty} \), where \(e^i = (\delta^i_{t=0}) \). For details see [5, 6, 7].

Here we shall consider the normed space \((\mathbb{V}, \|\cdot\|_{\infty}) \) and \(n \)-normed space \((\mathbb{V}, \|\cdot, \ldots, \cdot\|_{p}) \).

It is well known that, \(\mathbb{V} \subset C_0 \) and \(\|\cdot\|_{\infty} \leq \|\cdot\|_{p} \), by applying usual methods for finding dual spaces of sequence spaces we have the following Lemma:

Lemma 1.2. The dual space of \((\mathbb{V}, \|\cdot\|_{\infty}) \) \(1 \leq p < \infty \) is identified by \((l^1, \|\cdot\|_{1}) \). Moreover, the mapping \(f \rightarrow (f(e^i))_{i=0}^{\infty} \) is a linear isometric bijection.

Proof. It is easy to check that the sequence \((e^i)_{i=0}^{\infty} \) constitutes a Schauder basis for the space \((\mathbb{V}, \|\cdot\|_{\infty}) \) also where \(e^i = (\delta^i_{t=0}) \); \(i = 0, 1, 2, \ldots \). Therefore, every \(x = (x_i)_{i=0}^{\infty} \in \mathbb{V} \) can be uniquely expressed as

\[
x = \sum_{i=0}^{\infty} x_i e^i.
\]

i.e. \(\|s_n - x\|_{\infty} \to 0 \) as \(n \to \infty \), where \(s_n = \sum_{i=0}^{n} x_i e^i \). Let \(f \) be bounded linear functional on \((\mathbb{V}, \|\cdot\|_{\infty}) \) [It should be noted that \(f \) is bounded with respect to \(\|\cdot\|_{\infty} \).]
The \(n \)-dual Structure of the Space of \(p \)-summable Sequence Spaces

Since \(f \) is continuous and \(s_n \to x \) it follows that \(f(s_n) \to f(x) \). Hence, \(f(x) \) can be uniquely expressed as

\[
f(x) = \sum_{i=0}^{\infty} x_i f(e^i).
\]

Now, we shall show that \((f(e^i))_{i=0}^{\infty} \in (l^1, \| \cdot \|_1) \). Let \(n \in \mathbb{N} \) be arbitrary, define \(y^n = (y_i)_{i=0}^{\infty} \in l^p \) as follows

\[
y_i = \begin{cases} \frac{f(e^i)}{f(e^i)} & ; f(e^i) \neq 0 \text{ and } 0 \leq i \leq n \\ 0 & ; \text{otherwise} \end{cases}
\]

Obviously \(y^n \in l^p \) and

\[
\|y^n\|_\infty = \sup_{0 \leq i < \infty} |y_i| \leq 1
\]

(But \(\|y^n\|_p \leq (n + 1)^{1/p} \).) Now,

\[
f(y^n) = \sum_{i=0}^{\infty} y_i f(e^i) \leq \sum_{i=0}^{n} |f(e^i)| \leq \|f\| \cdot \|y^n\|_\infty \leq \|f\|.
\]

Thus, for all \(n \in \mathbb{N} \) we have \(\sum_{i=0}^{n} |f(e^i)| \leq \|f\| \) therefore

\[
\sum_{i=0}^{\infty} |f(e^i)| \leq \|f\|
\]

and hence

\[
(f(e^i))_{i=0}^{\infty} \in (l^1, \| \cdot \|_1).
\]

Now, define a mapping \(T : (l^p, \| \cdot \|_\infty)^* \to (l^1, \| \cdot \|_1) \) as follows

\[
T(f) = (f(e^i))_{i=0}^{\infty}
\]

where \((l^p, \| \cdot \|_\infty)^* \) is dual space of \((l^p, \| \cdot \|_\infty) \). Clearly \(T \) is well-defined and linear and from above it follows that \(T(f) = 0 \Rightarrow f = 0 \) therefore \(T \) is one-one.

To prove \(T \) is onto, let \(\lambda = (\lambda_i)_{i=0}^{\infty} \in (l^1, \| \cdot \|_1) \) and \(x = (x_i)_{i=0}^{\infty} \in l^p \) be arbitrary, clearly \(x \) is bounded in \(K \), therefore

\[
\sum_{i=0}^{\infty} |x_i \lambda_i| < \infty \quad \Rightarrow \quad \sum_{i=0}^{\infty} x_i \lambda_i < \infty.
\]

Define \(f : l^p \to K \) as

\[
f(x) = \sum_{i=0}^{\infty} x_i \lambda_i < \infty.
\]
Obviously, f is linear and for every $x \in l^p$:

$$|f(x)| \leq \sum_{i=0}^{\infty} |x_i| |\lambda_i| \leq \left(\sum_{i=0}^{\infty} |\lambda_i| \right) \|x\|_\infty < \infty$$

i.e. f is bounded and $T(f) = \left(f(e^i)^{\infty}_{i=0} = (\lambda_i)^{\infty}_{i=0} \right.$ and

$$\|f\| \leq \sum_{i=0}^{\infty} |f(e^i)|.$$

Moreover, above inequalities give

$$\|f\| = \sum_{i=0}^{\infty} |f(e^i)|.$$

Thus T is a linear isometric bijection. □

Remark: Moreover, above Lemma 1.2 says that if $1 \leq p \leq q < \infty$ then

$$(l^p, \|\cdot\|) = (l^p, \|\cdot\|)^*$$

and

$$(c_0, \|\cdot\|) = (c, \|\cdot\|)^* = (l^p, \|\cdot\|)^* = (l^p, \|\cdot\|)^*.$$

But it need not be true for $$(l^p, \|\cdot\|)^*$$ **and** $$(l^p, \|\cdot\|)^*.$$

From [9, 10], we have the following results:

Lemma 1.3. Every bounded multilinear n-functional f defined on the n-normed space $(X, \|\cdot\|)$ satisfies

1. $f(x^1, x^2, \ldots, x^n) = 0;$ whenever x^1, x^2, \ldots, x^n are linearly dependent
2. $f(x^1, x^2, \ldots, x^n) = \text{sgn}(\sigma) f(x^{\sigma(1)}, x^{\sigma(2)}, \ldots, x^{\sigma(n)})$ for every $x^1, x^2, \ldots, x^n \in X$

for every permutation σ of $(1, 2, \ldots, n)$ where $\text{sgn}(\sigma) = 1$ if σ is an even permutation and $\text{sgn}(\sigma) = -1$ if σ is an odd permutation.

Lemma 1.4. The norm of every bounded multilinear n-functional f defined on an n-normed space $(X, \|\cdot\|)$ is given by:

$$\|f\|_{n,n} := \sup_{\|x^1, x^2, \ldots, x^n\| \neq 0} \frac{|f(x^1, x^2, \ldots, x^n)|}{\|x^1, x^2, \ldots, x^n\|}$$

or equivalently

$$\|f\|_{n,n} := \sup_{\|x^1, x^2, \ldots, x^n\| = 1} |f(x^1, x^2, \ldots, x^n)|.$$
The n-dual Structure of the Space of p-summable Sequence Spaces

or equivalently

$$
\|f\|_{n,n} := \sup_{\|x^1, x^2, \ldots, x^n\| \leq 1} |f(x^1, x^2, \ldots, x^n)|
$$

or equivalently

$$
\|f\|_{n,n} := \inf \{ K : |f(x^1, x^2, \ldots, x^n)| \leq K \|x^1, x^2, \ldots, x^n\|, \text{ for every } x^1, x^2, \ldots, x^n \in X \}.
$$

A similar result can be obtained for bounded multilinear n-functional defined on a normed space.

2. Results

In [5, 7], we have already investigated the equivalence relations between different norms and n-norms defined on l^p as

1. $\|x^1, x^2, \ldots, x^n\|_p \leq n! \|x^1\|_p \|x^2\|_p \cdots \|x^n\|_p$

2. $\|x^1, x^2, \ldots, x^n\|_p \leq (n!)^{1/p} \|x^1, x^2, \ldots, x^n\|_p$.

for every $x^1, x^2, \ldots, x^n \in l^p$; where the n-norm $\|., ., \|_p$ is defined by Gunawan [4] as

$$
\|x^1, x^2, \ldots, x^n\|_p = \left[\frac{1}{n!} \sum_{j_1} \cdots \sum_{j_n} |\det(x^t_{j_1})|^p \right]^{1/p} \quad t = 1, 2, \ldots, n.
$$

The above relations give the following propositions:

Proposition 2.1. A bounded multilinear n-functional defined on $(l^p, \|., ., \|_p)$ is a bounded multilinear n-functional on $(l^p, \|., ., \|_p)$.

Proposition 2.2. A bounded multilinear n-functional defined on $(l^p, \|., ., \|_p)$ is a bounded multilinear n-functional on $(l^p, \|., ., \|_p)$.

In [10], Gunawan investigated the n-dual structure of the Banach space $(l^p, \|., ., \|_p)$ and n-Banach space $(l^p, \|., ., \|_p)$, respectively. In [7] we have investigated that the two n-normed spaces $(l^p, \|., ., \|_p)$ and $(l^p, \|., ., \|_p)$ are non-equivalent. Inspired by Gunawan [10] here, we shall investigate the n-dual spaces of the normed space $(l^p, \|., ., \|_{\infty})$ and n-normed space $(l^p, \|., ., \|_p)$, respectively.
We shall begin our investigations by finding the 2-dual structure of \(l^p \) with respect to norm \(\| \|_\infty \) and 2-norm \(\| \|_p \), respectively.

First of all, let us define the normed space \((l^1_{NNN}, \| \|_2) \) of double indexed sequences as follows:

\[
\Theta := (\theta_{ij})_{i,j=0}^\infty \in l^1_{NNN} \quad \Theta_{ij} \in \mathbb{K} \quad \text{if and only if} \quad (2.1) \quad \| \Theta \|_2^2 = \sup_{\| x \|_\infty = 1} \left(\sum_{j=0}^{\infty} \sum_{i=0}^{\infty} x_{ij} \theta_{ij} \right) < \infty, \quad \text{where} \quad x = (x_{ij})_{i,j=0}^\infty.
\]

and the normed space \((l^A_{NNN}, \| \|_2^A) \) as follows:

\[
\Theta := (\theta_{ij})_{i,j=0}^\infty \in l^A_{NNN} \quad \Theta_{ij} \in \mathbb{K} \quad \text{if and only if} \quad (2.2) \quad \| \Theta \|_2^A = \sup_{\| x \|_p = 0} \left(\frac{\sum_{j=0}^{\infty} \sum_{i=0}^{\infty} x_{ij} \theta_{ij}}{\| x \|_p} \right) < \infty \quad \text{and} \quad \theta_{ij} = -\theta_{ji}
\]

where \(x = (x_{ij})_{i,j=0}^\infty \) and \(y = (y_{ij})_{i,j=0}^\infty \).

Theorem 2.1. The 2-dual space of \((l^p, \| \|_\infty) ; 1 \leq p < \infty\) is identified by \((l^1_{NNN}, \| \|_2^1) \). Moreover, the mapping \(f \rightarrow \Theta := (f(e^i, e^j))_{i,j=0}^\infty \) is an isometric linear bijection.

Proof. Let \(f \) be a bounded bilinear 2-functional on \((l^p, \| \|_\infty) \), then for every \(x = (x_{ij})_{i,j=0}^\infty \) and \(y = (y_{ij})_{i,j=0}^\infty \), \(f(x, y) \) can be expressed as

\[
(2.3) \quad f(x, y) = \sum_{j=0}^{\infty} y_j \sum_{i=0}^{\infty} x_i f(e^i, e^j)
\]

We shall first show that \((f(e^i, e^j))_{i,j=0}^\infty \in l^1_{NNN} \). Since for any arbitrary \(x \) in \(l^p \) with \(\| x \|_\infty = 1 \) the function \(f_x \) defined on \(l^p \) as \(f_x(y) = f(x, y) \) is bounded linear functional on \((l^p, \| \|_\infty) \), that is

\[
(2.4) \quad \| f_x(y) \| = \| f(x, y) \| \leq \| f \|_{l^2,1} \| x \|_\infty \| y \|_\infty = \| f \|_{l^2,1} \| y \|_\infty
\]

Therefore by lemma 1.2, \(f_x \) can be identified as \(f_x \equiv (f_x(e^i))_{i=0}^\infty \) with norm \(\| f_x \| = \sum_{j=0}^{\infty} \| f(x, e^j) \| = \sum_{j=0}^{\infty} |f(x, e^j)| = \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} x_i f(e^i, e^j)|, \) as well as \(\| f_x \| = \sup \{ \| f_x(y) \| : \| y \|_\infty = 1 \} \), therefore from \((2.4)\), we have

\[
\sum_{j=0}^{\infty} \sum_{i=0}^{\infty} x_i f(e^i, e^j) \leq \| f \|_{l^2,1}, \quad \text{for every arbitrary} \quad \| x \|_\infty = 1.
\]

Which shows that \(\Theta := (f(e^i, e^j))_{i,j=0}^\infty \in l^1_{NNN} \) with

\[
(2.5) \quad \| \Theta \|_2^1 = \| f(e^i, e^j) \|_2^1 \leq \| f \|_{l^2,1}.
\]
Theorem 2.2. The 2-dual space of the 2-normed space l^2_{NNX} such that $T(f) = (f(e', e'))_{i,j=0}^{\infty}$ then obviously, T is well defined and linear. From (2.3), it is clear that T is zero function, whenever $T(f) = O$, thus T is one-one.

Next, let $\Theta := (\theta_{ij})_{i,j=0}^{\infty} \in l^1_{\text{NNX}}$ is arbitrary, for $x = (x_i)_{i=0}^{\infty}$ and $y = (y_i)_{i=0}^{\infty}$ define $f : \ell^p \times \ell^p \rightarrow K$ as follows:

$$f(x, y) = \sum_{j=0}^{\infty} y_j \sum_{i=0}^{\infty} x_i \theta_{ij};$$

obviously $f(e', e') = \theta_{ij}$. For $x, y \in \ell^p$ with $||x||_{\infty} = 1$ and $||y||_{\infty} = 1$, we have

$$|f(x, y)| \leq \sum_{j=0}^{\infty} |y_j| \sum_{i=0}^{\infty} x_i \theta_{ij} \leq \|y\|_{\infty} \sum_{j=0}^{\infty} |y_j| \sum_{i=0}^{\infty} x_i \theta_{ij} \leq ||\Theta||_2^1.$$

Therefore for every $||x||_{\infty} \neq 0$ and $||y||_{\infty} \neq 0$

$$\frac{|f(x, y)|}{||x||_{\infty} ||y||_{\infty}} \leq ||\Theta||_2^1$$

or equivalently,

$$|f(x, y)| \leq ||\Theta||_2^1 ||x||_{\infty} ||y||_{\infty}$$

which exhibits that f is bounded bilinear 2-functional on $(\ell^p, ||.||_{\infty})$ and $T(f) = \Theta$ with

$$||f||_{2,1} \leq ||\Theta||_2^1 = ||f(e', e')||_2^1.$$

From (2.5) and (2.7) it is clear that, T is isometric linear bijection. □

Theorem 2.2. The 2-dual space of the 2-normed space $(\ell^p, ||.||_{\infty})$ is identified as $(l^A_{\text{NNX}}, ||.||_2^A)$. Moreover, the mapping $f \rightarrow \Theta := (f(e', e'))_{i,j=0}^{\infty}$ is an isometric linear bijection.

Proof. Since $||x, y||_p \leq 2||x||_p ||y||_p$ see[5], therefore $f(x, y)$ can be expressed as

$$f(x, y) = \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} y_j x_i f(e', e').$$

Since f is bounded therefore

$$|f(x, y)| = \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} y_j x_i f(e', e') \leq ||f||_{2,1} ||x, y||_p.$$

Defining $\Theta := (f(e', e'))_{i,j=0}^{\infty}$ above equation exhibits that $\Theta := (f(e', e'))_{i,j=0}^{\infty} \in l^A_{\text{NNX}}$ and

$$||\Theta||_2^A = ||f(e', e')||_2^A \leq ||f||_{2,2}.$$

Now for any arbitrary $\Theta := (\theta_{i,j})_{i,j=0}^{\infty} \in l_{N\times N}^A$ define bilinear functional

$$f(x,y) = \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} y_{xj} \theta_{i,j};$$

it is easy to show that f is bounded bilinear functional on $\left(\ell^p, \|\|_p\right)$ with $f(e^i, e^j) = \delta_{ij}$ and $\|f\|_2 \leq \|\Theta\|_2 = \|f(e^i, e^j)\|_2^2$.

Now proceeding as in theorem 2.1, we have the result. □

To achieve the n-dual spaces of $(\ell^p, \|\|_p)$; $1 \leq p < \infty$ and $(\ell^p, \|\|_p)$, let us generalize the definitions of $\left(l_{N\times N}^1, \|\|_1\right)$ and $\left(l_{N\times N}^A, \|\|_2\right)$ to following normed space of n-indexed sequence spaces as follows:

The normed space $\left(l_{N\times n}^1, \|\|_1\right)$ of n-indexed sequences $\Theta := (\theta_{i_1,\ldots,i_n})_{i_1=0}^{\infty}$ with $\theta_{i_1,\ldots,i_n} \in \mathbb{K}$ as follows:

$$\Theta := (\theta_{i_1,\ldots,i_n}) \in l_{N\times n}^1; \quad \text{if and only if} \quad \|\Theta\|_n = \sup_{\|x\|_n} \left(\sum_{i_0=0}^{\infty} \cdots \sum_{i_{n-1}=0}^{\infty} x_{i_0},\ldots,x_{i_{n-1}} \theta_{i_1,\ldots,i_n}\right) < \infty,$$

(2.10)

and the normed space $\left(l_{N\times n}^A, \|\|_2\right)$ of n-indexed sequences $\Theta := (\theta_{i_1,\ldots,i_n})_{i_1=0}^{\infty}$ with $\theta_{i_1,\ldots,i_n} \in \mathbb{K}$ as follows:

$$\Theta := (\theta_{i_1,\ldots,i_n}) \in l_{N\times n}^1; \quad \text{if and only if} \quad \theta_{i_1,\ldots,i_n} = sgn(\sigma) \theta_{\sigma(i_1),\ldots,\sigma(i_n)} \quad \text{and} \quad \|\Theta\|_A = \sup_{\|x\|_{n} \neq 0} \left(\sum_{i_0=0}^{\infty} \cdots \sum_{i_{n-1}=0}^{\infty} x_{i_0},\ldots,x_{i_{n-1}} \theta_{i_1,\ldots,i_n}\right) < \infty,$$

(2.11)

and for every permutation σ of (i_1, i_2, \ldots, i_n) where $sgn(\sigma) = 1$ if σ is an even permutation and $sgn(\sigma) = -1$ if σ is an odd permutation.

Theorem 2.3. The n-dual space of $(\ell^p, \|\|_p)$ is identified by $\left(l_{N\times n}^1, \|\|_1\right)$. Moreover, the mapping $f \to \Theta := (f(e^1,\ldots,e^n))_{i_1,\ldots,i_n=0}^{\infty}$ is an isometric linear bijection.

Proof. The proof is similar to case $n=2$. For any $x_1, x_2, \ldots, x_n \in \ell^p$; $x^t = (x^t_{i_j})_{i_j=0}^{\infty}$; $1 \leq t \leq n$ the bounded multilinear n-functional $f(x^1, x^2, \ldots, x^n)$ can be expressed as

$$f(x^1, x^2, \ldots, x^n) = \sum_{i_0=0}^{\infty} \sum_{i_1=0}^{\infty} \cdots \sum_{i_{n-1}=0}^{\infty} x_{i_0} x_{i_1} \cdots x_{i_{n-1}} f(e^1,\ldots,e^n).$$
The n-dual space of the n-normed space

First of all we shall show that \((f(e^i, e^j, \ldots, e^n))_{\mathbf{N}^n} \in l_1^{n} \). To do this we shall use mathematical induction on \(n \). For \(n=2 \), we have already showed it. Let us assume that it is true for \(n-1 \), we have to prove it for \(n \). Let \(f \) be bounded multilinear \(n \)-functional and \(x^1 \in l^p \) with \(\|x^1\|_\infty = 1 \), if we define \(f_{x^1} : l^p \times l^p \times \cdots \rightarrow \mathbb{K} \) as
\[
f_{x^1}(x^2, \ldots, x^n) = f(x^1, x^2, \ldots, x^n),
\]
then \(f_{x^1} \) is bounded multilinear \((n-1)\)-functional on \(l^p \) and
\[
|f_{x^1}(x^2, \ldots, x^n)| = |f(x^1, x^2, \ldots, x^n)| \leq \|f\|_{l_1} \|x^2\|_{\infty} \cdots \|x^n\|_{\infty};
\]
which implies that
\[
\|f_{x^1}\|_{l_{n-1}} \leq \|f\|_{l_1}
\]
therefore it can be identified by \((f_{x^1}(e^i, \ldots, e^n)) \in l_1^{n-1} \) and
\[
\|f_{x^1}\|_{l_{n-1}} = \sup_{\|x^2\|_{\infty} \cdots \|x^n\|_{\infty}} \left(\sum_{i_k=0}^{\infty} \cdots \sum_{i_{n-1}=0}^{\infty} \sum_{i_1=0}^{\infty} x^2_{i_1} \cdots x^n_{i_{n-1}} f_{x^1}(e^{i_1}, \ldots, e^{i_{n-1}}, e^i) \right).
\]
That is,
\[
\sup_{\|x^2\|_{\infty} \cdots \|x^n\|_{\infty}} \left(\sum_{i_k=0}^{\infty} \cdots \sum_{i_{n-1}=0}^{\infty} \sum_{i_1=0}^{\infty} x^1_{i_1} x^2_{i_2} \cdots x^n_{i_{n-1}} f(e^{i_1}, \ldots, e^{i_{n-1}}, e^i) \right) \leq \|f\|_{l_1}
\]
for every arbitrary \(\|x^1\|_{\infty} = 1 \) therefore
\[
(2.12) \quad \|f(e^i, e^j, \ldots, e^n)\|_n \leq \|f\|_{l_1}.
\]
Thus \((f(e^i, e^j, \ldots, e^n))_{\mathbf{N}^n} \in l_1^{n} \). Rest part is similar to the case \(n=2 \). □

Theorem 2.4. The n-dual space of the n-normed space \((\ell^p \prod_{i=1}^{n} \mathbb{K}) \) is identified by \((l_1^{\mathbf{N}^n}, \|\cdot\|_n)\). Moreover, the mapping \(f \rightarrow \Theta := (f(e^1, \ldots, e^n))_{\mathbf{N}^n} \) is an isometric linear bijection.

Proof. The proof is similar to the proof of theorem 2.2. □

REFERENCES

Pradeep Kumar Singh
Faculty of Science
Department of Mathematics and Statistics
D D U Gorakhpur University, Gorakhpur
UP India 273009
pradeep3789@gmail.com

J K Srivastava
Faculty of Science
Department of Mathematics and Statistics
D D U Gorakhpur University, Gorakhpur
UP India 273009
jks_ddugu@yahoo.com