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Abstract. We consider the divergence and Laplace operators defined by the Ricci–
Golab connection and establish some integral properties. We provide certain results
on the deformation algebras associated to pairs of Ricci–Golab connections. Almost
1-principal Golab connections are also investigated.
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1. Introduction

A Riemannian manifold admits a semi-symmetric metric connection of zero cur-
vature tensor if and only if it is conformally flat [17]. This result was general-
ized in [18] for the Ricci tensor. It is an interplay between the Riemannian and
the semi-Riemnnian geometry with respect to semi-symmetric connections [14, 19].
The quarter-symmetric connections, introduced by Golab in [4], arose on the line
of metric and semi-symmetric connections. These notions have been studied from
different perspectives (e.g., [1, 3, 6, 7, 5, 12, 11, 15]).

In the present paper, we consider the Ricci–Golab connection as a natural gen-
eralization of the above. The study consists of two parts. One of the objectives is
to provide properties of the divergence and the Laplace operator defined by means
of the Ricci–Golab connection (Section 2). It is known that the Laplace operator,
among various integral operators, is through the most widely considered in different
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branches of engineering sciences and in mathematics, and it has many applications
[13, 16]. In particular, we will provide a divergence-type theorem with respect to
the Ricci–Golab connection and define harmonic functions in this context. In the
last part, we restrict the attention to the second objective of the paper, namely the
study of the deformation algebra associated to pairs of Ricci–Golab connections,
which is essential in order to characterize the geometry of the manifold (Sections 3
and 4).

2. Ricci–Golab connection

Let g be a Riemannian metric, let ∇g be its Levi-Civita connection, and let η be a
1-form on a smooth manifold M .

The Golab connection associated to (g, η,Q) [4], where Q is the Ricci operator
defined by g(QX,Y ) := Ric(X,Y ), for Ric the Ricci curvature tensor of g, will be
further called the Ricci–Golab connection associated to (g, η,Q), and it is given by

(2.1) ∇ = ∇g +Q⊗ η − Ric⊗η],

with η] the g-dual vector field of the 1-form η.

For any 1-form ω, we obtain

(2.2) ∇ω = ∇gω − (ω ◦Q)⊗ η + ω(η]) · Ric,

hence, for ω = df , with f a smooth function on M , we have

(2.3) ∇df = ∇gdf − (df ◦Q)⊗ η + df(η]) · Ric .

We can now consider the divergence operator, the Hessian of a smooth function
and the Laplace operator w.r.t. the Ricci–Golab connection. Precisely,

(2.4) div(∇,g) = div + scal ·η − iQη]g,

in particular,

(2.5) div(∇,g)(η]) = div(η]) + |η]|2 · scal−Ric(η], η]),

for scal the scalar curvature of (M, g). Also

(2.6) Hess∇(f) = Hess(f)− (df ◦Q)⊗ η + η](f) · Ric

and consequently, the Laplace operator w.r.t. the Ricci–Golab connection

(2.7) ∆(∇,g)(f) = ∆(f)− Ric(∇f, η]) + η](f) · scal,

where ∇f denotes the gradient of f w.r.t. g.

Since the Ricci–Golab connection is not torsion-free, the (0, 2)-tensor field Hess∇(f)
is not symmetric unless ∇f ∈ kerQ, and for any X,Y ∈ X (M), we have

Hess∇(f)(X,Y )−Hess∇(f)(Y,X) = Ric
(
∇f, η(X)Y − η(Y )X

)
=

=
(
η ⊗ iQ(∇f)g − iQ(∇f)g ⊗ η

)
(X,Y ).
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Proposition 2.1. If M is a closed smooth manifold and ∇ is the Ricci–Golab
connection associated to (g, η,Q), then, by integrating w.r.t. the canonical measure
of g, we have: ∫

M

div(∇,g)(X) =

∫
M

(
scal ·η − iQη]g

)
(X),

for any X ∈ X (M).

In particular, ∫
M

div(∇,g)(η]) =

∫
M

(
|η]|2 · scal−Ric(η], η])

)
.

We state a divergence-type theorem w.r.t. the Ricci–Golab connection.

Corollary 2.1. Under the hypotheses of Proposition 2.1∫
M

div(∇,g)(X) = 0, ∀X ∈ X (M)

⇐⇒
∫
M

scal ·g(η], X) =

∫
M

Ric(η], X), ∀X ∈ X (M).

In particular,∫
M

div(∇,g)(η]) = 0 ⇐⇒
∫
M

Ric(η], η]) =

∫
M

|η]|2 · scal .

Proposition 2.2. If M is a closed smooth manifold and ∇ is the Ricci–Golab
connection associated to (g, η,Q), then, by integrating w.r.t. the canonical measure
of g, we have: ∫

M

∆(∇,g)(f) =

∫
M

(
η](f) · scal−Ric(∇f, η])

)
.

In particular, if f is constant along the integral curves of η], then∫
M

∆(∇,g)(f) = −
∫
M

Ric(∇f, η]).

Remark 2.1. Under the hypotheses of Proposition 2.2, we deduce that∫
M

∆(∇,g)(f) = 0

if and only if
∫
M

Ric(∇f, η]) = 0 (in particular, if Qη] is orthogonal to ∇f).

Proposition 2.3. Let M be a smooth manifold and let ∇ be the Ricci–Golab con-
nection associated to (g, η,Q). A smooth function f on M is ∆(∇,g)-harmonic if
and only if

∆(f) = Ric(∇f, η])− η](f) · scal,

equivalent to

∆(f) = η
((
Q− trace(Q) · I

)
(∇f)

)
.
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Remark 2.2. Under the hypotheses of Proposition 2.3, a smooth function f on M is
harmonic and ∆(∇,g)-harmonic if and only if

Ric(∇f, η]) = η](f) · scal,

i.e., df(Qη]) = df(η]) · scal. Also, if ∇f is an eigenvalue of the Ricci operator Q with the
eigenfunction scal, then f is ∆(∇,g)-harmonic if and only if it is harmonic.

Since

2d(∆(f)) + 2iQ(∇f)g = 2 div(Hess(f)) = ∆(df) + iQ(∇f)g + d(∆(f)),

we get

(2.8) ∆(df) = d(∆(f)) + iQ(∇f)g.

Now, from the Bochner formula [11] we have

1

2
∆(〈df, η〉) = 〈Hess(f),∇η〉+ Ric(∇f, η]) + 〈df,∆(η)〉,

which by means of (2.8) gives

Ric(∇f, η]) =
(

∆(df)− d(∆(f))
)

(η]).

As a consequence, we get a characterization of ∆(∇,g)-harmonic functions, from
Proposition 2.3.

Corollary 2.2. If M is a smooth manifold and ∇ is the Ricci–Golab connection
associated to (g, η,Q), then a smooth function f on M is ∆(∇,g)-harmonic if and
only if

∆(f) =
(

∆(df)− d(∆(f))− scal ·df
)

(η]).

If η] = ∇f , from (2.7), a sufficient condition for f to be ∆(∇,g)-harmonic is
given by the following propositions.

Proposition 2.4. Let M be a closed smooth manifold with scal ≥ 0 and let ∇ be
the Ricci–Golab connection associated to (g, df,Q) with f a smooth function on M .
If

(i)
∫
M

Ric(∇f,∇f) ≤ 0, and

(ii) ∆(∇,g)(f) ≤ 0,
then M has zero scalar curvature and f is a harmonic and ∆(∇,g)-harmonic func-
tion.
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Proposition 2.5. Let M be a closed smooth manifold with scal ≤ 0 and let ∇ be
the Ricci–Golab connection associated to (g, df,Q) with f a smooth function on M .
If

(i)
∫
M

Ric(∇f,∇f) ≥ 0, and

(ii) ∆(∇,g)(f) ≥ 0,
then M has zero scalar curvature and f is a harmonic and ∆(∇,g)-harmonic func-
tion.

For any two symmetric (0, 2)-tensor fields T1 and T2, denote by

〈T1, T2〉 :=
∑

1≤i,j≤n

T1(Ei, Ej)T2(Ei, Ej),

for {Ei}1≤i≤n a local orthonormal frame field on (M, g), and by |·| the corresponding
norm.

The Bochner formula

1

2
∆(|∇f |2) = |Hess(f)|2 + Ric(∇f,∇f) + (∇f)(∆(f)),

gives, by integration

(2.9)

∫
M

(
|Hess(f)|2 + Ric(∇f,∇f)− (∆(f))2

)
= 0.

If η] = ∇f , by using (2.7) and (2.9), we get

Lemma 2.1. If M is a closed smooth manifold and ∇ is the Ricci–Golab connec-
tion associated to (g, df,Q), then, by integrating w.r.t. the canonical measure of g,
we get: ∫

M

∆(∇,g)(f) =

∫
M

|∇f |2 · scal +

∫
M

|Hess(f)|2 −
∫
M

(∆(f))2.

From Lemma 2.1 and by means of Schwartz’s inequality, |Hess(f)|2 ≥ (∆(f))2

n , a

sufficient condition for f to be ∆(∇,g)-harmonic is given by the following proposition.

Proposition 2.6. Let M be a closed n-dimensional smooth manifold and let ∇ be
the Ricci–Golab connection associated to (g, df,Q) with f a smooth function on M .
If

(i)
∫
M
|Hess(f)|2 ≤ 1

n−1

∫
M
|∇f |2 · scal, and

(ii) ∆(∇,g)(f) ≤ 0,
then ∇f is a concircular vector field and f is a ∆(∇,g)-harmonic function.
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3. On some deformation algebras

Consider now a conformal deformation g̃ = e2ug, u ∈ F(M)∗ of the metric g. Then,
the Levi-Civita connections are related by

∇g̃XY = ∇gXY +X(u)Y + Y (u)X − g(X,Y )∇gu,

for anyX,Y ∈ X (M), and the Ricci curvature tensor fields and the scalar curvatures
satisfy

R̃ic = Ric−(n− 2)
(

Hess(u)− du⊗ du
)

+
(
∆(u)− (n− 2)|∇gu|2

)
g,

˜scal = e−2u scal +(n− 1)e−2u
(
2∆(u)− (n− 2)|∇gu|2

)
,

therefore, the Ricci operators are connected by

Q̃X = e−2u
(
QX − (n− 2)

(
∇gX∇

gu− du(X)∇gu
)

+
(
∆(u)− (n− 2)|∇gu|2

)
X
)
.

Since ∇g̃f = e−2u∇gf , the Laplace operators are related by

∆̃ = e−2u∆− (n− 2)e−2u∇gu.

If we consider the particular case n = 2, then the Ricci curvature tensors, the
Ricci operators, the scalar curvatures and the Laplace operators satisfy

R̃ic = Ric +∆(u)g,

Q̃ = e−2u
(
Q+ ∆(u) · I

)
,

˜scal = e−2u
(

scal +2∆(u)
)
,

∆̃ = e−2u∆.

Let A be a (1, 2)-tensor field on M. If one defines the multiplication of two vector
fields X,Y ∈ X (M) by the rule X ◦ Y = A(X,Y ), then the F(M)-module X (M)
becomes an F(M)-algebra. This algebra, denoted by U(M,A) [6, 8], is called the
deformation algebra associated to A.

If we consider A = ∇ − ∇, then U(M,A) is called the deformation algebra
associated to the pair of linear connections (∇,∇) on M .

An element Y ∈ U(M,A) is called an almost 1-principal vector field if there

exists a map f ∈ F(M) and a 1-form σ ∈
∧1

(M) such that

A(X,Y ) = fX + σ(X)Y,

for any X ∈ X (M). If σ = 0, then Y is called a characteristic vector field.

Let M2 ⊂ R3 be a surface in the Euclidean space, such that the Ricci tensor
field is positive definite. Let g be the first fundamental form. Therefore M2 is an
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Einstein space and there exists u ∈ F(M)∗, such that Ric = e2ug, where e2u = K
is the Gauss curvature.

Let us denote by ∇̃ and ∇ the Ricci–Golab connections associated to (g̃ :=
Ric, η, Q̃) and (g, η,Q). Then we have

∇̃XY = ∇g̃XY +
(
1 + e−2u∆(u)

)
η(Y )X −

(
e2u + ∆(u)

)
g(X,Y )η],

∇XY = ∇gXY + e2uη(Y )X − e2ug(X,Y )η].

One gets

∇̃XY −∇gXY =
(
du(Y ) +

(
1 + e−2u∆(u)

)
η(Y )

)
X + du(X)Y

−g(X,Y )
(
du+

(
e2u + ∆(u)

)
η
)]
,

∇XY −∇gXY = e2uη(Y )X − g(X,Y )
(
e2uη

)]
.

Theorem 3.1. The deformation algebras U(M, ∇̃ −∇g) and U(M,∇−∇g) have
the same almost 1-principal vector fields if

(i) the function u is constant

or

(ii) ∆(u)(x) 6= 0, for any x ∈M , and η = − 1
∆(u)du.

Proof. Let Y ∈ U(M, ∇̃−∇g) be an almost 1-principal vector field. Therefore there

exists a map f ∈ F(M) and a 1-form σ ∈
∧1

(M) such that

∇̃XY −∇gXY = fX + σ(X)Y,

for any X ∈ X (M).

(i) If the function u is constant, then the previous remark leads to

∇̃XY −∇gXY = η(Y )X − e2ug(X,Y )η],

∇XY −∇gXY = e2uη(Y )X − e2ug(X,Y )η].

From our assumption and the last two relations one gets

∇XY −∇gXY =
(
f + (e2u − 1)η(Y )

)
X + σ(X)Y

and Y ∈ U(M,∇−∇g) is an almost 1-principal vector field.

(ii) If ∆(u)(x) 6= 0, for any x ∈M , and η = − 1
∆(u)du, then the previous remark

leads to

∇̃XY −∇gXY = −1 + (e−2u − 1)∆(u)

∆(u)
du(Y )X + du(X)Y +

e2u

∆(u)
g(X,Y )∇gu,
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∇XY −∇gXY = − e2u

∆(u)
du(Y )X +

e2u

∆(u)
g(X,Y )∇gu.

From our assumption and the last two relations one gets

∇XY −∇gXY =
(
f +

(
1− e2u + (e−2u − 1)∆(u)

∆(u)

)
du(Y )

)
X

+
(
σ(X)− du(X)

)
Y

and Y ∈ U(M,∇−∇g) is an almost 1-principal vector field.

Similarly we deduce that if Y ∈ U(M,∇ −∇g) is an almost 1-principal vector
field, then Y ∈ U(M, ∇̃ − ∇g) is an almost 1-principal vector field, too.

Let ξ ∈ X (M). Two linear connections ∇1 and ∇2 on a Riemannian manifold
(M, g) are called ξ-subgeodesically related if they satisfy the Yano formula

∇2
XY = ∇1

XY + ψ(X)Y + ψ(Y )X − g(X,Y )ξ,

for any X,Y ∈ X (M), where ψ ∈
∧1

(M).

Theorem 3.2. If the function u satisfies ∆(u) = e2u(e2u − 1), then the Ricci–
Golab connections ∇ and ∇̃ are θ]-subgeodesically related, where

θ := du+ e2u(e2u − 1)η.

Proof. The Ricci–Golab connections are related by

∇̃XY −∇XY = du(X)Y +
(
du(Y ) +

(
1 + e−2u∆(u)− e2u

)
η(Y )

)
X

−g(X,Y )
(
du+ ∆(u)η

)]
.

If we impose ∆(u) = e2u(e2u − 1), then

∇̃XY −∇XY = du(X)Y + du(Y )X − g(X,Y )θ],

where θ = du+ e2u(e2u − 1)η.

Proposition 3.1. Let ∆(u) = e2u(e2u−1) and η = e−2udu. If Y is a characteristic
vector field of the algebra U(M, ∇̃ − ∇), then

(3.1) |Y |2du = Y (u)Y [.

Proof. We get

∇̃XY −∇XY = du(X)Y + du(Y )X − e2ug(X,Y )∇gu.
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Then Y ∈ U(M, ∇̃ − ∇) is a characteristic vector field if and only if there exists
λ ∈ F(M) such that ∇̃XY −∇XY = λX, for any X ∈ X (M). It follows

(3.2) du(X)Y + du(Y )X − e2ug(X,Y )∇gu = λX,

for any X ∈ X (M). If one considers X = Y, then (3.2) becomes

(2− e2u)du(Y )|Y |2 = λ|Y |2.

Therefore, if |Y | 6= 0, we obtain

(3.3) λ = (2− e2u)du(Y ).

Using (3.2) and (3.3), we get

du(X)Y + (e2u − 1)du(Y )X = e2ug(X,Y )∇gu.

This formula leads to

(3.4) du(X)g(Y, Y ) + (e2u − 1)du(Y )g(X,Y ) = e2udu(Y )g(X,Y ).

Therefore

(3.5) du(X)g(Y, Y ) = du(Y )g(X,Y ),

for any X ∈ X (M) and formula (3.5) implies (3.1).

The previous result leads to

Corollary 3.1. Let ∆(u) = e2u(e2u − 1), η = e−2udu and Y ∈ U(M,A = ∇̃ −∇)
a characteristic vector field.

(i) If Yx(u) = 0, for any x ∈M , then A = 0.

(ii) If Ax = 0, for any x ∈M , then g(Y,∇gu) = 0.

Corollary 3.2. Let ∆(u) = e2u(e2u − 1) and η = e−2udu. If all the elements of
the algebra U(M,A = ∇̃ − ∇) are characteristic vector fields, then ∇̃ = ∇.

Proof. Let x ∈M and Y ∈ X (M) be a characteristic vector field such that Yx 6= 0.
There exists X ∈ U(M, ∇̃ − ∇) such that Xx 6= 0 and gx(Xx, Yx) = 0.

From (3.5) we get dux(Xx)gx(Yx, Yx) = dux(Yx)gx(Xx, Yx) which leads to
dux(Xx) = 0 and since X is a characteristic vector field, we get λx = 0 and
Ax = 0.

Proposition 3.2. Let ∆(u) = e2u(e2u − 1) and η = e−2udu. If λ ∈ F(M) such
that λ(x) 6= 0, for any x ∈M , then there exists a nonzero characteristic vector field
Y ∈ X (M) such that A(Y, Y ) = λY, where A = ∇̃ − ∇.
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Proof. Let x0 ∈ M . We need to show that there exists a vector field Y such that
Yx0 6= 0 and

λY = 2g(∇gu, Y )Y − e2u|Y |2∇gu.

In this case, by taking the scalar product with Y , we get λ = (2 − e2u)g(∇gu, Y ),
hence

g(∇gu, Y ) =
λ

2− e2u

(since λ(x) 6= 0, for any x ∈M), which replaced in the previous relation gives

Y =
2− e2u

λ
|Y |2∇gu.

Now, by taking the scalar product with ∇gu, we obtain

|Y |2 =
λ2

(2− e2u)2|∇gu|2
,

hence

(3.6) Y =
λ

2− e2u
· ∇

gu

|∇gu|2
.

Therefore, Y defined by (3.6) is a nonzero characteristic vector field such that
A(Y, Y ) = λY .

Corollary 3.3. Let ∆(u) = e2u(e2u − 1) and η = e−2udu. Then the following
assertions are equivalent:

(i) there exists nonzero characteristic vector fields in any x ∈M , in the algebra
U(M,A);

(ii) Ax 6= 0, for any x ∈M.

Proof. (i) ⇒ (ii) It is obvious.

(ii) ⇒ (i) It is a consequence of the previous result. If Ax 6= 0, for any x ∈ M,
then λx 6= 0 and a nonzero characteristic vector field is given by (3.6).

4. Almost 1-principal Golab connections

Proposition 4.1. [8] Let A be a fixed (1, 2)-tensor field. Then the following as-
sertions are equivalent:

(i) all the elements of the algebra U(M,A) are almost 1-principal vector fields;

(ii) there exist two 1-forms ω and ν on M such that

A(X,Y ) = ω(X)Y + ν(Y )X,

for any X,Y ∈ X (M).
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Let g be a Riemannian metric, let η be a 1-form on a smooth manifold M and
let ∇ be the Ricci–Golab connection associated to (g, η,Q).

A linear connection ∇ is called an almost 1-principal Golab connection if all
the elements of the deformation algebra U(M,∇−∇) are almost 1-principal vector
fields, therefore if there exist two 1-forms ω and ν on M such that

∇XY −∇XY = ω(X)Y + ν(Y )X,

for any X,Y ∈ X (M). One has

∇XY −∇gXY = η(Y )QX − Ric(X,Y )η],

∇XY −∇gXY = ω(X)Y + ν(Y )X + η(Y )QX − Ric(X,Y )η].

Theorem 4.1. The deformation algebras U(M,∇−∇g) and U(M,∇−∇g) have
the same almost 1-principal vector fields.

Proof. Let Y ∈ U(M,∇−∇g) be an almost 1-principal vector field. Therefore there

exists a map f ∈ F(M) and a 1-form σ ∈
∧1

(M) such that

∇XY −∇gXY = fX + σ(X)Y,

for any X ∈ X (M). Then

∇XY −∇gXY =
(
f − ν(Y )

)
X + (σ − ω)(X)Y,

for any X ∈ X (M), hence Y ∈ U(M,∇−∇g) is an almost 1-principal vector field.
Similarly we deduce that if Y ∈ U(M,∇−∇g) is an almost 1-principal vector field,
then Y ∈ U(M,∇−∇g) is an almost 1-principal vector field.

Let Mn ⊂ Rn+1 be a hypersurface in the Euclidean space, n > 2. Let g and
II =: h be the first and the second fundamental forms. We suppose that the second
fundamental form is positive definite, thus it can be regarded as a Riemannian
metric. In particular, for n = 2, such surfaces will be called ovaloids. This condition
means that the Gaussian curvature is strictly positive and that the unit normal
vector is chosen such as to make both principal curvatures positive.

Theorem 4.2. The following assertions are equivalent:

(i) all the elements of the deformation algebra U(Mn,∇h − ∇g) are almost 1-
principal vector fields;

(ii) Mn is a spherical hypersurface;

(iii) scal > K > 0 and the lowest eigenvalue of ∆ verifies λ1 = n
n−1K.

Proof. (i)⇐⇒ (ii) [8]; (ii)⇐⇒ (iii) [9].
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For n = 2, let ∇ be the Ricci–Golab connection associated to (g, η,Q), where
Q = KI,K is the Gauss curvature (since M2 is Einstein). Therefore

∇XY = ∇gXY +Kη(Y )X −Kg(X,Y )η].

By analogy, we consider∇II to be the Ricci–Golab connection associated to (h, η,QII),
where QII = KIII. Hence

∇IIX Y = ∇hXY +KIIη(Y )X −KIIg(S(X), Y )η],

where g(S(X), Y ) = h(X,Y ) with S the shape operator.

Corollary 4.1. We denote by A := ∇II −∇ and we have

A(X,Y ) = S−1(∇X(S(Y ));

S(∇IIf) = ∇gf ;

trace(A) = trace{X 7→ A(X, ·)} =
1

2
d logK;

traceII(A) = traceII{(X,Y ) 7→ A(X,Y )} =
1

2
∇II logK;

trace(A) = trace{(X,Y ) 7→ A(X,Y )} = ∇IIH;

divII(X) = div(X) +
(

trace(A)
)
(X);

∆II(f) = traceII
(

Hess(f)
)
− h
(
∇IIf, traceII(A)

)
,

where H and K are the mean and Gauss curvatures.

Conclusions

In Section 2, we studied the divergence operator, the Hessian of a smooth function
and the Laplace operator with respect to the Ricci–Golab connection. We found
necessary and sufficient conditions for a smooth function f on M to be harmonic
and ∆(∇,g)-harmonic, characterizing, in this terms, the manifolds of zero scalar
curvature. In the following sections we considered a conformal class of metrics and
we focused on dimension 2, on surfaces in the Euclidean space, such that the Ricci
tensor field is positively definite and the metric is the first fundamental form. We
characterized the conformal class of metrics in terms of the Laplace operator. Then
we explored the deformation algebras of the Ricci–Golab connections having the
same almost 1-principal vector fields, the deformation algebras with characteristic
vector fields and showed that the Ricci–Golab connections are subgeodesically re-
lated. Finally, we investigated in Section 4 the deformation algebras of 1-principal
Golab connections. A next level of a future study would be to characterize the
deformation algebras of ovaloids.
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