FACTA UNIVERSITATIS (NIŠ) Ser. Math. Inform. Vol. 31, No 2 (2016), 315–333

ON LOWER AND UPPER WEAKLY α -CONTINUOUS INTUITIONISTIC FUZZY MULTIFUNCTIONS

Kush Bohre and Samajh S. Thakur

Abstract. The aim of this paper is to introduce the concepts of upper and lower weakly α -continuous intuitionistic fuzzy multifunctions and obtain some of their properties. Keywords:Intuitionistic fuzzy sets, Intuitionistic fuzzy topology, Intuitionistic fuzzy multifunctions, lower weakly α -continuous Intuitionistic fuzzy multifunctions and upper weakly α -continuous Intuitionistic fuzzy multifunctions

1. Introduction

After the introduction of fuzzy sets by Zadeh [40] in 1965 and fuzzy topology by Chang [10] in 1967, several research studies were conducted on the generalization of the notions of fuzzy sets and fuzzy topology. The concept of intuitionistic fuzzy sets was introduced by Atanassov [2, 3, 4] as a generalization of fuzzy sets. In the last 32 years various concepts of fuzzy mathematics have been extended for intuitionistic fuzzy sets. In 1997 Coker [11] introduced the concept of intuitionistic fuzzy topological spaces as a generalization of fuzzy topological spaces. In 1999, Ozbakir and Coker [28] introduced the concept intuitionistic fuzzy multifunctions and studied their lower and upper intuitionistic fuzzy semi continuity from a topological space to an intuitionistic fuzzy topological space. In the recent past some weak and strong forms of lower and upper semi-continuity of intuitionistic fuzzy multifunctions have been studied in [6] [7, 8][33, 34, 35, 36, 37, 38, 39]. In the present paper we extend the concepts of lower and upper weakly α -continuous multifunctions due to Popa and Noiri [30] to intuitionistic fuzzy multifunctions and obtain some of their characterizations and properties.

2. Preliminaries

Throughout this paper (X,τ) and (Y,Γ) represent a topological space and an intuitionistic fuzzy topological space, respectively.

Received July 11, 2015; accepted February 03, 2016

²⁰¹⁰ Mathematics Subject Classification. Primary 54A99; Secondary 03E99

Definition 2.1. [17, 24] A subset A of a topological space (X, τ) is called:

- (a) Semi-open if $A \subset Cl(Int(A))$.
- (b) Semi-closed if its complement is semi-open.
- (c) α -open if $A \subset Int(Cl(Int(A)))$.
- (d) α -closed if its complement is α -open.
- (e) pre-open if $A \subset Int(Cl(A))$.
- (f) pre-closed if its complement is pre-open.

Remark 2.1. [25] Every open set is α -open and every α -open set is semi-open (resp. pre-open) but the converses may not be true.

The family of all α -open (resp. semi-open, pre-open) subsets of a topological space (X, τ) is denoted by $\alpha O(X)$ (resp. SO(X), PO(X)) similarly for the family of all α -closed (resp. semi-closed, pre-closed) subsets of topological space (X, τ) is denoted by $\alpha C(X)$ (resp. SC(X), PC(X)). The intersection of all α -closed (resp. semi-closed) sets of X containing a set A of X is called the α -closure [19] (resp. semi-closure) of A. It is denoted by $\alpha Cl(A)$ (resp. sCl(A)). The union of all α -open (resp. semi-open) subsets of A of X is called the α -interior [19] (resp. semi-interior) of A. It is denoted by $\alpha Int(A)$ (resp. sInt(A)). A subset A of X is α -closed (resp. semi-closed) if and only if $A \supset Cl(Int(Cl(A)))$ (resp. $A \supset Int(Cl(A))$). A subset N of a topological space (X, τ) is called a α -neighborhood [18] of a point x of X if there exists an α -open set O of X such that $x \in O \subset N$. A is an α -open in X if and only if it is a α -neighborhood of each of its points. A subset A of a topological space X is said to be regular-open (resp. regular-closed) if A = Int(Cl(A))(resp. A = Cl(Int(A)). The family of regular open (resp. regular-closed) sets of X is denoted by RO(X) (resp. RC(X)). The θ -closure of A is defined to be the collection of all $x \in X$ such that $A \cap Cl(U) \neq \phi$ for every open-neighborhood U of x, is denoted by $Cl_{\theta}(A)$. The $Cl_{\theta}(A)$ is closed in X and $Cl(V) = Cl_{\theta}(V)$ for all open set U of X. A subset V of X is called an α -neighborhood of a subset A of X if there exists $U \in \alpha O(X)$ such that $A \subset U \subset V$. A mapping f from a topological space (X, τ) to another topological space (X^*, τ^*) is said to be α -continuous [20, 21] if the inverse image of every open set of X^* is α -open in X.

Lemma 2.1. [30] The following properties hold for a subset A of a topological space (X, τ) :

- (a) A is α -closed in $X \Leftrightarrow sInt(Cl(A) \subset A;$
- (b) sInt(Cl(A)) = Cl(Int(Cl(A)));
- (c) $\alpha Cl(A) = A \cup Cl(Int(Cl(A))).$

Lemma 2.2. [30] The following are equivalent for a subset A of a topological space (X, τ) :

- (a) $A \in \alpha O(X)$,
- (b) $U \subset A \subset Int(Cl(U))$ for some open set U of X.
- (c) $U \subset A \subset sCl(U)$ for some open set U of X.
- (d) $A \subset sCl(Int(A))$.

Definition 2.2. [2, 3, 4] Let Y be a nonempty fixed set. An intuitionistic fuzzy set \tilde{A} in Y is an object having the form

$$\tilde{A} = \{ \langle x, \mu_{\tilde{A}}(y), \nu_{\tilde{A}}(y) \rangle \colon y \in Y \}$$

where the functions $\mu_{\tilde{A}}(y) : Y \to I$ and $\nu_{\tilde{A}}(y) : Y \to I$ denotes the degree of membership (namely $\mu_{\tilde{A}}(y)$) and the degree of non membership (namely $\nu_{\tilde{A}}(y)$) of each element $y \in Y$ to the set \tilde{A} respectively, and $0 \leq \mu_{\tilde{A}}(y) + \mu_{\tilde{A}}(y) \leq 1$ for each $y \in Y$.

Definition 2.3. [2, 3, 4] Let Y be a nonempty set and the intuitionistic fuzzy sets A and \tilde{B} be in the form $\tilde{A} = \{ \langle x, \mu_{\tilde{A}}(y), \nu_{\tilde{A}}(y) \rangle : y \in Y \}$, $\tilde{B} = \{ \langle x, \mu_{\tilde{B}}(y), \nu_{\tilde{B}}(y) \rangle : y \in Y \}$ and let $\tilde{B}_{\alpha} : \alpha \in \Lambda$ be an arbitrary family of intuitionistic fuzzy sets in Y. Then:

- (a). $\tilde{A} \subseteq \tilde{B}$ if $\forall y \in Y \ [\mu_{\tilde{A}}(y) \leq \mu_{\tilde{B}}(y) \text{ and } \nu_{\tilde{A}}(y) \geq \nu_{\tilde{B}}(y)]$
- (b). $\tilde{A} = \tilde{B}$ if $\tilde{A} \subseteq \tilde{B}$ and $\tilde{B} \subseteq \tilde{A}$;
- (c). $\tilde{A}^c = \{ \langle x, \nu_{\tilde{A}}(y), \mu_{\tilde{A}}(y) \rangle : y \in Y \};$
- (d). $\tilde{0} = \{ \langle y, 0, 1 \rangle : y \in Y \}$ and $\tilde{1} = \{ \langle y, 1, 0 \rangle : y \in Y \}$
- (e). $\cap \tilde{A}_{\alpha} = \{ \langle x, \wedge \mu_{\tilde{A}}(y), \forall \nu_{\tilde{A}}(y) \rangle : y \in Y \}$
- (f). $\cup \tilde{A}_{\alpha} = \{ \langle x, \vee \mu_{\tilde{A}}(y), \wedge \nu_{\tilde{A}}(y) \rangle : y \in Y \}.$

Definition 2.4. [12] Let Y be a nonempty set and $c \in Y$ a fixed element in Y. If $\alpha \in (0, 1]$ and $\beta \in [0, 1)$ are two real numbers such that $\alpha + \beta < 1$ then,

- (a) $c(\alpha, \beta) = \langle y, c_{\alpha}, c_{1-\beta} \rangle$ is called an intuitionistic fuzzy point (IFP in short) in Y, where α denotes the degree of membership of $c(\alpha, \beta)$, and β denotes the degree of non-membership of $c(\alpha, \beta)$.
- (b) $c(\beta) = \langle y, 0, 1 c_{1-\beta} \rangle$ is called a vanishing intuitionistic fuzzy point (VIFP in short) in Y, where β denotes the degree of non membership of $c(\beta)$.

Definition 2.5. [12] Two Intuitionistic Fuzzy Sets \tilde{A} and \tilde{B} of Y are said to be quasi-coincident ($\tilde{A}q\tilde{B}$ for short) if $\exists y \in Y$ such that

 $\mu_{\tilde{A}}(y) > \nu_{\tilde{B}}(y) \text{ or } \nu_{\tilde{A}}(y) < \mu_{\tilde{B}}(y)$

Definition 2.6. [12] An intuitionistic fuzzy point $c(\alpha, \beta)$ is said to be quasi-coincidence with the intuitionistic fuzzy set $\tilde{A} = \langle (\mu_{\tilde{A}}(y), \nu_{\tilde{A}}(y)) \rangle$ denoted by $c(\alpha, \beta)q\tilde{A}$ if $\alpha > \nu_{\tilde{A}}(c)$ or $\beta < \mu_{\tilde{A}}(c)$

Definition 2.7. [12] An intuitionistic fuzzy \tilde{A} in an intuitionistic fuzzy topological space (Y, Γ) is said to be q-neighborhood of $c(\alpha, \beta)$ if there exists an intuitionistic fuzzy open set \tilde{B} in Y such that $c(\alpha, \beta)q\tilde{B} \leq \tilde{A}$.

Lemma 2.3. [12] For any two intuitionistic fuzzy sets \tilde{A} and \tilde{B} of Y, $\sim (\tilde{A}q\tilde{B}) \Leftrightarrow \tilde{A} \subset \tilde{B}^c$.

Definition 2.8. [12] An intuitionistic fuzzy topology on a non empty set Y is a family Γ of intuitionistic fuzzy sets in Y which satisfy the following axioms:

 $O_1. \ \tilde{0}, \tilde{1} \in \Gamma,$

 O_2 . $\tilde{A}_1 \cap \tilde{A}_2 \in \Gamma$ for any $\tilde{A}_1, \tilde{A}_2 \in \Gamma$,

 $O_3. \cup \tilde{A}_{\alpha} \in \Gamma$ for arbitrary family $\{\tilde{A}_{\alpha} : \alpha \in \Lambda\} \in \Gamma$.

In this case the pair (Y, Γ) is called an intuitionistic fuzzy topological space and each intuitionistic fuzzy set in Γ , is known as an intuitionistic fuzzy open set in Y. The complement \tilde{B}^c of an intuitionistic fuzzy open set \tilde{B} is called an intuitionistic fuzzy closed set in Y.

Definition 2.9. [11] Let (Y, Γ) be an intuitionistic fuzzy topological space and \tilde{A} be an intuitionistic fuzzy set in Y. Then the closure and the interior of \tilde{A} are defined, respectively, by: $Cl(\tilde{A}) = \cap \{\tilde{K} : \tilde{K} \text{ is an intuitionistic fuzzy closed set in Y and } \tilde{A} \subseteq \tilde{K}\},$

 $Int(\tilde{A}) = \cup \{ \tilde{G} : \tilde{G} \text{ is an intuitionistic fuzzy open set in } Y \text{ and } \tilde{G} \subseteq \tilde{A} \}.$

Lemma 2.4. [11] For any intuitionistic fuzzy set \tilde{A} in (Y, Γ) we have:

(a) \tilde{A} is an intuitionistic fuzzy closed set in $Y \Leftrightarrow Cl(\tilde{A}) = \tilde{A}$

(b) \tilde{A} is an intuitionistic fuzzy open set in $Y \Leftrightarrow Int(\tilde{A}) = \tilde{A}$

(c) $Cl(\tilde{A}^c) = (Int(\tilde{A})^c)$

(d) $Int(\tilde{A}^c) = (Cl(\tilde{A})^c)$

Definition 2.10. [14] An intuitionistic fuzzy point $c(\alpha, \beta)$ is said to be a θ -cluster point of an intuitionistic fuzzy set \tilde{A} if for each q-neighborhood \tilde{B} of $c(\alpha, \beta)$, $\tilde{A}qCl(\tilde{B})$. The set of all θ -cluster points of \tilde{A} is called θ -closure of \tilde{A} and is denoted by $Cl_{\theta}(\tilde{A})$. An intuitionistic fuzzy set \tilde{A} is called intuitionistic fuzzy θ -closed if $\tilde{A} = Cl_{\theta}(\tilde{A})$. The compliment of intuitionistic fuzzy θ -closed is called intuitionistic fuzzy θ -open set. The θ -interior of \tilde{A} denoted by $Int_{\theta}(\tilde{A})$ is defined by $Int_{\theta}(\tilde{A}) = (Cl_{\theta}(\tilde{A}^c))^c$.

Definition 2.11. [28] Let X and Y are two nonempty sets. A function $F : (X, \tau) \to (Y, \Gamma)$ is called intuitionistic fuzzy multifunction if F(x) is an intuitionistic fuzzy set in $Y, \forall x \in X$.

Definition 2.12. [33] Let $F : (X, \tau) \to (Y, \Gamma)$ is an intuitionistic fuzzy multifunction and A be a subset of X. Then $F(A) = \bigcup_{x \in A} F(x)$.

Lemma 2.5. [33] Let $F : (X, \tau) \to (Y, \Gamma)$ be an intuitionistic fuzzy multifunction. Then

- (a) $A \subseteq B \Rightarrow F(A) \subseteq F(B)$ for any subsets A and B of X.
- (b) $F(A \cap B) \subseteq F(A) \cap F(B)$ for any subsets A and B of X.
- (c) $F(\bigcup_{\alpha \in \Lambda} A_{\alpha}) = \bigcup \{F(A_{\alpha}) : \alpha \in \Lambda\}$ for any family of subsets $\{A_{\alpha} : \alpha \in \Lambda\}$ in X.

Definition 2.13. [28] Let $F : (X, \tau) \to (Y, \Gamma)$ is an intuitionistic fuzzy multifunction. Then the upper inverse $F^+(\tilde{A})$ and lower inverse $F^-(\tilde{A})$ of an intuitionistic fuzzy set \tilde{A} in Y are defined as follows:

 $F^+(\tilde{A}) = \{ x \in X : F(x) \subseteq \tilde{A} \}$ $F^-(\tilde{A}) = \{ x \in X : F(x)q\tilde{A} \}$

Lemma 2.6. [33] Let $F : (X, \tau) \to (Y, \Gamma)$ be an intuitionistic fuzzy multifunction and \tilde{A}, \tilde{B} be intuitionistic fuzzy sets in Y. Then:

- $\begin{array}{l} (a) \ F^{+}(\tilde{1}) = F^{-}(\tilde{1}) = X \\ (b) \ F^{+}(\tilde{A}) \subseteq F^{-}(\tilde{A}) \\ (c) \ [F^{-}(\tilde{A})]^{c} = [F^{+}(\tilde{A})^{c}] \\ (d) \ [F^{+}(\tilde{A})]^{c} = [F^{-}(\tilde{A})^{c}] \\ (e) \ If \ \tilde{A} \subseteq \tilde{B} \ , \ then \ F^{+}(\tilde{A}) \subseteq F^{+}(\tilde{B}) \end{array}$
- (f) If $\tilde{A} \subseteq \tilde{B}$, then $F^{-}(\tilde{A}) \subseteq F^{-}(\tilde{B})$

Definition 2.14. [16] A subset \tilde{A} of an intuitionistic fuzzy topological space (Y, Γ) is called :

- (a) intuitionistic fuzzy Semi open if $\tilde{A} \subset Cl(Int(\tilde{A}))$.
- (b) intuitionistic fuzzy Semi closed if its complement is semi open.

Definition 2.15. [28] An Intuitionistic fuzzy multifunction $F : (X, \tau) \to (Y, \Gamma)$ is said to be:

- (a) Intuitionistic fuzzy upper semi-continuous at a point $x_0 \in X$, if for any intuitionistic fuzzy open set $\tilde{W} \subset Y$ such that $F(x_0) \subset \tilde{W}$ there exists an open set $U \subset X$ containing x_0 such that $F(U) \subset \tilde{W}$.
- (b) Intuitionistic fuzzy lower semi-continuous at a point $x_0 \in X$, if for any intuitionistic fuzzy open set $\tilde{W} \subset Y$ such that $F(x_0)q\tilde{W}$ there exists an open set $U \subset X$ containing x_0 such that $F(x)q\tilde{W}$, $\forall x \in U$.
- (c) Intuitionistic fuzzy upper semi-continuous (intuitionistic fuzzy lower semicontinuous) if it is intuitionistic fuzzy upper semi-continuous (Intuitionistic fuzzy lower semi-continuous) at each point of X.

Definition 2.16. [7] An Intuitionistic fuzzy multifunction $F : (X, \tau) \to (Y, \Gamma)$ is said to be:

- (a) Intuitionistic fuzzy lower α -continuous at a point $x_0 \in X$, if for any intuitionistic fuzzy open set $\tilde{W} \subset Y$ such that $F(x_0)q\tilde{W}$ there exists $U \in \alpha O(X)$ containing x_0 such that $F(x)q\tilde{W}, \forall x \in U$.
- (b) Intuitionistic fuzzy upper α -continuous at a point $x_0 \in X$, if for any intuitionistic fuzzy open set $\tilde{W} \subset Y$ such that $F(x_0) \subseteq \tilde{W}$ there exists $U \in \alpha O(X)$ containing x_0 such that $F(U) \subseteq \tilde{W}$.
- (c) Intuitionistic fuzzy upper α -continuous (resp. Intuitionistic fuzzy lower α -continuous) if it is intuitionistic fuzzy upper α -continuous (resp. intuitionistic fuzzy lower α -continuous) at every point of X.

3. Lower Weakly α -continuous Intuitionistic Fuzzy Multifunctions

Definition 3.1. An Intuitionistic fuzzy multifunction $F : (X, \tau) \to (Y, \Gamma)$ is said to be:

- (a) Intuitionistic fuzzy lower weakly α -continuous at a point $x_0 \in X$, if for each $U \in SO(X)$ containing x_0 and each intuitionistic fuzzy open set $\tilde{W} \subset Y$ such that $F(x_0)q\tilde{W}$ there exists a nonempty open set $V \subset U$ such that $F(x)qCl(\tilde{W})$, $\forall x \in V$.
- (b) Intuitionistic fuzzy lower weakly α -continuous if it is intuitionistic fuzzy lower weakly α -continuous at each point of X.

Definition 3.2. Let \tilde{A} be an intuitionistic fuzzy set of an intuitionistic fuzzy topological space (Y, Γ) . Then \tilde{V} is said to be a neighbourhood of \tilde{A} in Y if there exists an intuitionistic fuzzy open set \tilde{U} of Y such that $\tilde{A} \subset \tilde{U} \subset \tilde{V}$.

Theorem 3.1. Let $F : (X, \tau) \to (Y, \Gamma)$ be an intuitionistic fuzzy multifunction and let $x \in X$. Then the following statements are equivalent:

- (a) F is intuitionistic fuzzy lower weakly α -continuous at x.
- (b) For each intuitionistic fuzzy open set \tilde{B} of Y with $F(x)q\tilde{B}$, there exists $U \in \alpha O(X)$ containing x such that $F(x)qCl(\tilde{B}), \forall x \in U$.
- (c) $x \in \alpha Int(F^{-}(Cl(B)))$ for every intuitionistic fuzzy open set B of Y such that $F(x)q\tilde{B}$.
- (d) $x \in Int(Cl(Int(F^{-}(Cl(\tilde{B})))))$ for every intuitionistic fuzzy open set \tilde{B} of Y such that $F(x)q\tilde{B}$.

Proof. (a) \Rightarrow (b). Let $x \in X$ and \tilde{B} be any intuitionistic fuzzy open set of Y such that $F(x)q\tilde{B}$. For each $U \in SO(X)$ such that $x \in U$ there exists a nonempty open set G_U such that $G_U \subset U$ and $F(x)qCl(\tilde{B})\forall x \in G_U$. Let $N = \bigcup \{G_U : U \in SO(X)\}$. Put $M = N \cup \{x\}$, then N is open in $X, x \in sCl(N)$ and $F(x)qCl(\tilde{B})\forall x \in N$. Thus we have by Lemma 2.1 $M \in SO(X)$. Hence $F(x)qCl(\tilde{B})\forall x \in M$.

(b) \Rightarrow (c). Let *B* be any intuitionistic fuzzy open set of *Y* such that F(x)qB, then there exists $M \in \alpha O(X)$ such that $F(x)qCl(\tilde{B}))\forall x \in M$. Then $x \in M \subset (F^{-}(Cl(\tilde{B})))$ and hence $x \in \alpha Int(F^{-}(Cl(\tilde{B})))$.

(c) \Rightarrow (d). Let \tilde{B} be any intuitionistic fuzzy open set of Y such that $F(x)q\tilde{B}$, Let $x \in \alpha Int(F^{-}(Cl(\tilde{B})))$, then there exists $M \in \alpha O(X)$ such that $F(M)qCl(\tilde{B})$). Then $x \in M \subset (F^{-}(Cl(\tilde{B})))$ and hence $x \in U \subset Int(Cl(Int(F^{-}(Cl(\tilde{B})))))$.

(d) \Rightarrow (a). Let \tilde{B} be any intuitionistic fuzzy open set of Y such that $F(x)q\tilde{B}$ and $U \in SO(X)$ containing x. Then we have $x \in Int(Cl(Int(F^{-}(Cl(\tilde{B}))))) =$ $sCl(Int(F^{-}(Cl(\tilde{B}))))$, therefore $\phi \neq U \cap Int(F^{-}(Cl(\tilde{B}))) \in SO(X)$. Put $G = U \cap$ $Int(F^{-}(Cl(\tilde{B})))$, then G is a nonempty open set of X and $G \subset U$ and $F(G)qCl(\tilde{B})$, by Lemma 2.6. Hence, F is intuitionistic fuzzy lower weakly α -continuous at x. \Box

Definition 3.3. [29] Let X and Y are two non empty sets. A multifunction $F : X \to Y$ is called fuzzy multifunction if F(x) is a fuzzy set in Y, $\forall x \in X$.

Corollary 3.1. Let F be a fuzzy multifunction from a topological space (X, \neg) into a fuzzy topological space (Y, σ) and let $x \in X$. Then the following statements are equivalent:

- (a) F is fuzzy lower weakly α -continuous at x.
- (b) For each fuzzy open set B of Y with F(x)qB, there exists $U \in \alpha O(X)$ containing x such that F(x)qCl(B), $\forall x \in U$.

- (c) $x \in \alpha Int(F^{-}(Cl(B)))$ for every fuzzy open set B of Y such that F(x)qB.
- (d) $x \in Int(Cl(Int(F^{-}(Cl(B)))))$ for every fuzzy open set B of Y such that F(x)qB.

Corollary 3.2. [30] For a multifunction $F : X \to Y$ and a point $x \in X$. Then the following statements are equivalent:

- (a) F is lower weakly α -continuous at x.
- (b) For each open set B of Y with F(x)qB, there exists $U \in \alpha O(X)$ containing x such that $F(x)qCl(B), \forall x \in U$.
- (c) $x \in \alpha Int(F^{-}(Cl(B)))$ for every open set B of Y such that F(x)qB.
- (d) $x \in Int(Cl(Int(F^{-}(Cl(B)))))$ for every open set B of Y such that F(x)qB.

Theorem 3.2. Let $F : (X, \tau) \to (Y, \Gamma)$ be an intuitionistic fuzzy multifunction. Then the following statements are equivalent:

- (a) F is intuitionistic fuzzy lower weakly α -continuous;
- (b) For each intuitionistic fuzzy open set \tilde{B} of Y with $F(x)q\tilde{B}$, there exists $U \in \alpha O(X)$ containing x such that $U \subset F^{-}(Cl(\tilde{B}))$;
- (c) $F^{-}(\tilde{G}) \subset Int(Cl(Int(F^{-}Cl(\tilde{G}))))$ for every intuitionistic fuzzy open set \tilde{G} of Y;
- (d) $Cl(Int(Cl(F^+(Int(\tilde{V})) \subset F^+(Int(\tilde{V}))))$ for every intuitionistic fuzzy closed set \tilde{V} of Y;
- (e) $\alpha Cl(F^+Int(\tilde{V}) \subset F^+(\tilde{V})$ for every intuitionistic fuzzy closed set \tilde{V} of Y;
- (f) $\alpha Cl(F^+Int(Cl(\tilde{B})) \subset F^+(Cl(\tilde{B}))$ for every intuitionistic fuzzy closed set \tilde{B} of Y;
- (g) $F^{-}(Int(\tilde{B})) \subset \alpha Int(F^{-}(Cl(Int(\tilde{B}))))$, for each intuitionistic fuzzy subset \tilde{B} of Y;
- (h) $F^{-}(\tilde{V}) \subset \alpha Int(F^{-}(Cl(\tilde{V})))$, for each intuitionistic fuzzy open set \tilde{B} of Y;
- (i) $\alpha Cl(F^+(Int(\tilde{A})) \subset F^+(\tilde{A})$ for every intuitionistic fuzzy regular set \tilde{A} of Y;
- (j) $\alpha Cl(F^+(\tilde{B})) \subset F^+(Cl(\tilde{B}))$, for each Intuitionistic fuzzy open set \tilde{B} of Y.
- (k) $\alpha Cl(F^+(Int(Cl_{\theta}(\tilde{B})) \subset F^+(Cl_{\theta}(\tilde{B}))))$, for each Intuitionistic fuzzy subset \tilde{B} of Y.

Proof. (a) \Rightarrow (b). Similar to Theorem 3.1

(b) \Rightarrow (c). Let x be arbitrarily chosen in X and \tilde{B} be any intuitionistic fuzzy open set of Y such that $F(x)q\tilde{B}$, so $x \in F^{-}(\tilde{B})$. By hypothesis there exists $U \in \alpha O(X)$ containing x such that $F(x)qCl(\tilde{B}); \forall x \in U$ implies $x \in U \subset F^{-}(Cl(\tilde{B}))$ since $U \in \alpha O(X)$, we have $x \in F^{-}(\tilde{B}) \subset Int(Cl(Int(F^{-}(Cl(\tilde{B}))))))$.

(c) \Rightarrow (d). Let \tilde{G} be any arbitrary intuitionistic fuzzy closed set of Y. Then \tilde{G}^c is intuitionistic fuzzy open set of Y. By (c) $F^-(\tilde{G}^c) \subset Int(Cl(Int(F^-(Cl(\tilde{G}^c))))))$ by lemma 2.6 (c) we have $Cl(Int(Cl(F^+(Int(\tilde{G}))))) \subset F^+(Int(\tilde{G})))$.

(d) \Rightarrow (e). Suppose that (d) holds, let \tilde{V} be any arbitrary intuitionistic fuzzy closed set of Y thus we have $Cl(Int(Cl(F^+(Int(\tilde{V}))))) \subset F^+(Int(\tilde{V})))$ and hence $\alpha Cl(F^+(Int(\tilde{V}))) \subset F^+(\tilde{V})$ by lemma 2.1 and 2.2.

(e) \Rightarrow (f). Suppose that (e) holds and let \tilde{V} be any intuitionistic fuzzy set of Y. Then $Cl(\tilde{V})$ is intuitionistic fuzzy closed set of Y therefore $\alpha Cl(F^+(Int(Cl(\tilde{V})))) \subset F^+(Cl(\tilde{V}))$.

 $(e) \Rightarrow (i)$. Obvious.

(f)⇒(g). Let \tilde{B} be any intuitionistic fuzzy subset of Y, then $[F^{-}(Int(\tilde{B}))]^{c} = F^{+}(Cl(\tilde{B}^{c})) \supset \alpha Cl(F^{+}(Int(Cl(\tilde{B}^{c})))) = \alpha Cl(F^{+}(Cl(Int(\tilde{B})))^{c}) = \alpha Cl(F^{-}(Cl(Int(\tilde{B}))))^{c} = [\alpha Int(F^{-}(Cl(Int(\tilde{B}))))]^{c}.$ Thus we obtained $F^{-}(Int(\tilde{B})) \subset \alpha Int(F^{-}(Cl(Int(\tilde{B}))))$

 $(\mathbf{g}) \Rightarrow (\mathbf{h})$. Obvious.

(i)⇒(j). Let \tilde{A} be any intuitionistic fuzzy open set of Y then $Cl(\tilde{A})$ is intuitionistic fuzzy regular closed in Y and hance we have $\alpha Cl(F^+(\tilde{A})) \subset \alpha Cl(F^+(Int(Cl(\tilde{A})))) \subset \alpha Cl(F^+(Cl(\tilde{A}))) \subset F^+(Cl(\tilde{B})).$

 $(\mathbf{j}) \Rightarrow (\mathbf{h})$. Let \tilde{B} be any intuitionistic fuzzy open set of Y, then $[\alpha Int(F^{-}(Cl(\tilde{B})))]^{c} = \alpha Cl(F^{-}(Cl(\tilde{B})))^{c} = \alpha Cl(F^{+}(Int(Cl(\tilde{B}))^{c})) \subset F^{+}(Cl(Cl(\tilde{B}))^{c})) = F^{+}(Cl(Int(\tilde{B})))) = [F^{-}(Int(Cl(\tilde{B})))]^{c}$. Thus we obtained $F^{-}(\tilde{B}) = F^{-}(Int(Cl(\tilde{B}))) \subset \alpha Int(F^{-}(Cl(\tilde{B}))).$

(h) \Rightarrow (a). Let x be any point of X and \tilde{B} be any intuitionistic fuzzy open set of Y such that $F(x)q\tilde{B}$. Then it follows that $x \in F^{-}(B) \subset \alpha Int(F^{-}(Cl((B)))) \subset$ $Int(Cl(Int(F^{-}Cl(B))))$. Thus F is intuitionistic fuzzy lower weakly α continuous multifunction.

 $(\mathbf{j}) \Rightarrow (\mathbf{k})$. Let \tilde{B} be any intuitionistic fuzzy subset of Y, put $\tilde{B} = Int(Cl_{\theta}(\tilde{V})$ in (j). Then because $Cl_{\theta}(\tilde{V})$ is intuitionistic fuzzy closed in Y, we have $\alpha Cl(F^+(Int(Cl_{\theta}(\tilde{V})) \subset F^+(Cl_{\theta}(\tilde{V}))))$.

 (\mathbf{k}) ⇒ (\mathbf{j}) . Let \tilde{V} be any intuitionistic fuzzy regular closed set of Y. Therefore, we have $Cl(\tilde{V}) = Cl_{\theta}(\tilde{V})$ for every intuitionistic fuzzy open set \tilde{V} of Y, thus $\alpha Cl(F^+(Int(\tilde{V}))) = \alpha Cl(F^+(Int(Cl(\tilde{V})))) = \alpha Cl(F^+(Int(Cl_{\theta}(\tilde{V})))) \subset F^+(Cl_{\theta}(\tilde{V})) = F^+(Cl_{\theta}(\tilde{V})) = F^+(Cl_{\theta}(\tilde{V})) = F^+(Cl_{\theta}(\tilde{V})) = F^+(\tilde{V})$. □

Corollary 3.3. Let F be a fuzzy multifunction from a topological space (X, \neg) into a fuzzy topological space (Y, σ) . Then the following statements are equivalent:

(a) F is fuzzy lower weakly α -continuous;

- (b) For each fuzzy open set B of Y with F(x)qB, there exists $U \in \alpha O(X)$ containing x such that $U \subset F^{-}(Cl(B))$;
- (c) $F^{-}(G) \subset Int(Cl(Int(F^{-}Cl(G))))$ for every fuzzy open set G of Y;
- (d) $Cl(Int(Cl(F^+(Int(V)) \subset F^+(Int(V))))$ for every fuzzy closed set V of Y;
- (e) $\alpha Cl(F^+Int(V) \subset F^+(V)$ for every fuzzy closed set V of Y;
- (f) $\alpha Cl(F^+Int(Cl(B)) \subset F^+(Cl(B))$ for every fuzzy closed set B of Y;
- (g) $F^{-}(Int(B)) \subset \alpha Int(F^{-}(Cl(Int(B))))$, for each fuzzy subset B of Y;
- (h) $F^{-}(V) \subset \alpha Int(F^{-}(Cl(V)))$, for each fuzzy open set B of Y;
- (i) $\alpha Cl(F^+(Int(A)) \subset F^+(A)$ for every fuzzy regular set A of Y;
- (j) $\alpha Cl(F^+(B)) \subset F^+(Cl(B))$, for each fuzzy open set B of Y.

Corollary 3.4. [30] Let F be a multifunction from a topological space (X, \neg) into another topological space (Y, ζ) . Then the following statements are equivalent:

- (a) F is lower weakly α -continuous;
- (b) For each open set B of Y with F(x)qB, there exists $U \in \alpha O(X)$ containing x such that $U \subset F^{-}(Cl(B))$;
- (c) $F^{-}(G) \subset Int(Cl(Int(F^{-}Cl(G))))$ for every open set G of Y;
- (d) $Cl(Int(Cl(F^+(Int(V)) \subset F^+(Int(V))))$ for every closed set V of Y;
- (e) $\alpha Cl(F^+Int(V) \subset F^+(V)$ for every closed set V of Y;
- (f) $\alpha Cl(F^+Int(Cl(B)) \subset F^+(Cl(B))$ for every closed set B of Y;
- (g) $F^{-}(Int(B)) \subset \alpha Int(F^{-}(Cl(Int(B))))$, for each subset B of Y;
- (h) $F^{-}(V) \subset \alpha Int(F^{-}(Cl(V)))$, for each open set B of Y;
- (i) $\alpha Cl(F^+(Int(A)) \subset F^+(A)$ for every regular set A of Y;
- (j) $\alpha Cl(F^+(B)) \subset F^+(Cl(B))$, for each open set B of Y.

Lemma 3.1. $F: (X, \tau) \to (Y, \Gamma)$ is an intuitionistic fuzzy lower weakly α -continuous multifunction, then for each $x \in X$ and each $\tilde{B} \subset Y$ with $F(x)q(Int_{\theta}(\tilde{B}))$ there exists $U \in \alpha O(X)$ such that $U \subset F^{-}(\tilde{B})$.

Proof. Since $F(x)q(Int_{\theta}(\tilde{B}))$ there exists a nonempty intuitionistic fuzzy set \tilde{A} of Y such that $\tilde{A} \subset Cl(\tilde{A}) \subset \tilde{B}$ and $F(x)q\tilde{A}$. Since F is lower weakly α -continuous there exists $U \in \alpha O(X)$ such that $F(u)qCl(\tilde{A}) : \forall u \in U$ and hence $U \subset F^{-}(B)$. \square

Theorem 3.3. For an intuitionistic fuzzy multifunction $F : (X, \tau) \to (Y, \Gamma)$, followings are equivalent:

- (a) F is intuitionistic fuzzy lower weakly α -continuous.
- (b) $\alpha Cl(F^+(\tilde{B})) \subset F^+(Cl_{\theta}(\tilde{B}))$ for every intuitionistic fuzzy subset \tilde{B} of Y.
- (c) $F(\alpha Cl(A)) \subset Cl_{\theta}(F(A))$ for every subset A of X.

Proof. (a) \Rightarrow (b). Let \tilde{B} be any intuitionistic fuzzy open set of Y. Suppose $x \in F^{-}(Cl_{\theta}(\tilde{B}))^{c} = F^{-}(Int_{\theta}(\tilde{B}^{c}))$, by Lemma 3.1, there exists $U \in \alpha O(X)$ such that $U \subset F^{-}(\tilde{B}^{c}) = [F^{+}(\tilde{B})]^{c}$. Thus $U \cap [F^{+}(\tilde{B})]^{c} \neq \phi$ therefore $x \in \alpha Cl(F^{+}(\tilde{B}))^{c}$.

(b) \Rightarrow (a). Let \tilde{A} be any intuitionistic fuzzy open set of Y. Since $Cl(\tilde{A}) = Cl_{\theta}(\tilde{A})$ for every intuitionistic fuzzy open subset of Y and we have $\alpha Cl(F^+(\tilde{B})) \subset F^+(Cl_{\theta}(\tilde{B}))$, by theorem 3.2 F is intuitionistic fuzzy lower weakly α -continuous.

(b) \Rightarrow (c). Let A be any nonempty subset of X, by (b) we have

$$\alpha Cl(A) \subset \alpha Cl(F^+(F(A))) \subset F^+(Cl_\theta(F(A)))$$

therefore we obtain $F(\alpha Cl(A)) \subset Cl_{\theta}(F(A))$.

 $(\mathbf{c}) \Rightarrow (\mathbf{b})$. Let \tilde{B} be any intuitionistic fuzzy open set of Y. By (c) we have

$$F(\alpha Cl(F^+(\tilde{B}))) \subset Cl_{\theta}(F(F^+(A))) \subset Cl_{\theta}(\tilde{B})$$

Therefore $\alpha Cl(F^+(\tilde{B})) \subset F^+(Cl_\theta(\tilde{B}))$

4. Upper Weakly α -Continuous Intuitionistic Fuzzy Multifunctions

Definition 4.1. An intuitionistic fuzzy multifunction $F : (X, \tau) \to (Y, \Gamma)$ is said to be:

- (a) Intuitionistic fuzzy upper weakly α -continuous at a point $x_0 \in X$, if for each $U \in SO(X)$ containing x_0 and each intuitionistic fuzzy open set $\tilde{W} \subset Y$ such that $F(x_0) \subset \tilde{W}$ there exists a nonempty open set $V \subset U$ such that $F(V) \subset Cl(\tilde{W})$.
- (b) Intuitionistic fuzzy upper weakly α -continuous if it is intuitionistic fuzzy upper weakly α -continuous at each point of X.

Theorem 4.1. Let $F : (X, \tau) \to (Y, \Gamma)$ be an intuitionistic fuzzy multifunction and let $x \in X$. Then the following statements are equivalent:

- (a) F is intuitionistic fuzzy upper weakly α -continuous at x.
- (b) For each intuitionistic fuzzy open set \tilde{B} of Y with $F(x) \subset \tilde{B}$, there exists $U \in \alpha O(X)$ containing x such that $F(U) \subset Cl(\tilde{B})$.

K. Bohre and S. S. Thakur

- (c) $x \in \alpha Int(F^+(Cl(\tilde{B})))$ for every intuitionistic fuzzy open set \tilde{B} of Y such that $F(x) \subset \tilde{B}$.
- (d) $x \in Int(Cl(Int(F^+(Cl(\tilde{B})))))$ for every intuitionistic fuzzy open set \tilde{B} of Y such that $F(x) \subset \tilde{B}$.

Proof. (a) \Rightarrow (b). Let $x \in X$ and \tilde{B} be any intuitionistic fuzzy open set of Y such that $F(x) \subset \tilde{B}$. For each $U \in SO(X)$ such that $x \in U$ there exists a nonempty open set G_U such that $G_U \subset U$ and $F(G_U) \subset Cl(\tilde{B})$. Let $A = \bigcup \{G_U : U \in SO(X)\}$. Put $S = A \cup \{x\}$, then A is open in $X, x \in sCl(A)$ and $F(A) \subset Cl(\tilde{B})$. Thus we have by Lemma 2.1 $S \in SO(X)$. Hence $F(S) \subset Cl(\tilde{B})$.

(b) \Rightarrow (c). Let \tilde{B} be any intuitionistic fuzzy open set of Y such that $F(x) \subset \tilde{B}$, then there exists $S \in \alpha O(X)$ such that $F(S) \subset Cl(\tilde{B})$). Then $x \in S \subset (F^+(Cl(\tilde{B})))$ and hence $x \in \alpha Int(F^+(Cl(\tilde{B})))$.

(c) \Rightarrow (d). Let \tilde{B} be any intuitionistic fuzzy open set of Y such that $F(x) \subset \tilde{B}$, Let $x \in \alpha Int(F^+(Cl(\tilde{B})))$, then there exists $S \in \alpha O(X)$ such that $F(S) \subset Cl(\tilde{B})$). Then $x \in S \subset (F^+(Cl(\tilde{B})))$ and hence $x \in U \subset Int(Cl(Int(F^+(Cl(\tilde{B}))))))$.

(d) \Rightarrow (a). Let \hat{B} be any intuitionistic fuzzy open set of Y such that $F(x) \subset \hat{B}$ and $U \in SO(X)$ containing x. Then we have $x \in Int(Cl(Int(F^+(Cl(\tilde{B}))))) =$ $sCl(Int(F^+(Cl(\tilde{B}))))$, therefore $\phi \neq U \cap Int(F^+(Cl(\tilde{B}))) \in SO(X)$. Put G = $U \cap Int(F^+(Cl(\tilde{B})))$, then G is a nonempty open set of X and $G \subset U$ and $F(G) \subset$ $Cl(\tilde{B})$, by Lemma 2.6, hence F is intuitionistic fuzzy upper weakly α -continuous at x. \Box

Corollary 4.1. Let F be a fuzzy multifunction from a topological space (X, \neg) into a fuzzy topological space (Y, σ) and let $x \in X$. Then the following statements are equivalent:

- (a) F is fuzzy upper weakly α -continuous at x.
- (b) For each fuzzy open set B of Y with $F(x) \subset B$, there exists $U \in \alpha O(X)$ containing x such that $F(U) \subset Cl(B)$.
- (c) $x \in \alpha Int(F^+(Cl(B)))$ for every fuzzy open set B of Y such that $F(x) \subset B$.
- (d) $x \in Int(Cl(Int(F^+(Cl(B)))))$ for every fuzzy open set B of Y such that $F(x) \subset B$.

Corollary 4.2. [27] Let F be a multifunction from a topological space (X, \neg) into another topological space (Y, ζ) and let $x \in X$. Then the following statements are equivalent:

- (a) F is upper weakly α -continuous at x.
- (b) For each open set B of Y with $F(x) \subset B$, there exists $U \in \alpha O(X)$ containing x such that $F(U) \subset Cl(B)$.

- (c) $x \in \alpha Int(F^+(Cl(B)))$ for every open set B of Y such that $F(x) \subset B$.
- (d) $x \in Int(Cl(Int(F^+(Cl(B)))))$ for every open set B of Y such that $F(x) \subset B$.

Definition 4.2. Let \tilde{A} be an intuitionistic fuzzy set of an intuitionistic fuzzy topological space (Y, Γ) . Then \tilde{V} is said to be an α -neighbourhood of \tilde{A} in Y if there exists an intuitionistic fuzzy α -open set $\tilde{U} \subset Y$ such that $\tilde{A} \subset \tilde{U} \subset \tilde{V}$.

Theorem 4.2. For an intuitionistic fuzzy multifunction $F : (X, \tau) \to (Y, \Gamma)$ the following statements are equivalent:

- (a) F is intuitionistic fuzzy upper weakly α -continuous;
- (b) For each intuitionistic fuzzy open set \tilde{B} of Y with $F(x) \subset \tilde{B}$, there exists $U \in \alpha O(X)$ containing x such that $F(U) \subset (Cl(\tilde{B}))$;
- (c) $F^+(\tilde{G}) \subset Int(Cl(Int(F^+Cl(\tilde{G}))))$ for every intuitionistic fuzzy open set \tilde{G} of Y;
- (d) $Cl(Int(Cl(F^{-}(Int(\tilde{V})) \subset F^{-}(\tilde{V}) \text{ for every intuitionistic fuzzy closed set } \tilde{V} \text{ of } Y;$
- (e) $\alpha Cl(F^{-}Int(\tilde{V}) \subset F^{-}(\tilde{V})$ for every intuitionistic fuzzy closed set \tilde{V} of Y;
- (f) $\alpha Cl(F^{-}(Int(Cl(\tilde{B}))) \subset F^{-}(Cl(\tilde{B}))$ for every intuitionistic fuzzy set \tilde{B} of Y;
- (g) $F^+(Int(\tilde{B})) \subset \alpha Int(F^+(Cl(Int(\tilde{B}))))$, for each intuitionistic fuzzy subset \tilde{B} of Y;
- (h) $F^+(\tilde{V}) \subset \alpha Int(F^+(Cl(\tilde{V})))$, for each intuitionistic fuzzy open set \tilde{B} of Y;
- (i) $\alpha Cl(F^{-}(Int(\tilde{A})) \subset F^{-}(\tilde{A})$ for every intuitionistic fuzzy regular closed set \tilde{A} of Y;
- (j) $\alpha Cl(F^{-}(\tilde{B})) \subset F^{-}(Cl(\tilde{B}))$, for each Intuitionistic fuzzy open set \tilde{B} of Y.

(k) $\alpha Cl(F^{-}(Cl_{\theta}(\tilde{B})) \subset F^{-}(Cl_{\theta}(\tilde{B})))$, for each Intuitionistic fuzzy subset \tilde{B} of Y.

Proof. (a) \Rightarrow (b). Similar to Theorem 4.1.

(b) \Rightarrow (c). Let x be arbitrarily chosen in X and \tilde{B} be any intuitionistic fuzzy open set of Y such that $F(x) \subset \tilde{B}$, so $x \in F^+(\tilde{B})$. By hypothesis there exists $U \in \alpha O(X)$ containing x such that $F(U) \subset Cl(\tilde{B})$ implies $x \in U \subset F^+(Cl(\tilde{B}))$ since $U \in \alpha O(X)$, we have $x \in F^+(\tilde{B}) \subset Int(Cl(Int(F^+(Cl(\tilde{B}))))))$.

(c) \Rightarrow (d). Let \tilde{G} be any arbitrary intuitionistic fuzzy closed set of Y. Then \tilde{G}^c is intuitionistic fuzzy open set of Y. By (c) $F^+(\tilde{G}^c) \subset Int(Cl(Int(F^+(Cl(\tilde{G}^c)))))$ by lemma 2.6 (d) we have $Cl(Int(Cl(F^-(Int(\tilde{G}))))) \subset F^-(\tilde{G})$.

(d)⇒(e). Suppose that (d) holds, let \tilde{V} be any arbitrary intuitionistic fuzzy closed set of Y thus we have $Cl(Int(Cl(F^{-}(Int(\tilde{V}))))) \subset F^{-}(\tilde{V})$ and hence $\alpha Cl(F^{-}(Int(\tilde{V}))) \subset F^{-}(\tilde{V})$ by lemma 2.1 and 2.2.

(e) \Rightarrow (f). Suppose that (e) holds and let \tilde{V} be any intuitionistic fuzzy set of Y. Then $Cl(\tilde{V})$ is intuitionistic fuzzy closed set of Y therefore $\alpha Cl(F^{-}(Int(Cl(\tilde{V})))) \subset F^{-}(Cl(\tilde{V}))$.

 $(e) \Rightarrow (i)$. Obvious.

 $\begin{array}{l} (\mathbf{f}) \Rightarrow (\mathbf{g}). \text{ Let } \tilde{B} \text{ be any intuitionistic fuzzy subset of } Y, \text{ then } [F^+(Int(\tilde{B}))]^c = \\ F^-(Cl(\tilde{B}^c)) \supset \alpha Cl(F^-(Int(Cl(\tilde{B}^c)))) = \alpha Cl(F^-(Cl(Int(\tilde{B})))^c) = \alpha Cl(F^+(Cl(Int(\tilde{B}))))^c = \\ [\alpha Int(F^+(Cl(Int(\tilde{B}))))]^c. \text{ Thus we obtained } F^+(Int(\tilde{B})) \subset \alpha Int(F^+(Cl(Int(\tilde{B})))) \end{array}$

 $(g) \Rightarrow (h)$. Obvious.

(i) \Rightarrow (j). Let \tilde{A} be any intuitionistic fuzzy open set of Y then $Cl(\tilde{A})$ is regular closed in Y and hance we have $\alpha Cl(F^{-}(\tilde{A})) \subset \alpha Cl(F^{-}(Int(Cl(\tilde{A})))) \subset \alpha Cl(F^{-}(Cl(\tilde{A}))) \subset F^{-}(Cl(\tilde{B})).$

(j)⇒(h). Let \tilde{B} be any intuitionistic fuzzy open set of Y, then $[\alpha Int(F^+(Cl(\tilde{B})))]^c = \alpha Cl(F^+(Cl(\tilde{B})))^c = \alpha Cl(F^-(Int(Cl(\tilde{B}))^c)) \subset F^-(Cl(Cl(\tilde{B}))^c)) = F^-(Cl(Int(\tilde{B})))) = [F^+(Int(Cl(\tilde{B})))]^c$. Thus we obtained $F^+(\tilde{B}) = F^+(Int(Cl(\tilde{B}))) \subset \alpha Int(F^+(Cl(\tilde{B}))).$

(h) \Rightarrow (a). Let x be any point of X and \tilde{B} be any intuitionistic fuzzy open set of Y such that $F(x) \subset \tilde{B}$. Then it follows that $x \in F^+(B) \subset \alpha Int(F^+(Cl(B))) \subset Int(Cl(Int(F^+Cl(B))))$. Thus F is intuitionistic fuzzy upper weakly α continuous multifunction.

 $(\mathbf{j}) \Rightarrow (\mathbf{k})$. Let \tilde{V} be any intuitionistic fuzzy subset of Y, put $\tilde{B} = Int(Cl_{\theta}(\tilde{V}))$ in (j). Then because $(Cl_{\theta}(\tilde{V}))$ is closed in Y, we have $\alpha Cl(F^{-}(Int(Cl_{\theta}(\tilde{V}))) \subset F^{-}(Cl_{\theta}(\tilde{V})))$.

 (\mathbf{k}) ⇒ (\mathbf{j}) . Let \tilde{V} be any intuitionistic fuzzy regular closed set of Y. Therefore, we have $Cl(\tilde{V}) = Cl_{\theta}(\tilde{V})$ for every intuitionistic fuzzy open set \tilde{V} of Y, thus $\alpha Cl(F^{-}(Int(\tilde{V}))) = \alpha Cl(F^{-}(Int(Cl(\tilde{V})))) = \alpha Cl(F^{-}(Int(Cl_{\theta}(Int(\tilde{V}))))) ⊂ F^{-}(Cl_{\theta}(Int(\tilde{V}))) = F^{-}(Cl(Int(\tilde{V}))) = F^{-}(\tilde{V})$ □

Corollary 4.3. Let F be a fuzzy multifunction from a topological space (X, \neg) into a fuzzy topological space (Y, σ) and let $x \in X$. Then the following statements are equivalent:

- (a) F is fuzzy upper weakly α -continuous;
- (b) For each fuzzy open set B of Y with $F(x) \subset B$, there exists $U \in \alpha O(X)$ containing x such that $F(U) \subset Cl(B)$;
- (c) $F^+(G) \subset Int(Cl(Int(F^+Cl(G))))$ for every fuzzy open set G of Y;
- (d) $Cl(Int(Cl(F^{-}(Int(V)) \subset F^{-}(V) \text{ for every fuzzy closed set } V \text{ of } Y;$
- (e) $\alpha Cl(F^{-}Int(V) \subset F^{-}(V)$ for every fuzzy closed set V of Y;
- (f) $\alpha Cl(F^{-}(Int(Cl(B))) \subset F^{-}(Cl(B))$ for every fuzzy set B of Y;
- (g) $F^+(Int(B)) \subset \alpha Int(F^+(Cl(Int(B))))$, for each fuzzy subset B of Y;
- (h) $F^+(V) \subset \alpha Int(F^+(Cl(V)))$, for each fuzzy open set B of Y;

- (i) $\alpha Cl(F^{-}(Int(A)) \subset F^{-}(A)$ for every fuzzy regular closed set A of Y;
- (j) $\alpha Cl(F^{-}(B)) \subset F^{-}(Cl(B))$, for each fuzzy open set B of Y.

Corollary 4.4. [30] Let F be a multifunction from a topological space (X, \neg) into another topological space (Y, ζ) and let $x \in X$. Then the following statements are equivalent:

- (a) F is upper weakly α -continuous;
- (b) For each open set B of Y with $F(x) \subset B$, there exists $U \in \alpha O(X)$ containing x such that $F(U) \subset Cl(B)$;
- (c) $F^+(G) \subset Int(Cl(Int(F^+Cl(G))))$ for every open set G of Y;
- (d) $Cl(Int(Cl(F^{-}(Int(V)) \subset F^{-}(V) \text{ for every closed set } V \text{ of } Y;$
- (e) $\alpha Cl(F^{-}Int(V) \subset F^{-}(V)$ for every closed set V of Y;
- (f) $\alpha Cl(F^{-}(Int(Cl(B))) \subset F^{-}(Cl(B))$ for every set B of Y;
- (g) $F^+(Int(B)) \subset \alpha Int(F^+(Cl(Int(B))))$, for each subset B of Y;
- (h) $F^+(V) \subset \alpha Int(F^+(Cl(V)))$, for each open set B of Y;
- (i) $\alpha Cl(F^{-}(Int(A)) \subset F^{-}(A)$ for every regular closed set A of Y;
- (j) $\alpha Cl(F^{-}(B)) \subset F^{-}(Cl(B))$, for each open set B of Y.

5. Properties of Upper(lower) Weakly α-Continuous Intuitionistic Fuzzy Multifunctions

Lemma 5.1. [21] Let U and X_0 be a subset of topological space X. The following properties hold:

(a) If $A \in SO(X) \cup PO(X)$ and $B \in \alpha(X)$, then $A \cap B \in \alpha(A)$.

(b) If $A \subset B \subset X$, $A \in \alpha(B)$ and $B \in \alpha(X)$, then $A \in \alpha(X)$.

Theorem 5.1. If an intuitionistic fuzzy multifunction $F : (X, \tau) \to (Y, \Gamma)$ is intuitionistic fuzzy upper weakly α -continuous (resp. intuitionistic fuzzy lower weakly α -continuous) and $A \in PO(X) \cup SO(X)$, then the restriction $F|A : A \to Y$ is intuitionistic fuzzy upper weakly α -continuous (resp. intuitionistic fuzzy lower weakly α -continuous).

Proof. We prove only the assertion for F intuitionistic fuzzy upper weakly α -continuous, the proof for F intuitionistic fuzzy lower weakly α -continuous being analogous. Let $x \in X$ and \tilde{V} be any intuitionistic fuzzy open set of Y such that $(F|A)(x) \subset \tilde{V}$. Since F intuitionistic fuzzy upper weakly α -continuous and

(F|A)(x) = F(x), there exists $U \in \alpha(X)$ containing x such that $F(U) \subset Cl(\tilde{V})$. Set $U_0 = U \cap A$. Then by Lemma 5.1 we have $x \in U_0 \in (A)$ and $(F|A)(U_0) = F(U_0) \subset Cl(\tilde{V})$. This shows that $F|A: A \to Y$ is intuitionistic fuzzy upper weakly α -continuous. \square

Theorem 5.2. An intuitionistic fuzzy multifunction $F : (X, \tau) \to (Y, \Gamma)$ is intuitionistic fuzzy upper weakly α -continuous (resp. intuitionistic fuzzy lower weakly α -continuous) if for each $x \in X$ there exists $X_0 \in \alpha(X)$ containing x such that the restriction $F|X_0 : X_0 \to Y$ is intuitionistic fuzzy upper weakly α -continuous (resp. intuitionistic fuzzy lower weakly α -continuous).

Proof. We prove only the assertion for F intuitionistic fuzzy upper weakly α -continuous, the proof for F intuitionistic fuzzy lower weakly α -continuous being analogous. Let $x \in X$ and \tilde{V} be any intuitionistic fuzzy open set of Y such that $F(x) \subset \tilde{V}$. There exists $X_0 \in \alpha(X)$ containing x such that $(F|X_0)(x) = F(x)$ intuitionistic fuzzy upper weakly α -continuous, there exists $U_0 \in \alpha(X_0)$ containing x such that $(F|X_0)(U_0) \subset Cl(\tilde{V})$. Then By Lemma 5.1 we have $x \in U_0 \in \alpha(X)$ and $F(u) = (F|X_0)(u), \forall u \in U_0$. This shows that $F: X \to Y$ is intuitionistic fuzzy upper weakly α -continuous. \square

Theorem 5.3. If $F : (X, \tau) \to (Y, \Gamma)$ is intuitionistic fuzzy multifunction, such that F(x) is closed in Y for each $x \in X$ and Y is a normal space, then the following are equivalent:

- (a) F is intuitionistic fuzzy upper α -continuous.
- (b) F is intuitionistic fuzzy upper weakly α -continuous.

Proof. $(a) \rightarrow (b)$. Obvious.

 $(b) \to (a)$. Suppose that F is intuitionistic fuzzy upper weakly α -continuous. Let $x \in X$ and \tilde{V} if intuitionistic fuzzy open set of Y such that $F(x) \subset \tilde{V}$. Since F(x) is intuitionistic fuzzy closed in Y, by normality of Y there exists an intuitionistic fuzzy open set \tilde{W} of Y such that $F(x) \subset \tilde{W} \subset Cl(\tilde{W}) \subset \tilde{V}$. Since F is intuitionistic fuzzy upper weakly α -continuous, there exists $U \in \alpha(X)$ containing x such that $F(U) \subset Cl(\tilde{W})$; hence $F(U) \subset \tilde{V}$. This shows that F is intuitionistic fuzzy upper α -continuous. \square

Theorem 5.4. If $F : (X, \tau) \to (Y, \Gamma)$ is intuitionistic fuzzy multifunction, such that F(x) is open in Y for each $x \in X$, then the following are equivalent:

(a) F is intuitionistic fuzzy lower α -continuous.

(b) F is intuitionistic fuzzy lower weakly α -continuous.

Proof. $(a) \rightarrow (b)$. Obvious.

 $(b) \to (a)$. Suppose that F is intuitionistic fuzzy lower weakly α -continuous. Let $x \in X$ and \tilde{V} if intuitionistic fuzzy open set of Y such that $F(x) \cap \tilde{V}$. There exists an open set $U \in \alpha(X)$ containing x such that $F(u)qCl(\tilde{W}), \forall u \in U$. Since F(u) is intuitionistic fuzzy open in Y, hence $F(u)q\tilde{W}, \forall u \in U$. This shows that F is intuitionistic fuzzy lower α -continuous. \square

REFERENCES

- 1. D. ANDRIJEVIC: Some Propreties of the Topology of α -sets, Mat. Vesnik 36(1984).1-10.
- 2. K. ATANASSOV: Intuitionistic Fuzzy Sets, In VII ITKR's Session, (V. Sgurev, Ed.) Sofia, Bulgaria, (1983)
- 3. K. ATANASSOV AND S. STOEVA: *Intuitionistic Fuzzy Sets*, In Polish Symposium on Interval and Fuzzy Mathematics, Poznan, (1983), 23-26
- K. ATANASSOV: Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems, 20(1986), 87-96.
- 5. C. BERGE: Espaces topologiques. Fonctions multivoques, Dunod. Paris.1959.
- KUSH BOHRE: Some Properties of α-Irresolute Intuitionistic Fuzzy Multifunctions, Advances in Fuzzy Mathematics, (8)(2), (2013), 89-97.
- KUSH BOHRE AND S. S. THAKUR: On Upper and Lower α-irresolute intuitionistic fuzzy multifunctions, Facta University (NIS), Ser. Math. Inform. 30(4)(2015)(In press).
- KUSH BOHRE AND S. S. THAKUR: Lower and upper α-continuous Intuitionistic Fuzzy Multifunctions, Annals of fuzzy mathematics and informatics, (9)(5)(2015), 801-815.
- J. CAO AND I. L. REILLY: α-Continuous and α-Irresolute Multifunctions, Mathematica Bohemica, 121(1996), No. 4, 415-424.
- 10. C. L. CHANG: Fuzzy Topological Spaces, J. Math. Anal. Appl. 24(1968), 182-190.
- D. COKER: An Introduction to Intuitionistic Fuzzy Topological Spaces, Fuzzy Sets and Systems, 88(1997), 81-89.
- D. COKER AND M. DEMIRCI: On Intuitionistic Fuzzy Points, Notes on Intuitionistic Fuzzy Sets, 2(1)(1995), 78-83.
- 13. S.G. CROSSLEY AND S.K. HILDEBRAND: Semi-closure, texas J. Sci. 22 (1971), 99-112.
- I. M. HANAFY, A. M. ABD EL-AZIJ AND T. M. SALMAN: Intuitionistic Fuzzy θ-closure opperator. Buletn De La Aso ciacion Matmatica Venezolana, 13(1)(2006),27-39.
- H. GURCAY, D. COKER AND A. ES. HAYDER: On Fuzzy Continuity in Intuitionistic Fuzzy Topological Spaces The Journal of Fuzzy Mathematics 5(2)(1997),365-378.
- J. K. JEON, Y.B. JUN AND J. H. PARK: Intuitionistic Fuzzy alpha-Continuity and intuitionistic fuzzy pre-continuity Internat. Jour. Math. Math. Sci., 19 (2005) 3091-3101.

K. Bohre and S. S. Thakur

- 17. N. LEVINE: semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- 18. S. N. MAHESHWARI, S. S. THAKUR: On α -Compact spaces, Bull. Int. Math. Acad. Sinica 13(1985), 341-347.
- S. N. MAHESHWARI, S. S. THAKUR: On α-irresolute mappings, Tamkang Jour. Math. 11(2)(1980)209-214.
- 20. S. N. MAHESHWARI, S. S. THAKUR: On α -Continuous Mappings J. INDIAN. ACAD. MATH., 7(1)(1985)46-50.
- A. S. MASHHOUR, I. A. HASANEIN, S. N. EL- DEEB:α-Continuous and α-open Mapping, ACTA MATH. HUNGAR. 41 (1983), 213-218.
- A. NEUBRUNNOV: On certain generalizations of the notions of continuity. MATH-EMATIKI CASOPIS 23(4)(1973),374-80.
- 23. T. NEUBRUNN: Strongly quasi-continuous multivalued mapping. In General Topology and its Relations to Modern Analysis and Algebra VI PROC. OF SYMPOSIUM PRAGUE 1986, HELDERMANN, BERLIN, (1988), PP. 351-359.
- O. NJASTAD: On some classes of nearly open sets, PECIFIC J. MATH. 15(1965), 961-970.
- 25. T. NOIRI: A function which preserves connected spaces, CASOPIS PEST. MATH. 107 (1982), 393-396.
- 26. T. NOIRI: On α -Continuous functions, CASOPIS PEST. MATH. 109 (1984), 118-126.
- T. NOIRI AND G. DI MAIO: Properties of alpha-compact Spaces IN: THIRD NA-TIONAL CONFERENCE ON TOPOLOGY (TRIESTE, 1986), (ITALIAN), REND. CIRC. MAT. PALERMO(2) SUPPL. 18(1988), 359-369.
- O. OZBAKIR AND D. COKER: Fuzzy Multifunction's in Intuitionistic Fuzzy Topological Spaces, NOTES ON INTUITIONISTIC FUZZY SETS, 5(3)(1999), 1-5
- 29. N. S. PAPAGEORGIOU: Fuzzy Topology and Fuzzy multifunctions, JOUR. MATH. ANAL. APPL., 109(2)(1985),397-425
- V. POPA AND T. NOIRI: On Upper and Lower weakly α-Continuous Multifunctions.Novi SAD J. MATH., 32(1)(2002), 7-24.
- 31. R. PRASAD, S. S. THAKUR AND R. K. SARAF: Fuzzy α -irresolute Mappings. J. FUZZY MATH 2(2)(1994) 335-339.
- 32. S. SAXENA : *Extension of set valued mappings in fuzzy Topololgy*. Ph.D. DIS-SERTATION , RANI DURGAVATI VISHWAVIDHYALAYA JABALPUR (2008).
- S. S. THAKUR AND KUSH BOHRE: On intuitionistic fuzzy multifunctions, INTER-NATIONAL JOURNAL OF FUZZY SYSTEMS AND ROUGH SYSTEMS.4(1)(2011),31-37.
- 34. S. S. THAKUR, KUSH BOHRE AND S. S. THAKUR:α-continuous Intuitionistic Fuzzy Multifunctions, INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS,29(3)(2011),20-23.
- 35. S. S. THAKUR, KUSH BOHRE AND S. S. THAKUR: some properties of upper and lower α -continuous Intuitionistic Fuzzy Multifunctions, INTERNATIONAL JOURNAL OF PURE AND APPLIED SCIENCES AND TECHNOLOGY, (4)(1),(2011),49-56.
- 36. S. S. THAKUR, KUSH BOHRE: On irresolute intuitionistic fuzzy multifunctions, INT. JOURNAL OF CONTEMP. MATH. SCIENCES,(7)(2012)(21-24),1013-1028.

- 37. S. S. THAKUR, KUSH BOHRE AND S. S. THAKUR: Some Properties of Irresolute Intuitionistic Fuzzy Multifunctions, JOURNAL OF INDIAN ACADEMY OF MATHE-MATICS, (34)(1)(2012),117-126.
- 38. S. S. THAKUR AND KUSH BOHRE: On Quasi-continuous intuitionistic fuzzy multifunctions, JOURNAL OF FUZZY MATHEMATICS, (20)(3), (2012), 597-612.
- 39. S. S. THAKUR, KUSH BOHRE: On Strongly semi-continuous Intuitionistic Fuzzy Multifunctions, ANNALS OF FUZZY MATHEMATICS AND INFORMATICS, (8)(5),(2014),815-824.
- 40. L. A. ZADEH: Fuzzy Sets, INFORMATION AND CONTROL, 18(1965), 338-353.

Kush Bohre Department of Applied Mathematics Jabalpur Engineering College , Jabalpur (M. P.) , 482011, INDIA kushbohre@yahoo.co.in

S S Thakur

Professor and Head Department of Applied Mathematics Jabalpur Engineering College, Jabalpur (M. P.), 482011, INDIA

samajh_singh@rediffmail.com