(η, γ)-FOURIER-BESSEL LIPSCHITZ FUNCTIONS
 IN THE SPACE $L_{\alpha, n}^{p}$

Radouan Daher, Salah El Ouadih and Mohamed El Hamma

Abstract

In this paper, we obtain an analog of Theorem 5.2 in Younis [5] for the generalized Fourier-Bessel transform on the real line for functions satisfying the (η, γ) -Fourier-Bessel Lipschitz condition in the space $L_{\alpha, n}^{p}, 1<p \leq 2$. Keywords: Singular differential operator, Generalized Fourier-Bessel transform, Generalized translation operator

1. Introduction and Preliminaries

Various investigators such as Mittal and Mishra [7], Mishra et al. [8]-[12] and Mishra and Mishra [3] have determined the degree of approximation of 2π-periodic signals (functions) belonging to various classes $\operatorname{Lip} \alpha, \operatorname{Lip}(\alpha, r), \operatorname{Lip}(\xi(t), r)$ and $W\left(L_{r}, \xi(t)\right),(r \geq 1)$, of functions through trigonometric Fourier approximation using different summability matrices with monotone rows. In this direction, Theorem 5.2 of Younis [5] characterized the set of functions in $L^{2}(\mathbb{R})$ satisfying the Dini Lipschitz condition by means of an asymptotic estimate growth of the norm of their Fourier transforms, namely, we have

Theorem 1.1. ([5]) Let $f \in L^{2}(\mathbb{R})$. Then, the following statements are equivalent (a) $\quad\|f(x+h)-f(x)\|=O\left(\frac{h^{\eta}}{\left(\log \frac{1}{h}\right)^{\gamma}}\right), \quad$ as $\quad h \rightarrow 0,0<\eta<1, \gamma \geq 0$,
(b) $\quad \int_{|\lambda| \geq r}|\widehat{f}(\lambda)|^{2} d \lambda=O\left(\frac{r^{-2 \eta}}{(\log r)^{2 \gamma}}\right)$, as $\quad r \rightarrow \infty$,
where \widehat{f} stands for the Fourier transform of f.
In this paper, we consider a second-order singular differential operator \mathcal{B} on the halfline which generalizes the Bessel operator \mathcal{B}_{α}, we obtain an analog of Theorem 1.1 for the generalized Fourier-Bessel transform associated to \mathcal{B} in $L_{\alpha, n}^{p}, 1<p \leq 2$. For this purpose, we use a generalized translation operator. Some interesting applications

[^0]of manuscript can be seen in ([3],[9]-[14]).
We briefly overview the theory of generalized Fourier-Bessel transform and related harmonic analysis (see [1],[6]):
Consider the second-order singular differential operator on the half line defined by
$$
\mathcal{B} f(x)=\frac{d^{2} f(x)}{d x^{2}}+\frac{(2 \alpha+1)}{x} \frac{d f(x)}{d x}-\frac{4 n(\alpha+n)}{x^{2}} f(x)
$$
where $\alpha>\frac{-1}{2}$ and $n=0,1,2, \ldots$. For $n=0$, we obtain the classical Bessel operator
$$
\mathcal{B}_{\alpha} f(x)=\frac{d^{2} f(x)}{d x^{2}}+\frac{(2 \alpha+1)}{x} \frac{d f(x)}{d x} .
$$

Let M be the map defined by

$$
M f(x)=x^{2 n} f(x), \quad n=0,1, . .
$$

Let $L_{\alpha, n}^{p}, 1<p \leq 2$, be the class of measurable functions f on $[0, \infty[$ for which

$$
\|f\|_{p, \alpha, n}=\left\|M^{-1} f\right\|_{p, \alpha+2 n}<\infty
$$

where

$$
\|f\|_{p, \alpha}=\left(\int_{0}^{\infty}|f(x)|^{p} x^{2 \alpha+1} d x\right)^{1 / p}
$$

If $p=2$, then we have $L_{\alpha, n}^{2}=L^{2}\left(\left[0, \infty\left[, x^{2 \alpha+1} d x\right)\right.\right.$.
For $\alpha \geq \frac{-1}{2}$, we introduce the Bessel normalized function of the first kind j_{α} defined by

$$
\begin{equation*}
j_{\alpha}(z)=\Gamma(\alpha+1) \sum_{n=0}^{\infty} \frac{(-1)^{n}\left(\frac{z}{2}\right)^{2 n}}{n!\Gamma(n+\alpha+1)}, \quad z \in \mathbb{C} \tag{1.1}
\end{equation*}
$$

where $\Gamma(x)$ is the gamma-function (see [4]). The function $y=j_{\alpha}(z)$ satisfies the differential equation

$$
\mathcal{B}_{\alpha} y+y=0
$$

with the initial conditions $y(0)=0$ and $y^{\prime}(0)=0$. The function $j_{\alpha}(z)$ is infinitely differentiable, even, and, moreover entire analytic.
From (1.1) we see that

$$
\begin{equation*}
\lim _{z \rightarrow 0} \frac{j_{\alpha}(z)-1}{z^{2}} \neq 0 \tag{1.2}
\end{equation*}
$$

hence, there exists $c>0$ and $\nu>0$ satisfying

$$
\begin{equation*}
|z| \leq \nu \Rightarrow\left|j_{\alpha}(z)-1\right| \geq c|z|^{2} \tag{1.3}
\end{equation*}
$$

For $\lambda \in \mathbb{C}$, and $x \in \mathbb{R}$, put

$$
\begin{equation*}
\varphi_{\lambda}(x)=x^{2 n} j_{\alpha+2 n}(\lambda x) . \tag{1.4}
\end{equation*}
$$

From [1], [6] recall the following properties.

Proposition 1.1. (c) φ_{λ} satisfies the differential equation

$$
\mathcal{B} \varphi_{\lambda}=-\lambda^{2} \varphi_{\lambda}
$$

(d) For all $\lambda \in \mathbb{C}$, and $x \in \mathbb{R}$

$$
\left|\varphi_{\lambda}(x)\right| \leq x^{2 n} e^{|I m \lambda||x|}
$$

The generalized Fourier-Bessel transform that we call it the integral transform defined by

$$
\mathcal{F}_{\mathcal{B}} f(\lambda)=\int_{0}^{\infty} f(x) \varphi_{\lambda}(x) x^{2 \alpha+1} d x, \lambda \geq 0, f \in L_{\alpha, n}^{1}
$$

From [1], we have

$$
\begin{equation*}
\mathcal{F}_{\mathcal{B}}=\mathcal{F}_{\alpha+2 n} o M^{-1} \tag{1.5}
\end{equation*}
$$

where \mathcal{F}_{α} is the Bessel transform defined by formula (see [4], [2])

$$
\mathcal{F}_{\alpha}(f)(\lambda)=\int_{0}^{\infty} f(x) j_{\alpha}(\lambda x) x^{2 \alpha+1} d x
$$

Let $f \in L_{\alpha, n}^{1}$ such that $\mathcal{F}_{\mathcal{B}}(f) \in L_{\alpha+2 n}^{1}=L^{1}\left(\left[0, \infty\left[, x^{2 \alpha+4 n+1} d x\right)\right.\right.$. Then the inverse generalized Fourier-Bessel transform is given by the formula (see [1])

$$
f(x)=\int_{0}^{\infty} \mathcal{F}_{\mathcal{B}} f(\lambda) \varphi_{\lambda}(x) d \mu_{\alpha+2 n}(\lambda)
$$

where

$$
d \mu_{\alpha+2 n}(\lambda)=a_{\alpha+2 n} \lambda^{2 \alpha+4 n+1} d \lambda, \quad a_{\alpha}=\frac{1}{4^{\alpha}(\Gamma(\alpha+1))^{2}} .
$$

From [1], [6] we have
Proposition 1.2. (e) For every $f \in L_{\alpha, n}^{1} \cap L_{\alpha, n}^{2}$ we have the Plancherel formula

$$
\int_{0}^{+\infty}|f(x)|^{2} x^{2 \alpha+1} d x=\int_{0}^{+\infty}\left|\mathcal{F}_{\mathcal{B}} f(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda)
$$

(f) The generalized Fourier-Bessel transform $\mathcal{F}_{\mathcal{B}}$ extends uniquely to an isometric isomorphism from $L_{\alpha, n}^{2}$ onto $L^{2}\left(\left[0,+\infty\left[, \mu_{\alpha+2 n}\right)\right.\right.$.

We have the Young inequality

$$
\begin{equation*}
\left\|\mathcal{F}_{\alpha}(f)\right\|_{q, \alpha} \leq K\|f\|_{p, \alpha} \tag{1.6}
\end{equation*}
$$

where $\frac{1}{p}+\frac{1}{q}=1$ and K is positive constant.
From (1.5) and (1.6) we have

$$
\begin{equation*}
\left\|\mathcal{F}_{\mathcal{B}}(f)\right\|_{q, \alpha+2 n} \leq K\|f\|_{p, \alpha, n} \tag{1.7}
\end{equation*}
$$

Define the generalized translation operator $T^{h}, h \geq 0$ by the relation

$$
T^{h} f(x)=(x h)^{2 n} \tau_{\alpha+2 n}^{h}\left(M^{-1} f\right)(x), x \geq 0
$$

where $\tau_{\alpha+2 n}^{h}$ is the Bessel translation operators of order $\alpha+2 n$ defined by

$$
\tau_{\alpha}^{h} f(x)=c_{\alpha} \int_{0}^{\pi} f\left(\sqrt{x^{2}+h^{2}-2 x h \cos t}\right) \sin ^{2 \alpha} t d t
$$

where

$$
c_{\alpha}=\left(\int_{0}^{\pi} \sin ^{2 \alpha} t d t\right)^{-1}=\frac{\Gamma(\alpha+1)}{\Gamma(\pi) \Gamma\left(\alpha+\frac{1}{2}\right)} .
$$

For $f \in L_{\alpha, n}^{p}$, we have

$$
\begin{align*}
\mathcal{F}_{\mathcal{B}}\left(T^{h} f\right)(\lambda) & =\varphi_{\lambda}(h) \mathcal{F}_{\mathcal{B}}(f)(\lambda) \tag{1.8}\\
\mathcal{F}_{\mathcal{B}}(\mathcal{B} f)(\lambda) & =-\lambda^{2} \mathcal{F}_{\mathcal{B}}(f)(\lambda) \tag{1.9}
\end{align*}
$$

(see [1],[6] for details).
Let $f \in L_{\alpha, n}^{p}$. We define the differences of the orders $k(k=1,2, .$.$) with a step$ $h>0$ by

$$
\begin{equation*}
\Delta_{h}^{k} f(x)=\left(T^{h}-h^{2 n} I\right)^{k} f(x) \tag{1.10}
\end{equation*}
$$

where I is the unit operator in $L_{\alpha, n}^{p}$.
Let $W_{p, \alpha, n}^{k}, 1<p \leq 2$, be the Sobolev space constructed by the singular differential operator \mathcal{B}, i.e.,

$$
W_{p, \alpha, n}^{k}=\left\{f \in L_{\alpha, n}^{p}, \mathcal{B}^{m} f \in L_{\alpha, n}^{p}, m=1,2, \ldots, k\right\} .
$$

2. Fourier-Bessel Dini Lipschitz Condition

Definition 2.1. Let $f \in W_{p, \alpha, n}^{k}$, and define

$$
\left\|\Delta_{h}^{k} \mathcal{B}^{m} f(x)\right\|_{p, \alpha, n} \leq C \frac{h^{\eta+2 n k}}{\left(\log \frac{1}{h}\right)^{\gamma}}, \quad \gamma \geq 0
$$

i.e.,

$$
\left\|\Delta_{h}^{k} \mathcal{B}^{m} f(x)\right\|_{p, \alpha, n}=O\left(\frac{h^{\eta+2 n k}}{\left(\log \frac{1}{h}\right)^{\gamma}}\right)
$$

for all x in \mathbb{R}^{+}and for all sufficiently small h, C being a positive constant. Then we say that f satisfies a Fourier-Bessel Dini Lipschitz of order η, or f belongs to $\operatorname{Lip}(\eta, \gamma, p)$.

Definition 2.2. If however

$$
\frac{\left\|\Delta_{h}^{k} \mathcal{B}^{m} f(x)\right\|_{p, \alpha, n}}{\frac{h^{\eta+2 n k}}{\left(\log \frac{1}{h}\right)^{\gamma}}} \rightarrow 0, \quad \text { as } \quad h \rightarrow 0, \gamma \geq 0
$$

i.e.,

$$
\left\|\Delta_{h}^{k} \mathcal{B}^{m} f(x)\right\|_{p, \alpha, n}=O\left(\frac{h^{\eta+2 n k}}{\left(\log \frac{1}{h}\right)^{\gamma}}\right)
$$

then f is said to be belong to the little Fourier-Bessel Dini Lipschitz class lip (η, γ, p).
Remark. It follows immediately from these definitions that

$$
\operatorname{lip}(\eta, \gamma, p) \subset \operatorname{Lip}(\eta, \gamma, p)
$$

Theorem 2.1. Let $\eta>1$. If $f \in \operatorname{Lip}(\eta, \gamma, p)$, then $f \in \operatorname{lip}(1, \gamma, p)$.
Proof. For $x \in \mathbb{R}^{+}$and h small, $f \in \operatorname{Lip}(\eta, \gamma, p)$ we have

$$
\left\|\Delta_{h}^{k} \mathcal{B}^{m} f(x)\right\|_{p, \alpha, n} \leq C \frac{h^{\eta+2 n k}}{\left(\log \frac{1}{h}\right)^{\gamma}}
$$

Then

$$
\left(\log \frac{1}{h}\right)^{\gamma}\left\|\Delta_{h}^{k} \mathcal{B}^{m} f(x)\right\|_{p, \alpha, n} \leq C h^{\eta+2 n k}
$$

Therefore

$$
\frac{\left(\log \frac{1}{h}\right)^{\gamma}}{h^{1+2 n k}}\left\|\Delta_{h}^{k} \mathcal{B}^{m} f(x)\right\|_{p, \alpha, n} \leq C h^{\eta-1}
$$

which tends to zero with $h \rightarrow 0$. Thus

$$
\frac{\left(\log \frac{1}{h}\right)^{\gamma}}{h^{1+2 n k}}\left\|\Delta_{h}^{k} \mathcal{B}^{m} f(x)\right\|_{p, \alpha, n} \rightarrow 0, \quad h \rightarrow 0
$$

Then $f \in \operatorname{lip}(1, \gamma, p)$.
Theorem 2.2. If $\eta<\nu$, then $\operatorname{Lip}(\eta, 0, p) \supset \operatorname{Lip}(\nu, 0, p)$ and $\operatorname{lip}(\eta, 0, p) \supset \operatorname{lip}(\nu, 0, p)$.
Proof. We have $0 \leq h \leq 1$ and $\eta<\nu$, then $h^{\nu} \leq h^{\eta}$. Then the proof of the theorem is immediate.

3. New Results on Fourier-Bessel Dini Lipschitz Class

Lemma 3.1. For $f \in W_{p, \alpha, n}^{k}$, we have

$$
\left(h^{2 q n k} \int_{0}^{\infty} \lambda^{2 q m}\left|j_{\alpha+2 n}(\lambda h)-1\right|^{q k}\left|\mathcal{F}_{\mathcal{B}} f(\lambda)\right|^{q} d \mu_{\alpha+2 n}(\lambda)\right)^{\frac{1}{q}} \leq K\left\|\Delta_{h}^{k} \mathcal{B}^{m} f(x)\right\|_{p, \alpha, n}
$$

where $\frac{1}{p}+\frac{1}{q}=1$ and $m=0,1,2 \ldots, k$.

Proof. From formula (1.8), we obtain

$$
\begin{equation*}
\mathcal{F}_{\mathcal{B}}\left(\mathcal{B}^{m} f\right)(\lambda)=(-1)^{m} \lambda^{2 m} \mathcal{F}_{\mathcal{B}} f(\lambda) ; m=0,1, \ldots \tag{3.1}
\end{equation*}
$$

By using the formulas (1.4), (1.8) and (3.1), we conclude that

$$
\begin{equation*}
\mathcal{F}_{\mathcal{B}}\left(T^{h} \mathcal{B}^{m} f\right)(\lambda)=(-1)^{m} h^{2 n} j_{\alpha+2 n}(\lambda h) \lambda^{2 m} \mathcal{F}_{\mathcal{B}} f(\lambda) \tag{3.2}
\end{equation*}
$$

From the definition of finite difference (1.10) and formula (3.2), the image $\Delta_{h}^{k} \mathcal{B}^{r} f(x)$ under the generalized Fourier-Bessel transform has the form

$$
\mathcal{F}_{\mathcal{B}}\left(\Delta_{h}^{k} \mathcal{B}^{m} f\right)(\lambda)=(-1)^{m} h^{2 n k}\left(j_{\alpha+2 n}(\lambda h)-1\right)^{k} \lambda^{2 m} \mathcal{F}_{\mathcal{B}} f(\lambda)
$$

Now by formula (1.7), we have the result.
Theorem 3.1. Let $\eta>2 k$. If f belongs to the Fourier-Bessel Dini Lipschitz class, i.e.,

$$
f \in \operatorname{Lip}(\eta, \gamma, p), \quad \eta>2 k, \gamma \geq 0
$$

Then f is equal to the null function in \mathbb{R}^{+}.
Proof. Assume that $f \in \operatorname{Lip}(\eta, \gamma, p)$. Then we have

$$
\left\|\Delta_{h}^{k} \mathcal{B}^{m} f(x)\right\|_{p, \alpha, n} \leq C \frac{h^{\eta+2 n k}}{\left(\log \frac{1}{h}\right)^{\gamma}}, \quad \gamma \geq 0
$$

From Lemma 3.1, we get

$$
h^{2 q n k} \int_{0}^{\infty} \lambda^{2 q m}\left|j_{\alpha+2 n}(\lambda h)-1\right|^{q k}\left|\mathcal{F}_{\mathcal{B}} f(\lambda)\right|^{q} d \mu_{\alpha+2 n}(\lambda) \leq K^{q} C^{q} \frac{h^{q \eta+2 q n k}}{\left(\log \frac{1}{h}\right)^{q \gamma}}
$$

Therefore

$$
\int_{0}^{\infty} \lambda^{2 q m}\left|j_{\alpha+2 n}(\lambda h)-1\right|^{q k}\left|\mathcal{F}_{\mathcal{B}} f(\lambda)\right|^{q} d \mu_{\alpha+2 n}(\lambda) \leq K^{q} C^{q} \frac{h^{q \eta}}{\left(\log \frac{1}{h}\right)^{q \gamma}}
$$

Then

$$
\frac{\int_{0}^{\infty} \lambda^{2 q m}\left|j_{\alpha+2 n}(\lambda h)-1\right|^{q k}\left|\mathcal{F}_{\mathcal{B}} f(\lambda)\right|^{q} d \mu_{\alpha+2 n}(\lambda)}{h^{2 q k}} \leq K^{q} C^{q} \frac{h^{q \eta-2 q k}}{\left(\log \frac{1}{h}\right)^{q \gamma}}
$$

Since $\eta>2 k$ we have

$$
\lim _{h \rightarrow 0} \frac{h^{q \eta-2 q k}}{\left(\log \frac{1}{h}\right)^{q \gamma}}=0
$$

Thus

$$
\lim _{h \rightarrow 0} \int_{0}^{\infty}\left(\frac{\left|1-j_{\alpha}(\lambda h)\right|}{\lambda^{2} h^{2}}\right)^{q k} \lambda^{2 q k+2 q m}\left|\mathcal{F}_{\mathcal{B}} f(\lambda)\right|^{q} d \mu_{\alpha+2 n}(\lambda)=0
$$

and also from the formula (1.2) and Fatou theorem, we obtain

$$
\int_{0}^{\infty} \lambda^{2 q k+2 q m}\left|\mathcal{F}_{\mathcal{B}} f(\lambda)\right|^{q} d \mu_{\alpha+2 n}(\lambda)=0
$$

Hence $\lambda^{2 k+2 m} \mathcal{F}_{\mathcal{B}} f(\lambda)=0$ for all $\lambda \in \mathbb{R}^{+}$, and so $f(x)$ is the null function.

Analog of the Theorem 3.1, we obtain this theorem.
Theorem 3.2. Let $f \in W_{p, \alpha, n}^{k}$. If f belong to $\operatorname{lip}(2,0, p)$, i.e.,

$$
\left\|\Delta_{h}^{k} \mathcal{B}^{m} f(x)\right\|_{p, \alpha, n}=O\left(h^{2}\right), \quad \text { as } \quad h \rightarrow 0
$$

Then f is equal to null function in \mathbb{R}^{+}.
Now, we give another main result of this paper analog of Theorem 1.1.
Theorem 3.3. Let f belong to $\operatorname{Lip}(\eta, \gamma, p)$. Then

$$
\int_{r}^{\infty} \lambda^{2 q m}\left|\mathcal{F}_{\mathcal{B}} f(\lambda)\right|^{q} d \mu_{\alpha+2 n}(\lambda)=O\left(\frac{r^{-q \eta}}{(\log r)^{q \gamma}}\right), \quad \text { as } \quad r \rightarrow \infty
$$

where $\frac{1}{p}+\frac{1}{q}=1$ and $m=0,1,2, \ldots, k$.
Proof. Let $f \in \operatorname{Lip}(\eta, \gamma, p)$. Then

$$
\left\|\Delta_{h}^{k} \mathcal{B}^{m} f(x)\right\|_{p, \alpha, n}=O\left(\frac{h^{\eta+2 n k}}{\left(\log \frac{1}{h}\right)^{\gamma}}\right), \quad \text { as } \quad h \rightarrow 0
$$

From Lemma 3.1, we have

$$
\int_{0}^{\infty} \lambda^{2 q m}\left|j_{\alpha+2 n}(\lambda h)-1\right|^{q k}\left|\mathcal{F}_{\mathcal{B}} f(\lambda)\right|^{q} d \mu_{\alpha+2 n}(\lambda) \leq \frac{K^{q}}{h^{2 q n k}}\left\|\Delta_{h}^{k} \mathcal{B}^{m} f(x)\right\|_{p, \alpha, n}^{q}
$$

By formula (1.3), we get

$$
\int_{\frac{\nu}{2 h}}^{\frac{\nu}{h}} \lambda^{2 q m}\left|j_{\alpha+2 n}(\lambda h)-1\right|^{q k}\left|\mathcal{F}_{\mathcal{B}} f(\lambda)\right|^{q} d \mu_{\alpha+2 n}(\lambda) \geq \frac{c^{q k} \nu^{2 q k}}{2^{2 q k}} \int_{\frac{\nu}{2 h}}^{\frac{\nu}{h}} \lambda^{2 q m}\left|\mathcal{F}_{\mathcal{B}} f(\lambda)\right|^{q} d \mu_{\alpha+2 n}(\lambda)
$$

Note that there exists a positive constant C such that

$$
\begin{aligned}
\int_{\frac{\nu}{2 h}}^{\frac{\nu}{h}} \lambda^{2 q m}\left|\mathcal{F}_{\mathcal{B}} f(\lambda)\right|^{q} d \mu_{\alpha+2 n}(\lambda) & \leq C \int_{\frac{\nu}{2 h}}^{\frac{\nu}{h}} \lambda^{2 q m}\left|j_{\alpha+2 n}(\lambda h)-1\right|^{q k}\left|\mathcal{F}_{\mathcal{B}} f(\lambda)\right|^{q} d \mu_{\alpha+2 n}(\lambda) \\
& \leq \frac{C K^{q}}{h^{2 q n k}}\left\|\Delta_{h}^{k} \mathcal{B}^{m} f\right\|_{p, \alpha, n}^{q} \\
& =O\left(\frac{h^{q \eta}}{\left(\log \frac{1}{h}\right)^{q \gamma}}\right)
\end{aligned}
$$

So we obtain

$$
\int_{r}^{2 r} \lambda^{2 q m}\left|\mathcal{F}_{\mathcal{B}} f(\lambda)\right|^{q} d \mu_{\alpha+2 n}(\lambda) \leq C^{\prime} \frac{r^{-q \eta}}{(\log r)^{q \gamma}}
$$

where C^{\prime} is a positive constant. Now, we have

$$
\begin{aligned}
\int_{r}^{\infty} \lambda^{2 q m}\left|\mathcal{F}_{\mathcal{B}} f(\lambda)\right|^{q} d \mu_{\alpha+2 n}(\lambda) & =\sum_{i=0}^{\infty} \int_{2^{i} r}^{2^{i+1} r} \lambda^{2 q m}\left|\mathcal{F}_{\mathcal{B}} f(\lambda)\right|^{q} d \mu_{\alpha+2 n}(\lambda) \\
& \leq C^{\prime}\left(\frac{r^{-q \eta}}{(\log r)^{q \gamma}}+\frac{(2 r)^{-q \eta}}{(\log 2 r)^{q \gamma}}+\frac{(4 r)^{-q \eta}}{(\log 4 r)^{q \gamma}}+\cdots\right) \\
& \leq C^{\prime}\left(\frac{r^{-q \eta}}{(\log r)^{q \gamma}}+\frac{(2 r)^{-q \eta}}{(\log r)^{q \gamma}}+\frac{(4 r)^{-q \eta}}{(\log r)^{q \gamma}}+\cdots\right) \\
& \leq C^{\prime} \frac{r^{-q \eta}}{\left(\log r r^{q \gamma}\right.}\left(1+2^{-q \eta}+\left(2^{-q \eta}\right)^{2}+\left(2^{-q \eta}\right)^{3}+\cdots\right) \\
& \leq K_{\eta} \frac{r^{-q \eta}}{(\log r)^{q \gamma}}
\end{aligned}
$$

where $K_{\eta}=C^{\prime}\left(1-2^{-q \eta}\right)^{-1}$ since $2^{-q \eta}<1$.
Consequently

$$
\int_{r}^{\infty} \lambda^{2 q m}\left|\mathcal{F}_{\mathcal{B}} f(\lambda)\right|^{q} d \mu_{\alpha+2 n}(\lambda)=O\left(\frac{r^{-q \eta}}{(\log r)^{q \gamma}}\right), \quad \text { as } \quad r \rightarrow \infty
$$

Corollary 3.1. Let $f \in W_{p, \alpha, n}^{k}$. If

$$
\left\|\Delta_{h}^{k} \mathcal{B}^{m} f(x)\right\|_{p, \alpha, n}=O\left(\frac{h^{\eta+2 n k}}{\left(\log \frac{1}{h}\right)^{\gamma}}\right), \quad \text { as } \quad h \rightarrow 0
$$

then

$$
\int_{r}^{\infty}\left|\mathcal{F}_{\mathcal{B}} f(\lambda)\right|^{q} d \mu_{\alpha+2 n}(\lambda)=O\left(\frac{r^{-2 q m-q \eta}}{(\log r)^{q \gamma}}\right), \quad \text { as } \quad r \rightarrow \infty
$$

where $\frac{1}{p}+\frac{1}{q}=1$ and $m=0,1,2 \ldots, k$.

Acknowledgements

The authors would like to thank the referee for his valuable comments and suggestions.

REFERENCES

1. R. F. Al Subaie and M. A. Mourou: The continuous wavelet transform for a Bessel type operator on the half line, Mathematics and Statistics 1(4): 196-203, 2013.
2. S. M. Nikol'skiI: Aproximation of functions of several variables and embedding theorems, (Nauka,Moscow.1977)[in Russian].
3. V. N. Mishra and L. N. Mishra: Trigonometric approximation of signals (functions) in $L_{p},(p \geq 1)$-norm, International Journal of Contemporary Mathematical Sciences, Vol. 7, no. 19, 2012, pp. 909-918.
4. B. M. Levitan: Expansion in Fourier series and integrals over Bessel functions, Uspekhi Math.Nauk, 6,No.2,102-143,1951.
5. M. S. Younis: Fourier transforms of Dini-Lipschitz functions, Int. J. Math. Math. Sci. 1986, 9 (2), 301312. doi:10.1155/S0161171286000376
6. R. F. Al Subaie and M. A. Mourou: Transmutation operators associated with a Bessel type operator on the half line and certain of their applications, Tamsii. oxf. J. Inf. Math. Scien 29 (3) (2013), pp. 329-349.
7. M. L. Mittal and V. N. Mishra: Approximation of signals (functions) belonging to the Weighted $W\left(L_{p}, \xi(t)\right),(p \geq 1)$-Class by almost matrix summability method of its Fourier series, Int. J. of Math. Sci. and Engg. Appls. Vol. 2 (2008), No. IV, 1-9.
8. V. N. Mishra, K. Khatri and L. N. Mishra: Product (N, p_{n}) (E, q) summability of a sequence of Fourier coefficients, Mathematical Sciences (Springer open access) 6:38 (2012), DOI: 10.1186/2251 7456-6-38.
9. V. N. Mishra, K. Khatri and L. N. Mishra: Using linear operators to approximate signals of $\operatorname{Lip}(\alpha, p),(p \geq 1)$-class, Filomat 27:2 (2013), 353-363.
10. V. N. Mishra, K. Khatri and L. N. Mishra: Product summability transform of conjugate series of Fourier series, International Journal of Mathematics and Mathematical Sciences, Vol. 2012(2012), Article ID 298923, 13 pages, DOI: 10.1155/2012/298923.
11. V. N. Mishra, K. Khatri and L. N. Mishra: Product $\left(N, p_{n}\right)(C, 1)$ summability of a sequence of Fourier coefficients, Mathematical Sciences, 2012, 6:38.
12. L. N. Mishra, V. N. Mishra, K. Khatri and Deepmala: On the trigonometric approximation of signals belonging to generalized weighted Lipschitz $W\left(L^{r}, \xi(t)\right)$, $(r \geq 1)-$ class by matrix $\left(C^{1}, N_{p}\right)$ operator of conjugate series of its Fourier series, Applied Mathematics and Computation, Vol. 237 (2014) 252-263.
13. V. N. Mishra, K. Khatri, L. N. Mishra and Deepmala: Trigonometric approximation of periodic signals belonging to generalized weighted Lipschitz $W^{\prime}\left(L^{r}, \xi(t)\right),(r \geq 1)-$ class by Nörlund-Euler $\left(N, p_{n}\right)(E, q)$ operator of conjugate series of its Fourier series, Journal of Classical Analysis, Volume 5, Number $2(2014), 91-105$. doi:10.7153/jca-05-08.
14. Deepmala, L. N. Mishra and V. N. Mishra: Trigonometric approximation of signals (functions) belonging to the $W\left(L^{r}, \xi(t)\right),(r \geq 1)-$ class by $(E, q)(q>$ $0)$ - means of the conjugate series of its Fourier series, GJMS Special Issue for Recent Advances in Mathematical Sciences and Applications-13, Global Journal of Mathematical Sciences, Vol 2. No. 2, pp. 61-69, (2014).

Radouan Daher
Department of Mathematics and Informatics
Faculty of Science Aïn Chock
University Hassan II, Casablanca, Morocco
rjdaher024@gmail.com

Salah El Ouadih
Department of Mathematics and Informatics Faculty of Science Aïn Chock
University Hassan II, Casablanca, Morocco
salahwadih@gmail.com
Mohamed EL Hamma
Department of Mathematics and Informatics Faculty of Science Aïn Chock
University Hassan II, Casablanca, Morocco
m-elhamma@yahoo.fr

[^0]: Received July 15, 2015; accepted November 20, 2015
 2010 Mathematics Subject Classification. Primary 42B37; Secondary 47B48

