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Abstract. In this paper, we study the developable TN , TB, and NB-Smarandache
ruled surface with a pointwise 1-type Gauss map. In particular, we obtain that every
developable TN -Smarandache ruled surface has constant mean curvature, and every de-
velopable TB-Smarandache ruled surface is minimal if and only if the curve is a plane
curve with non-zero curvature or a helix, and every developable NB-Smarandache ruled
surface is always plane. We also provide some examples.
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1. Introduction

The fundamental theory of curves, their characterization, and the corresponding
relations between the curves are very interesting and important topics in differen-
tial geometry. Bertrand curves, Mannheim curves, involute-evolute curves, etc. are
some of the most famous examples of such types of curves; please see [20, 21] and
references therein. Moreover, one of the most fascinating examples of such innova-
tive curves are the Smarandache curves, which were first introduced in Minkowski
space-time by authors in [22] and play an important role in Smarandache geometry.
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© 2023 by University of Nǐs, Serbia | Creative Commons License: CC BY-NC-ND
∗The first author is grateful to the University Grant Commission (UGC), Govt. of India, for provid-
ing a Senior Research Fellowship (UGC-SRF) with ID: JUNE18-413857. The authors appreciate
the reviewers’ helpful suggestions for improving the manuscript.



742 S. Tamta and R. S. Gupta

A Smarandache curve is a regular curve whose position vector is composed of the
Frenet frame vectors of another regular curve. They are the objects of Smarandache
geometry, i.e., a geometry that has at least one Smarandachely denied axiom [3].
An axiom is said to be smarandachely denied if it behaves in at least two different
ways within the same space. Smarandache geometry plays a powerful role in the
theory of relativity and parallel universes. Apart from the Frenet frame, many ge-
ometers studied Smarandache curves by taking different frames such as the Bishop
frame, Darboux frame, etc. [2, 6, 7, 19, 22] and references therein.

In surface theory, a parametrized surface

X(s, v) = γ(s) + v w(s), s ∈ I, v ∈ R,(1.1)

is called the ruled surface generated by a one-parameter family of lines {γ(s), w(s)},
where γ(s) is called a directrix of the surface X(s, v) and the vector w(s) defines
the ruling direction [14].

Ruled surfaces have a variety of applications, including CAD/CAGD, architec-
tural design, kinematics, wire electric discharge machining (EDM), and NC milling
with a cylindrical cutter [17, 23]. In addition, ruled surfaces are widely used in me-
chanical industries, robotic designs, and architecture for functional and fascinating
constructions.

Minimal and developable surfaces are two of the most essential types of surfaces.
A surface is minimal if it has zero mean curvature. Plane, catenoid, and helicoid are
examples of a minimal surface [5]. The ruled surfaces that can be transformed into
a plane without any deformation or distortion with vanishing Gaussian curvature
are called developable surfaces. Cylinders, cones, and tangent surfaces are examples
of developable surfaces [1].

In 2021, Ourab [16] defined a Smarandache ruled surfaces whose directrix are
TN , TB, and NB-Smarandache curves derived from Frenet vectors of the curve
in E3, and studied the geometric properties of such surfaces based on the mean
curvature and Gaussian curvature. Recently, in 2022, Senyurt [18] introduced some
new special ruled surfaces with a directrix as the TNB-Smarandache curve and
studied their geometric properties such as mean curvature and Gaussian curvature
in E3.

On the other hand, the study of finite-type submanifolds in Euclidean spaces
was initiated by Chen in the 1970s [11, 8]. Later, Chen and Piccini [9] introduced
and studied submanifolds whose Gauss map G satisfies

∆G = λ (G+ C),(1.2)

where λ is a real number and C is a constant vector. In addition, a submanifold
satisfying (1.2) is said to have a 1-type Gauss map. The study of submanifolds
satisfying (1.2) were continued by many geometers [4, 8, 9].

In 2000, Kim and Yoon [15] generalized (1.2) as

∆G = f G,(1.3)
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where f is a smooth function. In addition, a submanifold satisfying (1.3) is said to
have a pointwise 1-type Gauss map. The authors in [15] applied (1.3) to study ruled
surfaces in a three-dimensional Minkowski space and classified them completely. In
2001, Choi and Kim [12] investigated ruled surfaces with (1.3) in E3. They proved
that such surfaces are the open portions of the plane, the circular cylinder, and the
minimal helicoid.

Furthermore, the generalization of (1.3) was given by Chen et al. [10] in 2005
as

∆G = f (G+ C),(1.4)

for a smooth function f and a constant vector C is called a pointwise 1-type Gauss
map of the first kind if the vector C in (1.4) is a zero vector; otherwise, it is said
to be of the second kind. In 2010, Choi et al. [13] classified ruled surfaces in a 3-
dimensional Euclidean space satisfying (1.4). There are several surfaces that satisfy
(1.4), including planes, cylinders, right cones, and catenoids.

Remark 1.1. The Gauss map G of a plane in E3 is a constant vector and ∆G = 0. For
f = 0, if we state ∆G = 0.G, then M satisfies (1.4) of the first kind. If we select a non-zero
smooth function f and C = −G, then (1.4) holds and M is of the second kind. Hence, a
plane in E3 is a trivial surface with (1.4) of the first or second kind.

In view of the above, we study Smarandache ruled surface satisfying (1.4) in E3.
The paper is structured as follows: In section 2, we quote some basic notations on
surfaces in E3 that are relevant to the rest of the paper. In section 3, we obtain the
condition for the developable TN -Smarandache ruled surface satisfying (1.4) in E3.
Section 4 is devoted to the study of developable TB−Smarandache ruled surface
with (1.4) in E3. In Section 5, we study the developable NB-Smarandache ruled
surface satisfying (1.4) in E3. In Section 6, we present the conclusions of our study.
In Section 7, we provide some examples.

2. Preliminary

Let α = α(s) be a regular unit-speed curve in E3 where ‘s’ measures its arc
length, and the triplet (T, N, B) be the Frenet frame of a curve α(s). Then, the
Frenet-Serret formula of the curve α(s) is given as [14] T ′

N ′

B′

 =

 0 k 0
−k 0 τ
0 − τ 0

 T
N
B

 ,(2.1)

where k(s) and τ(s) are curvature and torsion of α, respectively.

In [2], authors defined the Smarandache curve according to the triplet (T,N,B)
of the curve α = α(s) as:

β1(s
∗(s)) =

1√
2

(
T (s) +N(s)

)
,(2.2)
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β2(s
∗(s)) =

1√
2

(
T (s) +B(s)

)
,(2.3)

and

β3(s
∗(s)) =

1√
2

(
N(s) +B(s)

)
,(2.4)

and β1, β2, and β3 are called TN -Smarandache curves, TB-Smarandache curves,
and NB-Smarandache curves, respectively.

In [16], Ouarab introduced the Smarandache ruled surfaces whose directrix are
(2.2), (2.3), and (2.4) in E3, and defined as:

Definition 2.1. Let α = α(s) be a regular unit-speed curve and denote (T (s),
N(s), B(s)) as the Frenet frame of α in E3. Then

x(s, v) =
1√
2

(
T (s) +N(s)

)
+ vB(s),(2.5)

y(s, v) =
1√
2

(
T (s) +B(s)

)
+ vN(s),(2.6)

and

z(s, v) =
1√
2

(
N(s) +B(s)

)
+ vT (s),(2.7)

are called TN -Smarandache ruled surface, TB-Smarandache ruled surface, andNB-
Smarandache ruled surface, respectively.

The Laplacian operator ∆ on a surface is defined by

∆ = − 1
√
g

∑
i,j

∂

∂xi

(√
g gij

∂

∂xj

)
,(2.8)

where (gij) is the first fundamental form matrix, the matrix (gij) is the inverse of
(gij) and g denotes the determinant of (gij).

The Gauss map of a surface X = X(s, v) in E3 is defined by

G(s, v) =
Xs ×Xv

||Xs ×Xv||
,(2.9)

where Xs = ∂X
∂s , and Xv = ∂X

∂v are partial derivatives. The relationship between

the mean curvature vector
−→
H and the position vector field X of the surface X(s, v)

in E3 is

∆X = −2
−→
H,(2.10)

where
−→
H = H G,(2.11)

and H denotes the mean curvature of the surface. From (2.10), we obtain the
following: A surface X(s, v) in E3 is a minimal surface if and only if [11]

∆X = 0.(2.12)
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3. Developable TN-Smarandache ruled surfaces with pointwise 1-Type
Gauss map in E3

In this section, we study the developable TN -Smarandache ruled surface with
a harmonic Gauss map and a pointwise 1-type Gauss map of the first kind. The
TN -Smarandache ruled surface x(s, v), as given by (2.5) is developable if and only
if α(s) is a plane curve, i.e., τ = 0 [16].

Using (2.9), the Gauss map G of the developable TN -Smarandache ruled surface
x(s, v) is given by

G(s, v) =
1√
2

(
T (s) +N(s)

)
.(3.1)

We have

g11 = ⟨xs, xs⟩ = k2, g12 = ⟨xs, xv⟩ = 0, g21 = ⟨xv, xs⟩ = 0,(3.2)

g22 = ⟨xv, xv⟩ = 1, g = k2.

Using (2.8) and (3.2), the Laplacian operator ∆ on the developable TN -Smarandache
ruled surface x(s, v) is computed as:

∆ =
−1

k

[−k′
k2

∂

∂s
+

1

k

∂2

∂s2
+ k

∂2

∂v2

]
.(3.3)

Using (3.1) and (3.3), we obtain

∆G =
1√
2

(
T (s) +N(s)

)
.(3.4)

Now, we have:

Theorem 3.1. Every developable TN -Smarandache ruled surface x(s, v) has a
pointwise 1-type Gauss map of the first kind .

Theorem 3.2. There does not exist a developable TN -Smarandache ruled surface
x(s, v) with a harmonic Gauss map.

Proof. From (3.4), we have T (s) and N(s), which are nonzero unit orthonormal
vectors. We also know that the sum of two orthonormal vectors cannot be zero.
This implies ∆G ̸= 0.

Theorem 3.3. Every developable TN -Smarandache ruled surface x(s, v) satisfies
the relation ∆x = G and has a non-zero constant mean curvature.

Proof. Using (2.5), the partial derivatives of x(s, v) are as follows:

xs =
k√
2

(
N(s)− T (s)

)
, xv = B(s), xvv = 0,(3.5)

xss =
−1√
2

(
k′ + k2

)
T (s) +

1√
2

(
k′ − k2

)
N(s),
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Using (2.5), (3.3), and (3.5), the Laplacian operator ∆ of the developable TN -
Smarandache ruled surface x(s, v) is computed as

∆x =
1√
2

(
T (s) +N(s)

)
.(3.6)

From (3.1) and (3.6), we obtain

∆x = G.(3.7)

Using the relations (2.10), (2.11), and (3.7), we find that the mean curvature H
of the developable TN -Smarandache ruled surface x(s, v) is

H = −1

2
,(3.8)

which completes the proof of the theorem.

4. Developable TB-Smarandache ruled surfaces with pointwise 1-type
Gauss map in E3

In this section, we study the developable TB-Smarandache ruled surface with
a harmonic Gauss map and a pointwise 1-type Gauss map of the first kind. The
TB-Smarandache ruled surface as given by (2.6) is always developable [16].

Using (2.9), the Gauss map G of a developable TB-Smarandache ruled surface
is

G =
τT (s) + kB(s)√

k2 + τ2
.(4.1)

Then, we have

Gs =
g (k T − τ B)√

k2 + τ2
, Gv = Gsv = Gvv = 0,(4.2)

Gss =
g′ (k T − τ B)√

k2 + τ2
+ g

(√
k2 + τ2N − g (τ T + k B)√

k2 + τ2

)
,

where g = k2

(k2+τ2)

(
τ
k

)′
.

Also, we have

g11 = ⟨ys, ys⟩ =
(k − τ)2

2
+ v2(k2 + τ2), g12 = ⟨ys, yv⟩ =

k − τ√
2
,(4.3)

g21 = ⟨yv, ys⟩ =
k − τ√

2
, g22 = ⟨yv, yv⟩ = 1, g = v2(k2 + τ2).
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Using (2.8) and (4.3), the Laplacian operator ∆ on the developable TB-Smara-
ndache ruled surface y(s, v) is found as

∆ = −ψ
[(
ψs −

(k − τ√
2

)
ψv

) ∂

∂s
+ a2

∂

∂v
−

√
2ψ (k − τ)

∂2

∂s∂v
(4.4)

+ψ
∂2

∂s2
+ a3

∂2

∂v2

]
,

where

ψ =
1√

v2(k2 + τ2)
,

a2 =
4ψ v (k2 + τ2)

2
− (k − τ)ψs√

2
− ψ (k′ − τ ′)√

2
+ ψv

( (k − τ)2

2
+ v2 (k2 + τ2)

)
,

a3 =
ψ

2

(
(k − τ)2 + 2v2(k2 + τ2)

)
.

Using (4.1), (4.2), and (4.4), we find

∆G = − ψ2

√
k2 + τ2

[
(−a 4 k − g2 τ)T + k2

(τ
k

)′
N + (a4τ − g2k)B

]
,(4.5)

where

a4 = −g′ + g
(kk′ + ττ ′

k2 + τ2
− (k − τ)√

2 v

)
.

Now, we have:

Theorem 4.1. Let α(s) be a unit-speed space curve with the Frenet frame (T ,N ,B).
Then, every developable TB-Smarandache ruled surface satisfying (1.4) of the first
kind must have a harmonic Gauss map if and only if the curve α(s) is a helix.

Proof. Let y(s, v) be a developable TB-Smarandache ruled surface satisfying (1.4)
of the first kind, i.e., ∆G = f(G+ C), and

C = 0.(4.6)

From (1.4) and (4.5), the following holds on y(s, v):

a 5 = ⟨C, T ⟩ = ψ2(a4 k + g2τ)

f
√
k2 + τ2

− τ√
k2 + τ2

,(4.7)

a 6 = ⟨C, N⟩ = −ψ2

f
√
k2 + τ2

(τ
k

)′
,(4.8)

a 7 = ⟨C, B⟩ = −ψ2(a4 τ − g2 k)

f
√
k2 + τ2

− k√
k2 + τ2

.(4.9)
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Using (4.7), (4.8) and (4.9), we can express C as

C = a 5 T + a 6N + a 7B.(4.10)

Using (4.6) and (4.10), we obtain

a 5 = a 6 = a 7 = 0.(4.11)

And a 6 = 0 gives (τ
k

)′
= 0.(4.12)

Using (4.7), (4.8), (4.9) and (4.12) in (4.11), we obtain

a 4 = 0, f = 0.(4.13)

From (4.12) and (4.13), we obtain that the developable TB−Smarandache ruled
surface that satisfies (1.4) of the first kind has a harmonic Gauss map with a curve
α(s) as a helix.

Conversely, if the space curve α(s) is a helix, then by the property of a helix,
we have (τ

k

)′
= 0.(4.14)

Using (4.14) in (4.5), we get ∆G = 0. Hence, the proof is complete.

Theorem 4.2. Let α(s) be a unit-speed plane curve with nonzero curvature and
with Frenet frame (T, N, B). Then, every developable TB-Smarandache ruled sur-
face y(s, v) has a harmonic Gauss map.

Proof. Let α(s) be a plane curve with k ̸= 0. Since the curve lies on the osculating
plane, we have binormal B, which is a constant.

As B is a constant, we have dB
ds = 0 which implies τ = |dBds | = 0 at all points of

the curve. Putting τ = 0 in (4.1), we obtain

G = B.(4.15)

Using (4.15) in (4.5), we obtain ∆G = 0.

Now, using theorems 4.1 and 4.2, we have

Corollary 4.1. Let y(s, v) be the developable TB-Smarandache ruled surface. Then,
the following are equivalent:

(i) the curve α(s) is either a helix or a plane curve

(ii) y(s, v) has a harmonic Gauss map

(iii) y(s, v) is a harmonic surface

(iv) y(s, v) is minimal.
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Proof. We have two cases:

Case 1. Let the curve α(s) be a helix. Then, using Theorem 4.1, we obtain
(ii).

Using (2.6), we find the partial derivative of y(s, v) as follows:

ys = −v k T (s) +
(k − τ√

2

)
N(s) + v τ B(s), yv = N(s), yvv = 0,

ysv = −k T (s) + τ B(s), yss =
(−k2√

2
+
k τ√
2
− v k′

)
T (s) +(4.16) ( k′√

2
− τ ′√

2
− v (k2 + τ2)

)
N(s) +

(k τ√
2
− τ2√

2
+ τ ′ v

)
B(s).

Using (4.4) and (4.16), the Laplacian of y(s, v) is

∆y =
−k2

v(k2 + τ2)2

(τ
k

)′
(τ T + k B).(4.17)

Using (4.14) in (4.17), we obtain (iii), i.e.,

∆y = 0.(4.18)

From (4.18), we obtain (iv).

Case 2. Let α(s) be a plane curve. Then, using Theorem 4.2, we obtain (ii).
Using τ = 0 in (4.16), we obtain

ys = −v k T (s) + k√
2
N(s), yv = N(s), ysv = −k T (s),(4.19)

yvv = 0, yss =
(−k2√

2
− v k′

)
T (s) +

( k′√
2
− v k2

)
N(s).

Now, using τ = 0 in (4.4), we find

∆ = − 1

v k

[(−k′

v k2
+

1√
2 v2

) ∂

∂s
+ k

(
1− 1

2 v2

) ∂

∂v
−

√
2

v

∂2

∂s∂v
+(4.20)

1

v k

∂2

∂s2
+
k (1 + 2 v2)

2v

∂2

∂v2

]
.

Using (4.19) and (4.20), the Laplacian of y(s, v) is

∆y = 0.(4.21)

From (4.21), we obtain (iii). Then, from (iii), we obtain (iv).

Hence, the proof is complete.
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Theorem 4.3. Every developable TB-Smarandache ruled surface satisfies the re-
lation ∆ y = −g ψ G, and has mean curvature H = g ψ

2 .

Proof. Using (2.6) and (4.4), we obtain the Laplacian operator ∆ of the developable
TB-Smarandache ruled surface y(s, v) as

∆ y = −g ψ (τ T + k B)√
k2 + τ2

.(4.22)

Using (4.1) and (4.22), we obtain

∆ y = −g ψG.(4.23)

Using the relations (2.10), (2.11), and (4.23), we find that the mean curvature
of the developable TB-Smarandache ruled surface y(s, v) is H = g ψ

2 .

Thus, the proof is complete.

5. Developable NB-Smarandache ruled surface with pointwise 1-type
Gauss map in E3

In this section, we study the developable NB-Smarandache ruled surface with
a harmonic Gauss map and a pointwise 1-type Gauss map of the first kind. The
NB-Smarandache ruled surface, as given by (2.7) is developable if and only if α(s)
is a plane curve, i.e., τ = 0 [16].

Using (2.9), the Gauss map of the developable NB-Smarandache ruled surface
z(s, v) is computed as

G(s, v) = −B(s).(5.1)

Also, we have

g11 = ⟨zs, zs⟩ =
k2

2
+ (vk)2, g12 = ⟨zs, zv⟩ =

−k√
2
,(5.2)

g21 = ⟨zv, zs⟩ =
−k√
2
, g22 = ⟨zv, zv⟩ = 1, g = (vk)2.

Using (2.8) and (5.2), the Laplacian operator ∆ on the NB-Smarandache ruled
surface z(s, v) is

∆ =
−1

vk

[(−k′
vk2

− 1√
2v2

) ∂

∂s
+ k

(
1− 1

2v2

) ∂

∂v
+

√
2

v

∂2

∂v∂s
+(5.3)

1

vk

∂2

∂s2
+ k

( 1

2v
+ v

) ∂2

∂v2

]
.

Now, we have
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Theorem 5.1. Let z(s, v) be the developable NB-Smarandache ruled surface. Then
we have the following:

(i) z(s, v) has a harmonic Gauss map

(ii) z(s, v) is a harmonic surface

(iii) z(s, v) is minimal.

Proof. Using (5.1), we have

Gs = Gv = Gsv = Gss = Gvv = 0.(5.4)

Using (5.3) and (5.4), we find that the Laplacian operator ∆ of the Gauss map of
the developable NB−Smarandache ruled surface is

∆G = 0.(5.5)

By taking partial derivatives of (2.7) with respect to s and v, we obtain

zs = k
(−T (s)√

2
+ v N(s)

)
, zv = T (s), zsv = kN(s),(5.6)

zvv = 0, zss = −
( k′√

2
+ v k2

)
T (s) +

(−k2√
2

+ v k′
)
N(s).

Using (5.3) and (5.6), the Laplacian operator ∆ of the developableNB-Smarandache
ruled surface z(s, v) is

∆ z = 0.(5.7)

Using (5.5) and (5.7), the developable NB-Smarandache ruled surface is har-
monic, minimal, and has a harmonic Gauss map.

6. Conclusions

On the basis of equation (1.4), we have drawn the following conclusions about
developable Smarandache ruled surface in E3 as follows:

1. Every developable TN -Smarandache ruled surface andNB-Smarandache ruled
surface satisfy (1.4) of the first kind with f = 1 and f = 0, respectively.

2. The developable TN -Smarandache ruled surface has constant mean curvature
and does not admit a harmonic Gauss map.

3. The developable NB-Smarandache ruled surface is always plane, minimal,
and has a harmonic Gauss map.

4. The developable TB-Smarandache ruled surface satisfying (1.4) of the first
kind has a harmonic Gauss map and is minimal if and only if the curve α(s)
is either a plane curve with non-zero curvature or a helix.
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7. Examples

Example 7.1. Let α1(s) be a regular unit-speed plane curve given by

α1(s) =

(
a(s) cos ln[a(s)], a(s) sin ln[a(s)], 0

)
,

where a(s) =

(
s√
2
+ 1

)
and has curvature k(s) = 1√

2 a(s)
.

Fig. 7.1: Curve α1(s) with s ∈ [π/4, π].

The Frenet-Serret frame of α1(s) are as follows:

T (s) =
1√
2

(
− sin ln[a(s)] + cos ln[a(s)], cos ln[a(s)] + sin ln[a(s)], 0

)
,

N(s) =
1√
2

(
− cos ln[a(s)]− sin ln[a(s)], − sin ln[a(s)] + cos ln[a(s)], 0

)
,(7.1)

B(s) = (0, 0, 1),

1. The TN -Smarandache ruled surface according to (7.1) is

x(s, v) = (− sin ln[a(s)], cos ln[a(s)], v).

Now, we have

xs =
1√

2 a(s)
(− cos ln[a(s)], − sin ln[a(s)], 0), xv = (0, 0 1).(7.2)

Putting (7.2) in (2.9), the Gauss map G of x(s, v) is computed as

G(s, v) =

(
− sin ln[a(s)], cos ln[a(s)], 0

)
.(7.3)

In addition, from (3.2), we obtain

g11 =
1

2 a(s)2
, g12 = g21 = 0, g22 = 1, g =

1

2 a(s)2
.(7.4)
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Fig. 7.2: TN -Smarandache ruled surface x(s, v) with s ∈ [π/2, 5π/2], v ∈ [0, 1].

Using (2.8), the Laplacian operator on x(s, v) is

∆ = −
√
2 a(s)

[
∂

∂s
+

√
2 a(s)

∂2

∂s2

]
.(7.5)

Using (7.3) and (7.5), we obtain

∆G =

(
− sin ln[a(s)], cos ln[a(s)], 0

)
.(7.6)

From (7.3) and (7.6), we obtain

∆G = G.(7.7)

Thus, x(s, v) satisfies (1.4) of the first kind.

2. The NB-Smarandache ruled surface according to (7.1) is

z(s, v) =
1√
2

(
cos ln[a(s)]

(
−1√
2
+ v

)
− sin ln[a(s)]

(
1√
2
+ v

)
, sin ln[a(s)]

(
−1√
2
+ v

)
+cos ln[a(s)]

(
1√
2
+ v

)
, 1

)
.

Now, we have

zs =
1

2 a(s)

(
− sin ln[a(s)]

(
−1√
2
+ v

)
− cos ln[a(s)]

(
1√
2
+ v

)
,

cos ln[a(s)]

(
−1√
2
+ v

)
− sin ln[a(s)]

(
1√
2
+ v

)
, 0

)
,(7.8)

zv =
1√
2
(cos ln[a(s)]− sin ln[a(s)], sin ln[a(s)] + cos ln[a(s)], 0).
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Fig. 7.3: NB-Smarandache ruled surface x(s, v) with s ∈ [π/4, π], v ∈ [1, 6].

Using (7.8) in (2.9), we find that the Gauss map of z(s, v) as

G = −(0, 0, 1).(7.9)

Since G is constant, we get

∆G = 0.(7.10)

Thus, z(s, v) has a harmonic Gauss map.

3. The TB-Smarandache ruled surface according to (7.1) is given by

y(s, v) =
1√
2

(
− sin ln[a(s)]

(
1√
2
+ v

)
+ cos ln[a(s)]

(
1√
2
− v

)
, sin ln[a(s)]

(
1√
2
− v

)
+cos ln[a(s)]

(
1√
2
+ v

)
, 1

)
.

Now, we have

ys =
1

2 a(s)

(
− cos ln[a(s)]

(
1√
2
+ v

)
− sin ln[a(s)]

(
1√
2
− v

)
,

cos ln[a(s)]

(
1√
2
− v

)
− sin ln[a(s)]

(
1√
2
+ v

)
, 0

)
,(7.11)

yv =
1√
2
(− sin ln[a(s)]− cos ln[a(s)], − sin ln[a(s)] + cos ln[a(s)], 0).

Using (7.11) in (2.9), the Gauss map G of y(s, v) is computed as

G = (0, 0, 1).(7.12)
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Fig. 7.4: TB-Smarandache ruled surface x(s, v) with s ∈ [π, 4π], v ∈ [1, 6].

Since G is constant, we get

∆G = 0.(7.13)

Thus, y(s, v) has a harmonic Gauss map.

Example 7.2. Let α2(s) be a regular unit-speed helix given by

α2(s) =
1√
2

(
sin(

√
2s)√
2

,
− cos(

√
2s)√

2
, s

)
.

Fig. 7.5: Curve α2(s) with s ∈ [
√
2π, 20

√
2π].
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The Frenet-Serret frame of the curve α2(s) is given by

T (s) =
1√
2

(
cos(

√
2s), sin(

√
2s), 1

)
,

N(s) =

(
− sin(

√
2s), cos(

√
2s), 0)

)
,(7.14)

B(s) =
1√
2

(
− cos(

√
2s), − sin(

√
2s), 1

)
.

The TB-Smarandache ruled surface y(s, v) according to (7.14) is given by

y(s, v) = (−v sin(
√
2s), v cos(

√
2s), 1).

Fig. 7.6: TB-Smarandache ruled surface with s ∈ [π, 3π], v ∈ [0, 1].

Using (2.9), its Gauss map is computed as

G = (0, 0, 1).(7.15)

Since G is constant, we get

∆G = 0.(7.16)

This implies that the TB-Smarandache ruled surface has a harmonic Gauss map with
a curve α(s) helix.

Remark 7.1. We now show that a non-helical space curve does not admit (1.4) of the
first kind. The non-helical space curve in E3 given by

α3(s) =

(
−2√
3
sin

√
3s cos s+ sin s cos

√
3s,

2√
3
cos

√
3s cos s+ sin s sin

√
3s,−

√
2√
3
cos s

)
,

with curvature k =
√
2 cos s and torsion τ =

√
2 sin s.
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Fig. 7.7: Curve α3(s) with s ∈ [0, 4π].

The Frenet-Serret frame of α3(s) is given by

T =
1√
3

(
−

√
3 cos s cos

√
3s− sin s sin

√
3s,−

√
3 sin

√
3s cos s

+sin s cos
√
3s,

√
2 sin s

)
,

N =
1√
3

(√
2 sin

√
3s,−

√
2 cos

√
3s, 1

)
,(7.17)

B =
1√
3

(
− sin

√
3s cos s+

√
3 sin s cos

√
3s, cos s cos

√
3s+

√
3 sin s sin

√
3s,

√
2 cos s

)
.

The TB-Smarandache ruled surface according to (7.17) is

y(s, v) =
1√
6

(√
3A(s) cos(

√
3s)− sin(

√
3s) (sin s+ cos s− 2v),

√
3A(s) sin(

√
3s)

+ cos(
√
3s) (sin s+ cos s− 2v),

√
2 (sin s+ cos s+ v)

)
,

where A(s) = − cos s+ sin s.

Now, we have

ys =
1√
6

(
− 2 sin(

√
3s)A(s) + 2

√
3 v cos(

√
3s), 2 cos(

√
3s)A(s)

+2
√
3 v sin(

√
3s), −

√
2A(s)

)
,(7.18)

yv =
1√
6

(
2 sin(

√
3s), −2 cos(

√
3s),

√
2

)
.

Using (7.18) in (2.9), we obtain

G =
1√
3

(
sin(

√
3s), − cos(

√
3s), −

√
2

)
.(7.19)
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Fig. 7.8: TB-Smarandache ruled surface of Example 6.2 with s ∈ [0, 2π] and v ∈
[0, 2π] .

From (4.3), we have

g11 = A(s)2 + 2v2, g12 = −A(s), g21 = −A(s), g22 = 1.(7.20)

Using (4.4), (7.19) and (7.20), we obtain

∆G =
−1

2 v2

(
−A(s) cos(

√
3s)

v
−

√
3 sin(

√
3s),

−A(s) sin(
√
3s)

v
+

√
3 cos(

√
3s), 0

)
,

which can be written in the form of

∆G =
1

2 v2

[(
A(s) cos(

√
3s)

v
,
A(s) sin(

√
3s)

v
,
√
6

)
+ 3G

]
.(7.21)

From (7.21), we can say that the developable TB-Smarandache ruled surface x(s, v)
does not satisfy (1.4) since ∆G ̸= f G.
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