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ON HOMOGENEOUS 2-DIMENSIONAL FINSLER MANIFOLDS
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Akbar Tayebi1 and Behzad Najafi2

1 Department of Mathematics, Faculty of Science

University of Qom, Qom, Iran
2 Department of Mathematics and Computer Sciences

Amirkabir University, Tehran, Iran

Abstract. We show that every Finsler surface with isotropic main scalar and isotropic
flag curvature is Riemannian or relatively constant Landsberg metric. Using it, we prove
that every homogeneous Finsler surface with isotropic flag curvature and isotropic main
scalar is Riemannian or locally Minkowskian.
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1. Introduction

For a given Finsler manifold (M,F ), the flag curvatureK = K(Π, y) is a function
of tangent planes Π = span{y, v} ⊂ TxM and directions y ∈ Π \ {0}. If F is a
Riemannian metric, then the flag curvature is independent of the direction and can
be written as K = K(Π). In this special case, K is called the sectional curvature
of F . Also, F is said to be of scalar flag curvature if the flag curvature is a scalar
function on the slit tangent space, namely K = K(x, y). F is called of isotropic
flag curvature if the flag curvature K = K(x) is a scalar function on the manifold
M . A Riemannian metric is of scalar curvature if and only if K = K(x) is a scalar
function on M , which is a constant in dimension n > 2 by the Schur lemma. One
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of the important problems in Finsler geometry is to study and characterize Finsler
metrics of isotropic flag curvature.

In order to study the class of Finsler metrics of isotropic flag curvature, one
may consider 2-dimensional Finsler metrics. In Finsler geometry, the behavior of
2-dimensional Finsler metrics is different and sometimes contradictory to the higher
dimensions. For example, all 2-dimensional Finsler metrics are C-reducible, while
they need not be of Randers or Kropina type. Also, Finsler surfaces are of scalar flag
curvature, while these cases are not valid for higher dimensions. Due to the latter
issue, Z. Shen constructed three families of Finslerian surfaces on S2 and D2 with
constant flag curvature that are not projectively flat, and thus the Beltrami’s famous
theorem in Finsler geometry lost its validity in the world of Finslerian surfaces [14].

To study of Finsler surfaces separately, L. Berwald made a special frame for
Finsler surfaces, namely Berwald’s frame. In this frame, a function appears that
depends of the tangent space of Finsler surface and distinguishes each metric from
the other metrics. This function is known as the main scalar of the Finsler surface
and denoted by I = I(x, y). In [9], Matsumoto gave some geometrical meanings of
the main scalar of Finsler surfaces. Very soon, Berwald discovered that the Finsler
surfaces with constant main scalar are Berwald, Landsberg or Douglas surfaces [4].
Then, he characterized two-dimensional Finsler metrics with isotropic main scalar
I = I(x). Using this characterization, Berwald succeeded to find the classification
of two-dimensional projectively flat Finsler metrics with isotropic main scalar [4].
These studies shows that the class of Finsler surfaces with isotropic main scalars
has important position in Finsler geometry and deserves to more studies.

Among the class of two-dimensional Finsler metrics, homogeneous Finsler sur-
faces are interesting, and until now little study has been done on these spaces. Then,
it is natural to study homogeneous Finsler manifolds. A Finsler manifold is called
homogeneous if its group of isometries acts transitively on the manifold. In [5],
Deng and Hou proved that the group of isometries I(M,F ) of a Finsler manifold
(M,F ) is a Lie transformation group of the underlying manifold which can be used
to study homogeneous Finsler manifolds. In this case, M can be written as the
quotient manifold I(M,F )/H, where H is the stabilizer subgroup at a point in M .
Recently, the authors proved that there is not any unicorn among the homogeneous
Finsler surfaces [18]. In this paper, we study homogeneous Finsler surfaces with
isotropic main scalar I = I(x) and isotropic flag curvature K = K(x), and prove
the following rigidity result.

Theorem 1.1. Every homogeneous Finsler surface with isotropic main scalar and
isotropic flag curvature is Riemannian or locally Minkowskian.

2. Preliminary

Let M be an n-dimensional C∞ manifold, TM =
∪

x∈M TxM the tangent space and
TM0 := TM − {0} the slit tangent space of M . A Finsler structure on manifold
M is a function F : TM → [0,∞) with the following properties: (i) F is C∞ on
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TM0; (ii) F is positively 1-homogeneous on the fibers of tangent bundle TM , i.e.,
F (x, λy) = λF (x, y), ∀λ > 0; (iii) The quadratic form gy : TxM × TxM → R is
positive-definite on TxM

gy(u, v) :=
1

2

∂2

∂s∂t

[
F 2(y + su+ tv)

]
s=t=0

, u, v ∈ TxM.

Then, the pair (M,F ) is called a Finsler manifold.

Let x ∈ M and Fx := F |TxM . To measure the non-Euclidean feature of Fx, one
can define Cy : TxM × TxM × TxM → R by

Cy(u, v, w) :=
1

2

d

dt

[
gy+tw(u, v)

]
t=0

, u, v, w ∈ TxM.

The family C := {Cy}y∈TM0 is called the Cartan torsion. It is well known that
C = 0 if and only if F is Riemannian.

For y ∈ TxM0, define Iy : TxM → R by

Iy(u) :=
n∑

i=1

gij(y)Cy(u, ∂i, ∂j),

where {∂i} is a basis for TxM at x ∈ M . The family I := {Iy}y∈TM0 is called the
mean Cartan torsion. By definition, Iy(y) = 0 and Iλy = λ−1Iy, λ > 0. Therefore,
Iy(u) := Ii(y)u

i, where
Ii := gjkCijk.

Let F = F (x, y) be a Finsler metric on an n-dimensional manifold M . The
distortion τ = τ(x, y) on TM associated with the Busemann-Hausdorff volume
form

dVBH = σ(x)dx

is defined by

τ(x, y) = ln

√
det

(
gij(x, y)

)
σ(x)

.

By definition, the distortion τ is homogeneous of degree 1 with respect to y, i.e.,
the following holds

τ(λy) = λτ(y), λ > 0, y ∈ TxM0.

The following holds.

Lemma 2.1. ([13]) Let F be a positive-definite Finsler metric on a manifold M .
Then the following conditions are equivalent
(a) τ = constant;
(b) I = 0;
(c) C = 0;
In any case, F reduces to a Riemannian metric.
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Given a Finsler manifold (M,F ), then a global vector field G is induced by F
on TM0, which in a standard coordinate (xi, yi) for TM0 is given by

G = yi
∂

∂xi
− 2Gi ∂

∂yi
,

where Gi = Gi(x, y) are local functions on TM given by

Gi :=
1

4
gil

{ ∂2[F 2]

∂xk∂yl
yk − ∂[F 2]

∂xl

}
, y ∈ TxM.

G is called the associated spray to (M,F ).

DefineBy : TxM×TxM×TxM → TxM byBy(u, v, w) := Bi
jkl(y)u

jvkwl∂/∂xi|x,
where

Bi
jkl :=

∂3Gi

∂yj∂yk∂yl
.

B is called the Berwald curvature and F is called a Berwald metric if B = 0.

For y ∈ TxM , define the Landsberg curvature Ly : TxM × TxM × TxM → R by

Ly(u, v, w) := −1

2
gy

(
By(u, v, w), y

)
.

In local coordinates, Ly(u, v, w) := Lijk(y)u
ivjwk, where

Lijk := −1

2
ylB

l
ijk.

L is called the Landsberg curvature and F is called a Landsberg metric if L = 0.
Also, F is called of relatively isotropic Landsberg curvature if

Lijk = cFCijk,

where c = c(x) is a scalar function on M .

For y ∈ TxM , define Jy : TxM → R by Jy(u) := Ji(y)u
i, where

Ji := gjkLijk.

The quantity J is called the mean Landsberg curvature. A Finsler metric F is
called a weakly Landsberg metric if J = 0. By definition, every Landsberg metric
is a weakly Landsberg metric. F is called of relatively isotropic mean Landsberg
curvature if

Ji = cFIi,

where c = c(x) is a scalar function on M .
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For a non-zero vector y ∈ TxM0, the Riemann curvature is a family of linear
transformation Ry : TxM → TxM with homogeneity Rλy = λ2Ry, ∀λ > 0 which is
defined by Ry(u) := Ri

k(y)u
k∂/∂xi, where

Ri
k(y) = 2

∂Gi

∂xk
− ∂2Gi

∂xj∂yk
yj + 2Gj ∂2Gi

∂yj∂yk
− ∂Gi

∂yj
∂Gj

∂yk
.(2.1)

The family R := {Ry}y∈TM0 is called the Riemann curvature.

For a flag P := span{y, u} ⊂ TxM with the flagpole y, the flag curvature
K = K(P, y) is defined by

K(x, y, P ) :=
gy

(
u,Ry(u)

)
gy(y, y)gy(u, u)− gy(y, u)2

.(2.2)

The flag curvature K = K(x, y, P ) is a function of tangent planes P = span{y, v} ⊂
TxM . This quantity tells us how curved the space is at a point. A Finsler metric F
is of scalar flag curvature, if K(x, y, P ) = K(x, y) is independent of P . In this case,
the flag curvature is just a scalar function on the tangent space of M .

The pulled-back bundle π∗TM admits a unique linear connection, called the
Berwald connection. Let (M,F ) be an n-dimensional Finsler manifold. Let {ej} be
a local frame for π∗TM , {ωi, ωn+i} be the corresponding local coframe for T ∗(TM0)
and {ωi

j} be the set of local Berwald connection forms with respect to {ej}. In local
coordinate system, the Berwald connection determined by following

dωi = ωj ∧ ωi
j ,(2.3)

dgij − gkjω
k
i − gikω

k
j = −2Lijkω

k + 2Cijkω
n+k,(2.4)

where

ωi := dxi,

ωn+k := dyk + yjωk
j .

Thus
gij|k = −2Lijk, gij,k = 2Cijk.

For a tensor T = Ti···kω
i ⊗ · · · ⊗ ωk, we have

Ti···k ·m =
∂Ti···k

∂ym
.

For a non-zero vector y ∈ TxM , the tensor T induces a multi-linear form

Ty(u, · · · , w) := Ti···k(x, y)u
i · · ·wk
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on TxM . Let σ(t) denote the geodesic with σ̇(0) = y. We have

d

dt

[
Tσ̇(t)

(
U(t), · · · ,W (t)

)]
= Ti···k|m(σ(t), σ̇(t))σ̇m(t)U i(t) · · ·W k(t),

where U(t) = U i(t)∂/∂xi|σ(t), · · · ,W (t) = W k(t)∂/∂xk|σ(t) are linearly parallel
vector fields along σ. Thus the Landsberg curvature is given by

Lijk = Cijk|mym.(2.5)

3. Proof of Theorem 1.1

It is well known that for any Minkowskian plane (V,F) and any vector v ∈ V with
F(v) ̸= 0, there is a non-zero vector w ∈ V such that is orthogonal to v with
respect to the fundamental tensor raised by Minkowski functional F . The special
and useful Berwald frame was founded and developed method by Berwald in order
to study of two-dimensional Finsler spaces [4]. It works under the assumption that
the fundamental tensor is positive-definite.

Let (M,F ) be a two-dimensional Finsler manifold. It is easy to see that for
every y ∈ TxM , x ∈ M , there is a vector y⊥ ∈ TxM0 such that

g(y,y⊥) = 0, g(y⊥,y⊥) = F (y).

The pair {y,y⊥} is called the Berwald frame at y.

Based on the Berwald frame, the Cartan torsion can be determined by a scalar
function on slit tangent bundle. Let us define

I(y) := Cy(y
⊥,y⊥,y⊥)

F (y)
= I(y⊥).

One can see that I(λy) = I(y) holds for ∀λ > 0 and ∀y ∈ TxM0. We call I the
main scalar of Finsler metric F .

In most of literature of Finsler geometry, the special notation (ℓ,m) was used
instead of {y,y⊥}. By considering this notation, for a scalar T = T (x, y), we define
the horizontal scalar derivatives (T|1, T|2) and vertical scalar derivatives (T,1, T,2) as
follows

T|i := T|1ℓi + T|2mi, FT,i := T,1ℓi + T,2mi,

where

T|i :=
∂T

∂xi
−Gj

i

∂T

∂yj
, FT,i := F

∂T

∂yi

denote the horizontal and vertical derivations with respect to the Berwald connec-
tion of F and

Gj
i :=

∂Gi

∂yj
.
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In order to prove Theorem 1.1, we need to know the special form of Berwald
curvature of Finsler surface. We remark that the following identity holds

Bp
jkl = gip

{
Cijl|k + Cikl|j − Cjkl|i + Lijk,l

}
.(3.1)

See (10.19) at page 145 in [13]. On the other hand, the Cartan torsion of a Finsler
surface (M,F ) has no components in the direction ℓi, i.e., Cijky

i = 0. Then it can
be written in the Berwald frame (ℓ,m) as follows

FCijk = Imimjmk.(3.2)

Taking a horizontal derivation of (3.2) implies that

FCijk|s =
(
I|1ℓs + I|2ms

)
mimjmk.(3.3)

Contracting (3.3) with ys yields

FLijk = I|1mimjmk.(3.4)

By putting (3.3) and (3.4) in (3.1), we get

FBi
jkl =

{
− 2I|1ℓi +

(
I|1,2 + I|2

)
mi

}
mjmkml.(3.5)

Let us put
I2 := I|1,2 + I|2.

Thus the Berwald curvature of Finsler surfaces is given by

Bi
jkl =

1

F

(
I2mi − 2I|1ℓi

)
mjmkml.(3.6)

By (3.2) and (3.6), we have

Bi
jkl = −2I,1

I
Cjklℓ

i +
I2
3F

{
hjkh

i
l + hklh

i
j + hljh

i
k

}
,(3.7)

where h = hijdx
idxj denotes the angular metric. Then for a Finsler surface, the

Berwald curvature can be written as follows

Bi
jkl = µCjklℓ

i + λ
(
hi
jhkl + hi

khjl + hi
lhjk

)
,(3.8)

where

µ := − 2

I
I|1, λ :=

1

3
I2.

Proposition 3.1. Every non-Riemannian Finsler surface with isotropic main scalar
and isotropic flag curvature is a relatively constant Landsberg metric.
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Proof. A 2-dimensional Finsler metrics F is of scalar curvature K = K(x, y). This
is equivalent to the following identity:

Ri
k = KF 2 hi

k.(3.9)

The following hold

Lijk|mym = −1

3
F 2

{
K·ihjk +K·jhik +K·khij + 3KCijk

}
(3.10)

and

Jk|mym = −F 2
{
K·k +KIk

}
.(3.11)

Contracting (3.8) with yi implies that

Ljkl +
1

2
µFCjkl = 0.(3.12)

Taking a trace of (3.12) implies that

Ji = −1

2
µFIi.(3.13)

By taking a horizontal derivation of (3.13) along the Finslerian geodesics yields

Ji|sy
s = −F

4

(
2µxkyk − µ2F

)
Ii.(3.14)

By (3.11), (3.14) and Ik = τ·k, we get

Kyi +
1

4

(
4K+ µ2(x)− 2

F
µxkyk

)
τyi = 0.(3.15)

Now, suppose that K = K(x) is a scalar function on M . Then (3.15) simplifies to(
4K+ µ2 − 2

F
µ0

)
τyi = 0.(3.16)

where µ0 := µxkyk.

Now, we claim that µ(x) = c is a constant. If this is false, then there is an open
subset U such that dµ(x) ̸= 0 for any x ∈ U . Clearly, at any x ∈ U ,

K(x) ̸= 1

4

(
− µ(x)2 +

2µ0(x)

F (x, y)

)
for almost all y ∈ TxM . By (3.16), τ·i = Ii = 0. Thus F is Riemannian on U by
Deicke’s theorem. This contradicts with the assumption. Then µ = constant.
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Proposition 3.2. Let (M,F ) be a Finsler surface. Suppose that F has isotropic
main scalar and isotropic flag curvature. Then for any geodesic γ = γ(t) and any
parallel vector field X = X(t) along γ, the following function

C(t) = Cγ̇

(
X(t), X(t), X(t)

)
,(3.17)

satisfies the following equation

C(t) = exp
(
− 1

2
µt
)
C(0).(3.18)

Proof. By definition, we have

Ly(u, v, w) +
1

2
µFCy(u, v, w) = 0.(3.19)

where µ = constant. Let us define

L(t) = Lγ̇

(
X(t), X(t), X(t)

)
.(3.20)

From the definition of Ly, we have

L(t) = C
′
(t).(3.21)

Then, (3.19) can be written as follows

C
′
(t) = −1

2
µC(t).(3.22)

Integration (3.22) gives (3.18).

Proof of Theorem 1.1: The proof has two main cases as follows:

Case 1: If µ = 0, then F is a Landsberg metric. In [18], we proved that ev-
ery homogeneous Landsberg surface is Riemannian or locally Mikowskian.

Case 2: If µ ̸= 0. In this case, we have (3.18). In [17], it is proved that ev-
ery homogeneous Finsler manifold is complete. By definition, every two points
of a homogeneous Finsler manifold (M,F ) map to each other under an isometry.
This causes the norm of an invariant tensor under the isometries of a homogeneous
Finsler manifold is a constant function on M , and consequently, it has a bounded
norm. Using this fact, we showed that for a homogeneous Finsler manifold (M,F ),
every invariant tensor under the isometries of F has a bounded norm with respect
to it [16]. Then letting t → −∞ in (3.18) and using ||C|| < ∞ implies that C(0) = 0
and then C(t) = 0. Then F reduces to a Riemannian metric.
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