
FACTA UNIVERSITATIS (NIŠ)
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Abstract. In the present paper, we introduce the concept of Γ-convergence of a double
sequence of functions defined from a metric space into real numbers. This convergence
is useful as it is a convenient concept of convergence for approximating minimization
problems in the field of mathematical optimization. First, we compare this convergence
with pointwise and uniform convergence and obtain some properties of Γ-convergence.
Later we deal with the problem of minimization. We prove that, under some additional
assumptions, the Γ-convergence of a double sequence (fkl) to a function f implies the
convergence of the minimum values of fkl to the minimum value of f . Moreover, we
prove that each limit point of the double sequence of the minimizers of fkl is a mini-
mizer of f .
Keywords: Double sequence of functions, Pringsheim convergence, Set-valued func-
tion, Kuratowski convergence, Gamma-convergence, Minimizers.

1. Introduction

The pointwise convergence of sequence of functions, while useful in many ways,
is insufficient for purposes such as setting up approximations of problems of op-
timization (see,[20]). First of all, it fails to preserve the lower semicontinuity of
functions. Furthermore, it may not be able to keep the maximum or minimum
values of the sequence of the functions.
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© 2023 by University of Nǐs, Serbia | Creative Commons License: CC BY-NC-ND
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In order to overcome these shortcomings, the type of convergence called infimal
convergence was first studied by Wijsman [24, 25]. De Giorgi and Franzoni [8]
called it Γ-convergence. De Giorgi [9], who deals with the variational compactness
property of a class of integral functionals, examined the main ideas and techniques
of Γ-convergence in function spaces. The main idea of using Γ-convergence is to
obtain infimum values. Hence it provides the convenience of solving optimization
problems. The notion of gamma convergence is a fundamental convergence theory
for sequences of the lower semicontinuous functions in optimization theory, decision
theory, homogenization problems, integral function theory, algorithmic procedures,
and variational analysis. A noteworthy description of the theory was given by Wets
[27] under the name of epi convergence in 1980 for the first time. The books ”an
introduction to gamma convergence” written by Dal Maso [15], and ”Γ-convergence
for Beginners” written by Braides [5] are remarkable comprehensive books on this
subject. For more detailed information on Γ-convergence, we refer to [7, 6, 12].

Various types of convergence for double sequences can be defined (see [4, 13, 19].
The best known and well-studied convergence notion for double sequence spaces is
Pringsheim convergence of double sequences is defined as the convergence of nets,
where the set of indexes N × N is ordered in the natural way. In case of this
convergence the row-index and the column-index tend independently to infinity.
The main drawback of this convergence is that a convergent double sequence fails
in general to be bounded.

In theory and applications, we may need to work with double sequences of
functions. For example, uniform convergence of a double sequence of functions is a
useful tool to obtain an approximation of the function of two variables [3, 10, 26, 21].
Minimization is preserved in this type of convergence, but the conditions are strong.
For this reason, in this paper, we define Γ-convergence for a double sequence of
functions and extend some fundamental results known concerning Γ-convergence in
the literature to double sequences of functions. Furthermore, under some additional
conditions, we prove that the limit of a double sequence of points selected from
minimum points of fkl is a minimum point of f when the double sequence (fkl) Γ
converges to the function f .

2. Definitions and notation

The well-known Pringsheim [19] convergence of double sequences is defined using
the natural ordering of pairs of positive integers (there are several definitions of the
limit of a double sequence that are not mutually identical). Since then, this concept
of convergence has been studied in various areas of mathematics. Throughout the
paper, the convergence of a double sequence means convergence in the Pringsheim
sense.

A double sequence x = (xjk) is said to be convergent to l, written limj,k xjk = l
or xjk → l, if for given ε > 0 there exists an integer n0 such that |xjk − l| < ε
whenever j, k > n0. In this type of convergence, the indices j and k tend to be
infinity independently of each other. A double sequence x is bounded if ∥x∥ =
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supj,k|xjk| < ∞. Double sequences have a variety of distinguishing characteristics
as opposed to ordinary sequences. One of the reasons why double sequences theory
presents difficulties not encountered in ordinary sequences theory is that a double
sequence may converge without being a bounded sequence.

A double sequence x of points of a metric space (X, d) convergence to point
l ∈ X if limj,k→∞ d(xjk, l) = 0. Patterson [17] gave the definition of subsequence
and the Pringsheim limit point of a double sequence. A number l ∈ X is said to be a
Pringsheim limit point of a double sequence (xjk) if there exist two strictly increas-
ing sequences (ji) and (ki) such that limi→∞ xjiki

= l. The set of all Pringsheim
limit points of a double sequence (xjk) will be denoted by L(xjk).

Lemma 2.1. [16] Let x = (xjk) be a double sequence of real numbers. Then the
limit limj,k→∞ xjk = l exists if and only if for all increasing index sequences (ji), (ki)
such that, the ordinary limit limi→∞ xjiki = l exists.

Definition 2.1. [18] Let x = (xjk) be a double sequence of real numbers and for
each n, let αn = supn{xjk : k, l ≥ n}. The Pringsheim limit superior of x is defined
as follows:

(i) if αn = +∞ for each n, then lim supj,k→∞ xjk := +∞;

(ii) if αn < +∞ for some n, then lim supj,k→∞ xjk := infn{αn}.

Similarly, let βn = infn{xjk : j, k ≥ n} then the Pringsheim limit inferior of x =
(xjk) is defined as follows:

(i) if βn = −∞ for each n, then lim infj,k→∞ xjk := −∞;

(ii) if βn > −∞ for some n, then lim infj,k→∞ xjk := supn{βn}.

In all that follows, X will be a metric space equipped with the distance d, unless
we explicitly state otherwise.

A double sequence (fkl) of functions defined fromX into R is said to be pointwise
convergent to f on a set S ⊂ X, if for each point x ∈ S and for each ε > 0, there
exists a positive integer N = N(x, ε) such that |fkl(x)− f(x)| < ε for all k, l ≥ N .
It is denoted by limk,l→∞ fkl(x) = f(x) on S.

A double sequence (fkl) of functions defined fromX into R is said to be uniformly
convergent to the function f on a set S ⊂ X if for each ε > 0, there exists a positive
integer N = N(ε) such that k, l ≥ N implies |fkl(x)− f(x)| < ε, for all x ∈ S (see
[22]) .

Let A ⊂ X and x ∈ X. Then the distance from a point x to A is given by

d(x,A) := inf
a∈A

d(x, a),

where we set d(x,Ø) := ∞. As long as A is closed, having d(x,A) = 0 is equivalent
to having x ∈ A.
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The open ball with center x and radius ε > 0 in X is denoted by B(x, ε), i.e.,

B(x, ε) = {y ∈ X | d(x, y) < ε}.

There are different types of convergence for sequences of sets that are important
for certain applications. The most studied of them are Kuratowski [14], Wijsman
convergence [24, 25]. See also [1, 2, 11]. Sever et al. [23] have presented these types
of convergence for double sequences of sets and investigated the relations between
these types of convergence. We now recall the definition of Kuratowski convergence
for a double sequence of sets.

Definition 2.2. [23] Let (Akl)k,l∈N be a double sequence of subsets of X. We say
that the subset

lim sup
k,l→∞

Akl :=

{
x ∈ X | ∀ε > 0, ∀n ∈ N, ∃k, l ≥ n : B(x, ε) ∩Akl ̸= Ø

}
is the upper limit of the double sequence (Akl) and that the subset

lim inf
k,l→∞

Akl :=

{
x ∈ X | ∀ε > 0, ∃n ∈ N : B(x, ε) ∩Akl ̸= Ø, ∀k, l ≥ n

}
is its lower limit. If there exists a set A ⊆ X such that

A = lim inf
k,l→∞

Akl = lim sup
k,l→∞

Akl

then the double sequence set (Akl) converges to A, denoted limk,l→∞ Akl = A, in
the sense of Kuratowski.

By Proposition 3.5 in [23], the sets lim infk,l→∞ Akl and lim supk,l→∞ Akl are closed
in X.

Also, the upper and lower limits of a double sequence of sets are characterized
by the following various ways.

Proposition 2.1. [23] Let (Akl)k,l∈N be a double sequence of closed subsets of X.
Then

(i) lim supk,l→∞ Akl := {x ∈ X : lim infk,l→∞ d(x,Akl) = 0} ,

(ii) lim infk,l→∞ Akl := {x ∈ X : limk,l→∞ d(x,Akl) = 0} .

Proposition 2.2. [23] If (Akl)k,l∈N is a double sequence of closed sets in X, then

lim inf
k,l→∞

Akl =

{
x | there exists a double sequence (ykl), ykl ∈ Akl for any k, l ∈ N,

with limk,l→∞ ykl = x

}
.
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Proposition 2.3. [23] If (Akl)k,l∈N is a double sequence of closed sets in X, then

lim sup
k,l→∞

Akl =

{
x | there exist two increasing sequences ki, li, ykili ∈ Akili for any

i ∈ N, with limi→∞ ykili = x

}
.

The double sequence set (Akl) is said to be Pringsheim bounded if there exist a
compact set K and n ∈ N such that Akl ⊆ K whenever k, l ≥ n.

Let f : X → R, where R := R ∪ {−∞,+∞}. Epigraph and level set of the
function f on X are defined by

epif := {(x, α) ∈ X × R | f(x) ≤ α}

and for all α ∈ R

{f ≤ α} := {x ∈ X | f(x) ≤ α},

respectively.

The function f is level bounded if for each α ∈ R there exists a compact set Bα

such that {f ≤ α} ⊆ Bα.

The function whose epigraph is equal to the closure of the epigraph of f is called
the closure of f and is denoted by clf , that is

cl(epif) = epi(clf).

For every x ∈ X

(clf)(x) = sup
U∈N (x)

inf
y∈U

f(y).

The function f is said to be lower semicontinuous at x ∈ X if f(x) = (clf)(x). The
sets of points of x where the minimum of f over X is regarded as being attained

argminf =
{
x ∈ X : f(x) = inf

x∈X
f(x)

}
.

Theorem 2.1. [15] Assume that the function f : X → R is level bounded and
lower semicontinuous. Then f has a minimum point in X.

For every a, b ∈ R we set a ∨ b = max{a, b}. For ε > 0, the set ε − argminf is
the set of all points x ∈ X satisfying

f(x) ≤
(
inf
x∈X

f(x) + ε

)
∨
(
−1

ε

)
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3. Γ-convergence of Double Sequences of Functions

In this section, we state the definition of the Γ-limit of a double sequence of
functions with the help of equality of two semi-limits, upper and lower Γ-limits,
which are always defined and which can be studied separately.

From now on, let X be a metric space,N (x) be the family of all open neighbor-
hoods of x ∈ X and (fkl) be a double sequence of functions from X into R.

Definition 3.1. The lower Γ-limit of the double sequence of functions (fkl) is
defined by (

Γ− lim inf
k,l→∞

fkl
)
(x) := sup

U∈N (x)

lim inf
k,l→∞

inf
y∈U

fkl(y)(3.1)

and the upper Γ-limit of the double sequence of functions (fkl) is defined by(
Γ− lim sup

k,l→∞
fkl

)
(x) := sup

U∈N (x)

lim sup
k,l→∞

inf
y∈U

fkl(y).(3.2)

Moreover, a double sequence of functions (fkl) Γ-converges if and only if

Γ− lim inf
k,l→∞

fkl = Γ− lim sup
k,l→∞

fkl

and the Γ-limit is common function of Γ− lim inf and Γ− lim sup. In this case we
denote f := Γ− limk,l→∞ fkl.

Remark 3.1. If the functions fkl(x) are independent of x, i.e., for every k, l ∈ N there
exists a constant akl ∈ R such that fkl(x) = akl for every x ∈ X, then

(Γ− lim inf
k,l→∞

fkl)(x) = lim inf
k,l→∞

akl and (Γ− lim sup
k,l→∞

fkl)(x) = lim sup
k,l→∞

akl.

If the functions fkl(x) are independent both of k and l, i.e., there exists f : X → R
such that fkl(x) = f(x) for every k, l ∈ N then

Γ− lim inf
k,l→∞

fkl = Γ− lim sup
k,l→∞

fkl = clf.

First, we compare Γ-convergence with pointwise convergence. Γ-convergence
neither implies nor is implied by pointwise convergence. The following examples
show how a double sequence of functions can have both a Γ-limit and a pointwise
limit but are different in general.

Example 3.1. Let fkl : R → R defined by fkl(x) = klxe−2k2l2x2

. Then the double
sequence of function (fkl) Γ-converges in R to the function

f(x) =

{
− 1

2
e−

1
2 , x = 0

0 , x ̸= 0

where as (fkl) converges pointwise to function g(x) = 0 in R.
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Example 3.2. Define fkl : R → R by

fkl(x) =

{
klxe−2k2l2x2

, k + l is even

2klxe−2k2l2x2

, k + l is odd.

Then the double sequence of function (fkl) converges pointwise to function f(x) = 0 but
(fkl) does not Γ-converge in R. In fact(

Γ− lim inf
k,l→∞

fkl
)
(x) =

{
−e−

1
2 , x = 0

0 , x ̸= 0

and

(Γ− lim sup
k,l→∞

fkl)(x) =

{
− 1

2
e−

1
2 , x = 0

0 , x ̸= 0.

Example 3.3. Define fkl : R → R by fkl(x) = sin(k + l)x then the double sequence of
functions (fkl) Γ-converges in R to the function f(x) = −1 but (fkl) does not converge
pointwise.

Note that even if the double sequence (fkl) converges pointwise to f , the se-
quence (infx∈X fkl(x)) cannot converge to minx∈X f(x). We can see this fact in the
following example.

Example 3.4. Define fkl : R → R by

fkl(x) =

{
0 , x = 1

k+l

1 , otherwise.

Then the double sequence of function (fkl) Γ-converges in R to the function

f(x) =

{
0 , x = 0
1 , otherwise

where as (fkl) converges pointwise to the function g(x) = 1 in R. On the other hand, If
we examine the limit of the minimum values of the functions and the minimum value of
the limit function, it will be seen that they are different from each other.

lim
k,l→∞

inf
x∈R

fkl(x) = inf
x∈R

f(x) = 0,

but

lim
k,l→∞

inf
x∈R

fkl(x) ̸= inf
x∈R

g(x) = 1.

In the next example we show that the iterated Γ−limits and Γ−limit of a double
sequence of (fkl) are unrelated.

Example 3.5. Define fkl : R → R by fkl(x) =
l

k+l
x2. Then Γ− limk(Γ− liml fkl) = x2

and Γ−liml(Γ−limk fkl) = 0. However, Γ−limk,l→∞ fkl does not exist. On the other hand

define gkl(x) = (−1)k+l

min{k,l}x
2. Then Γ − limk,l→∞ gkl = 0. But either of iterated Γ−limits

does not exist.
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We next give the relationship between uniform convergence and Γ-convergence
of a double sequence of functions.

Proposition 3.1. If a double sequence of functions (fkl) converges to the function
f uniformly, then the double sequence (fkl) Γ-converges to clf .

Proof. Suppose that double sequence of functions (fkl) converges to f uniformly.
For every open subset U of X we have

lim
k,l→∞

inf
y∈U

fkl(y) = inf
y∈U

f(y),

hence for every x ∈ X

sup
U∈N (x)

lim
k,l→∞

inf
y∈U

fkl(y) = sup
U∈N (x)

inf
y∈U

f(y),

which yields that the sequence (fkl) Γ-converges to clf .

We showed above that Γ-convergence and pointwise convergence of a double
sequence of functions are independent, in general. Now we investigate the relation-
ship between them and some conditions under which Γ-convergence and pointwise
convergence of a double sequence of functions are equivalent.

Proposition 3.2. Let (fkl) be a double sequence of functions from X into R. Then

Γ− lim inf
k,l→∞

fkl ≤ lim inf
k,l→∞

fkl and Γ− lim sup
k,l→∞

fkl ≤ lim sup
k,l→∞

fkl.(3.3)

In particular, if (fkl) Γ-converges to f and converges to pointwise to g then f ≤ g.

Proof. For every x ∈ X and for every U ∈ N (x) we obtain infy∈U fkl(y) ≤ fkl(x).
Consequently,

lim inf
k,l→∞

inf
y∈U

fkl(y) ≤ lim inf
k,l→∞

fkl(x),

lim sup
k,l→∞

inf
y∈U

fkl(y) ≤ lim sup
k,l→∞

fkl(x).

The result is obtained by taking supremum over all U ∈ N (x).

To obtain the reverse inequalities of (3.3) we give the concept of Pringsheim
equi-lower semicontinuous for a double sequence of functions.

Definition 3.2. A double sequence function (fkl) is said to be Pringsheim equi-
lower semicontinuous at a point x ∈ X if for every ε > 0 there exist U ∈ N (x)
and n ∈ N such that fkl(y) ≥ fkl(x) − ε for every y ∈ U and for every k, l ≥ n.
(fkl) is said to be Pringsheim equi-lower semicontinuous on X if (fkl) is Pringsheim
equi-lower semicontinuous at each point x ∈ X.
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Theorem 3.1. Let a double sequence function (fkl) be Pringsheim equi-lower semi-
continuous at a point x ∈ X. Then(
Γ− lim inf

k,l→∞
fkl

)
(x) = lim inf

k,l→∞
fkl(x) and

(
Γ− lim sup

k,l→∞
fkl

)
(x) = lim sup

k,l→∞
fkl(x).

In particular, if (fkl) Γ− converges to f if and only if (fkl) converges to f pointwise
in X.

Proof. We prove only the first equality, the proof of the other one being similar. By
Proposition 3.2 it is sufficient to show that

lim inf
k,l→∞

fkl(x) ≤
(
Γ− lim inf

k,l→∞
fkl

)
(x).

Since (fkl) is Pringsheim equi-lower semicontinuous at x, for every ε > 0 there exist
U ∈ N (x) and n ∈ N such that fkl(y) ≥ fkl(x) − ε for every y ∈ U and for every
k, l ≥ n. Hence

fkl(x) ≤ inf
y∈U

fkl(y) + ε, whenever k, l ≥ n.

We deduce that

lim inf
k,l→∞

fkl(x) ≤ lim inf
k,l→∞

inf
y∈U

fkl(y) + ε.

Since ε > 0 is arbitrary and U ∈ N (x), we get

lim inf
k,l→∞

fkl(x) ≤ sup
U∈N (x)

lim inf
k,l→∞

inf
y∈U

fkl(y),

which is the desired conclusion.

The following theorem shows the relation between Γ-convergence of a double
sequence of functions and Kuratowski convergence of their epigraphs. This is the
reason why Γ-convergence is sometimes called epi-convergence.

Theorem 3.2. Let (fkl) be a double sequence of functions defined from X into R.
Then

epi(Γ− lim inf
k,l→∞

fkl) = lim sup
k,l→∞

(epifkl),(3.4)

and

epi(Γ− lim sup
k,l→∞

fkl) = lim inf
k,l→∞

(epifkl).(3.5)

Proof. Since the proofs of equality (3.4) and (3.5) are quite similar, we only prove
the first one. For the convenience, set Γ − lim infk,l→∞ fkl = h. For this we must
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show inclusion epi h ⊂ lim supk,l→∞(epifkl) and vice versa. Let (x, α) ∈ epi h if
and only if h(x) ≤ α. By the definition of the lower Γ-limit of the double sequence
of functions (fkl), for every ε > 0, and for every U ∈ N (x) we have

lim inf
k,l→∞

inf
y∈U

fkl(y) < α+ ε,

and which is equivalent to say that for every n ∈ N there exist k, l ≥ n such that
infy∈U fkl(y) < α+ ε. This gives us

epifkl ∩
(
U × (α+ ε, α− ε)

)
̸= Ø.

Since U × (α+ ε, α− ε) is an arbitrary neighborhood of (x, α),

(x, α) ∈ lim sup
k,l→∞

(epifkl).

Consequently, we have proved that (x, α) ∈ epi h if and only if

(x, α) ∈ lim sup
k,l→∞

(epifkl),

thus we have completed the proof.

Remark 3.2. We know that the lower limit and upper limit of the double sequence
(epifkl) are closed. Therefore, from (3.4) and (3.5) the functions Γ− lim infk,l→∞ fkl and
Γ− lim supk,l→∞ fkl are lower semicontinuous on X.

The following theorem shows the relationship between Γ-convergence of a double
sequence of functions and Kuratowski-convergence of their level sets.

Theorem 3.3. Let (fkl) be a double sequence of functions defined from X into R,

Γ− lim inf
k,l→∞

fkl = h and Γ− lim sup
k,l→∞

fkl = g.

Then for every s ∈ R we have

{h ≤ s} =
⋂
t>s

lim sup
k,l→∞

{fkl ≤ t},(3.6)

{g ≤ s} =
⋂
t>s

lim inf
k,l→∞

{fkl ≤ t}.(3.7)

In particular, (fkl) Γ-converges to f if and only if

{f ≤ s} =
⋂
t>s

lim sup
k,l→∞

{fkl ≤ t} =
⋂
t>s

lim inf
k,l→∞

{fkl ≤ t}

for every s ∈ R.
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Proof. We shall prove only (3.6), the proof of (3.7) being analogous. Let us take an
arbitrary point x ∈ X belongs to the set {h ≤ s}. Then for each t > s, h(x) < t.
By definition lower Γ-limit for every U ∈ N (x) we obtain

lim inf
k,l→∞

inf
y∈U

fkl(y) < t.

Therefore, for every n ∈ N there exist k, l ≥ n such that infy∈U fkl(y) < t. The
equivalent of this inequality is {fkl < t}∩U ̸= Ø. This yields x ∈ lim supk,l→∞{fkl ≤
t}. Since t is arbitrary number grater than s we have

x ∈
⋂
t>s

lim sup
k,l→∞

{fkl ≤ t}.

We now assume that x ∈ X belongs to the intersection set on the right hand side
of (3.6). Then for each t > s, x ∈ lim supk,l→∞{fkl ≤ t}. From (3.2), for every
U ∈ N (x) and for every n ∈ N there exist k, l ≥ n such that {fkl < t} ∩ U ̸= Ø.
Since this is equivalent to infy∈U fkl(y) < t, we have

lim inf
k,l→∞

inf
y∈U

fkl(y) ≤ t.

Since U ∈ N (x) is arbitrary, we obtain h(x) ≤ t. As a consequence, t > s implies
t ≥ h(x). This gives us s ≥ h(x), that is x ∈ {h ≤ s}, and the proof is complete.

Remark 3.3. In general the equalities

{Γ− lim inf
k,l→∞

fkl ≤ s} = lim sup
k,l→∞

{fkl ≤ s}, and {Γ− lim sup
k,l→∞

fkl ≤ s} = lim inf
k,l→∞

{fkl ≤ s}

do not hold, even if (fkl) Γ-converges to f . For instance if X = R, fkl(x) = 1
kl
, and

f(x) = 0, then (fkl) Γ-converges to f but

{f ≤ 0} = R ̸= Ø = lim
k,l→∞

{fkl ≤ 0}.

4. Convergence of Minima and of Minimizers

In this section we focus on a minimization problem and investigate conditions
ensuring that the double sequence of the minimum values of fkl converges to the
minimum value of f .

Proposition 4.1. Let (fkl) be a double sequence of functions from X into R and
Let U be an open subset of X. If Γ−lim infk,l→∞ fkl = h and Γ−lim supk,l→∞ fkl =
g, then the following inequalities hold.

inf
x∈U

h(x) ≥ lim inf
k,l→∞

inf
x∈U

fkl(x),

inf
x∈U

g(x) ≥ lim sup
k,l→∞

inf
x∈U

fkl(x).
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Proof. Let U be an open subset of X. For any x ∈ U , we have U ∈ N (x). By the
definition of Γ-lower limit of double sequences of functions, the inequality

h(x) ≥ lim inf
k,l→∞

inf
y∈U

fkl(y)

is obtained. Consequently,

inf
x∈U

h(x) ≥ lim inf
k,l→∞

inf
y∈U

fkl(y).

In the same manner, we can see that

inf
x∈U

g(x) ≥ lim sup
k,l→∞

inf
y∈U

fkl(y)

and the proof is achieved.

In particular, taking U = X, we obtain

inf
x∈X

h(x) ≥ lim inf
k,l→∞

inf
x∈X

fkl(x) and inf
x∈X

g(x) ≥ lim sup
k,l→∞

inf
x∈X

fkl(x).

Proposition 4.2. Let K be a compact subset of X and Γ− lim infk,l→∞ fkl = h.
Then

min
x∈K

h(x) ≤ lim inf
k,l→∞

inf
x∈K

fkl(x).

Proof. First of all, let us note that the h takes the minimum value on K since
Γ− lim infk,l→∞ fkl is lower semicontinuous on K. Assume that

lim inf
k,l→∞

inf
x∈K

fkl(x) < ∞

and α ∈ R is an arbitrary number satisfying

lim inf
k,l→∞

inf
x∈K

fkl(x) < α.

Then for every n ∈ N there exist k, l ≥ n such that infx∈K fkl(x) ≤ α. So there
exists a xkl ∈ K such that fkl(xkl) ≤ α. Since K is compact, so there exist two
increasing index sequence ki, li such that limi→∞ xkili = x0 ∈ K. Therefore for
every U ∈ N (x0) there exists a i0 such that xkili ∈ U for all i ≥ i0. Hence
infx∈U fkili(x) ≤ fkili(xkili) ≤ α and we obtain

lim inf
k,l→∞

inf
x∈U

fkl(x) ≤ α.

Since U ∈ N (x0) is arbitrary

h(x0) = sup
U∈N (x0)

lim inf
k,l→∞

inf
x∈U

fkl(x) ≤ α.

Consequently, we have minx∈K h(x) ≤ h(x0) ≤ α. This implies that

min
x∈K

h(x) ≤ lim inf
k,l→∞

inf
x∈K

fkl(x),

which completes the proof.
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The following example shows that, when the double sequence (fkl) is not Γ-
convergent, the inequality

min
x∈K

(
Γ− lim sup

k,l→∞
fkl

)
(x) ≤ lim sup

k,l→∞
inf
x∈K

fkl(x)(4.1)

may not be true for some compact subset K of X.

Example 4.1. Let X = R, fkl(x) =
(
x− (−1)k+l

)2

, and let K = [−1, 1]. Then we can

evaluate (
Γ− lim inf

k,l→∞
fkl

)
(x) = min

{
(x− 1)2, (x+ 1)2

}
,(

Γ− lim sup
k,l→∞

fkl
)
(x) = max

{
(x− 1)2, (x+ 1)2

}
.

Since minx∈R

{
(Γ− lim supk,l→∞ fkl)(x)

}
= minx∈K

{
(Γ− lim supk,l→∞ fkl)(x)

}
= 1 and

minx∈R fkl(x) = minx∈K fkl(x) = 0, for all k, l ∈ N, the condition (4.1) is not satisfied.

Theorem 4.1. Let Γ − limk,l→∞ fkl = f . Suppose that there exists a compact
subset K of X and n0 ∈ N such that

inf
x∈X

fkl(x) = inf
x∈K

fkl(x) whenever k, l ≥ n0.(4.2)

Then f attains its minimum on X and

min
x∈X

f(x) = lim
k,l→∞

inf
x∈X

fkl(x).(4.3)

Proof. By Propositions 4.1 and 4.2 we have the following inequality

inf
x∈X

f(x) ≤ min
x∈K

f(x)

≤ lim inf
k,l→∞

inf
x∈K

fkl(x)

= lim inf
k,l→∞

inf
x∈X

fkl(x)

≤ lim sup
k,l→∞

inf
x∈X

fkl(x)

≤ inf
x∈X

fkl(x).

Consequently, we obtain equality (4.3).

Example 4.2. Define fkl : R → R by

fkl(x) =

{
(x+k)2

k2 , l = 1, for all k,

1 + x2

k
, l > 1, for all k.

Then Γ− limk,l→∞ fkl = 1. We can not find a compact set K such that for all k, l ∈ N,

inf
x∈X

fkl(x) = inf
x∈K

fkl(x).

However, K = [−1, 1] and for all k, l > 1 we have condition (4.2). By Theorem 4.1, equality
(4.3) holds.
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To provide a practical criterion for verifying condition (4.2), we appeal to the
concept of Pringsheim level boundedness.

Definition 4.1. A double sequence of functions (fkl) from X to R is Pringsheim
level bounded if for each α ∈ R there exists a compact set Bα along with n ∈ N
such that {fkl ≤ α} ⊆ Bα, whenever k, l ≥ n.

Lemma 4.1. Let (fkl) be Pringsheim level bounded. If Γ− limk,l→∞ fkl = f , then
f is level bounded.

Proof. Let s be a real number and t > s. Since (fkl) is Pringsheim level bounded,
there exist n ∈ N and compact set Bt such that {fkl ≤ t} ⊆ Bt whenever k, l ≥ n.
So lim infk,l→∞{fkl ≤ t} ⊆ Bt. By Theorem 3.3 we obtain

{f ≤ s} ⊆
⋂
t>s

Bt.

Since
⋂

t>s Bt is compact, f is level bounded.

Theorem 4.2. Suppose that a double sequence of functions (fkl) is Pringsheim
level bounded and Γ− limk,l→∞ fkl = f . Then equality (4.3) holds.

Proof. Since (fkl) is Pringsheim level bounded and by Lemma 4.1, f is level bounded.
Therefore f attains minimum on X. Hence infx∈X f(x) = minx∈X f(x). On the
other hand, by Proposition 4.1,

lim sup
k,l→∞

inf
x∈X

fkl(x) ≤ min
x∈X

f(x) < ∞.

Hence there exists an α such that

lim sup
k,l→∞

inf
x∈X

fkl(x) ≤ α.

Thus there exists n1 ∈ N such that infx∈X fkl(x) ≤ α, whenever k, l ≥ n1. Since
(fkl) is Pringsheim level bounded, there exist a compact set Bα and n2 ∈ N such
that {fkl ≤ α} ⊆ Bα, whenever k, l ≥ n2. Let n0 = max{n1, n2}, then for every
k, l ≥ n0

inf
x∈X

fkl(x) = inf
x∈Bα

fkl(x).

So condition (4.2) is satisfied. By Theorem 4.1 we have equality (4.3).

Example 4.3. Define fkl : R → R by

fkl(x) =

{
−1 , l = 1, for all k,

1 + x2 , l > 1, for all k.

Then, (fkl) is Pringsheim level bounded and Γ − limk,l→∞ fkl = 1 = f(x). By Theorem
4.2, we have minx∈X f(x) = limk,l→∞ infx∈X fkl(x).
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Remark 4.1. The single sequence version of Theorem 4.2 says that a single sequence of
functions (fk) need to be eventually level bounded. That is, for each α ∈ R there exists
a compact set Bα along with n ∈ N such that {fk ≤ α} ⊆ Bα, whenever k ≥ n (see
Theorem 7.8 in [15], and Theorem 7.33 in [20]). However, in Examples 4.2 and 4.3 we see
that infinitely many terms of (fkl) can be level unbounded, but Theorem 4.2 still is valid.
The number of level unbounded functions leads to one of the main difference between
single sequence and double sequence in Γ−convergence.

In the rest of the paper, we suggest the procedure to find the minimizers of a
function.

Lemma 4.2. Assume that Γ− limk,l→∞ fkl = f and (xkl) be a double sequence in
X.

(i) If x is a Pringsheim limit point of the double sequence (xkl), then

f(x) ≤ lim sup
k,l→∞

fkl(xkl).(4.4)

(ii) If limk,l→∞ xkl = x ∈ X, then

f(x) ≤ lim inf
k,l→∞

fkl(xkl).(4.5)

Proof. First, we prove (i). Assume that x is a Pringsheim limit point of (xkl). Then
there exist two strictly increasing sequences (ki) and (li) such that limi→∞ xkili = x.
Let U ∈ N (x). For every n ∈ N we can find ki, li ≥ n such that xkili ∈ U and thus

inf
k,l≥n

inf
x∈U

fkl(x) ≤ fkili(xkili) ≤ sup
k,l≥n

fkl(xkl)

holds. Letting n → ∞ the above inequality yields

lim inf
k,l→∞

inf
x∈U

fkl(x) ≤ lim sup
k,l→∞

fkl(xkl).

Since U ∈ N (x) is arbitrary we have (4.4).

Now we prove (ii). Assume that limkl→∞ xkl = x. For each U ∈ N (x) there
exists n0 ∈ N such that for every k, l ≥ n0, xkl ∈ U and thus infx∈U fkl(x) ≤
fkl(xkl). This implies

lim inf
k,l→∞

inf
x∈U

fkl(x) ≤ lim inf
k,l→∞

fkl(xkl).

Since U ∈ N (x0) is arbitrary, we have (4.5).

Theorem 4.3. Assume that Γ− limk,l→∞ fkl = f . Then

lim sup
k,l→∞

(argminfkl) ⊆
⋂
ε>0

lim sup
k,l→∞

(ε− argminfkl) ⊆ argminf.(4.6)
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If ⋂
ε>0

lim sup
k,l→∞

(ε− argmin fkl) ̸= Ø,(4.7)

then argmin f ̸= Ø and

min
y∈X

f(y) = lim sup
k,l→∞

inf
y∈X

fkl(y).(4.8)

Proof. For every ε > 0 and k, l ∈ N, since argmin fkl ⊆ ε− argmin fkl, we have the
first inclusion in (4.6).

We now prove for each ε > 0

lim sup
k,l→∞

(ε− argmin fkl) ⊆ ε− argminf.(4.9)

Let ε be an arbitrary but fixed positive number and x ∈ lim supk,l→∞(ε−argminfkl).
Then there exists a double sequence (xkl) ⊆ ε− argminfkl such that x ∈ L(xkl). By
Lemma 4.2,

f(x) ≤ lim sup
k,l→∞

fkl(xkl).

Since xkl ∈ ε− argminfkl we have

fkl(xkl) ≤ ( inf
y∈X

fkl(y) + ε) ∨ (−1

ε
).

Therefore,

f(x) ≤ lim sup
k,l→∞

fkl(xkl)

≤ (lim sup
k,l→∞

inf
y∈X

fkl(y) + ε) ∨ (−1

ε
)

≤ ( inf
y∈X

f(y) + ε) ∨ (−1

ε
).

This implies that x ∈ ε− argmin f . Therefore inclusion (4.9) holds. Since for every
ε > 0 inclusion (4.9) holds, we have⋂

ε>0

lim sup
k,l→∞

(ε− argmin fkl) ⊆
⋂
ε>0

(ε− argminf) = argminf.

This completes the proof of (4.6).

If condition (4.7) holds, then argmin f ̸= Ø. Let

x ∈
⋂
ε>0

lim sup
k,l→∞

(ε− argminfkl).
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For every ε > 0, x ∈ lim supk,l→∞(ε− argmin fkl). From first part of the proof

inf
y∈X

f(y) ≤ f(x) ≤ (lim sup
k,l→∞

inf
y∈X

fkl(y) + ε) ∨ (−1

ε
).

Since ε is arbitrary, we obtain

inf
y∈X

f(y) ≤ f(x) ≤ lim sup
k,l→∞

inf
y∈X

fkl(y) ≤ inf
y∈X

f(y).

Hence, x is a minimizer of f and (4.8) holds.

In the following example, we show the advantage of approaching a function by using
a double sequence in Γ-convergence.

Example 4.4. Let X = R and let fkl(x) =
(
x2 − 1

)
∨ 1

k+l

(
x− (−1)k+l

)2
. Then the

double sequence fkl Γ-converges to the function f(x) =
(
x2 − 1

)
∨ 0. . On the other hand

we take k = l the sequence gk = fkk(x) =
(
x2 − 1

)
∨ 1

2k
(x− 1)2 is Γ-convergent to the

function f(x) =
(
x2 − 1

)
∨ 0.

argminfkl =

{
{−1}, if k + l is odd
{1}, if k + l is even

and argmingk = {1}.

So lim supk,l→∞ argminfkl = {−1, 1} and lim supk→∞ argmingk = {1}. By Theorem 4.3,
both −1 and 1 are in argminf . Therefore, it can find more points that minimize the
function f if we use a double sequence instead of a single sequence in Γ-convergence.

Theorem 4.4. Assume that Γ− limk,l→∞ fkl = f and⋂
ε>0

lim inf
k,l→∞

(ε− argminfkl) ̸= Ø.(4.10)

Then argmin f ̸= Ø and

min
y∈X

f(y) = lim
k,l→∞

inf
y∈X

fkl(y).(4.11)

Proof. If condition (4.10) holds, then from (4.7) we have argminf ̸= Ø. Let

x ∈
⋂
ε>0

lim inf
k,l→∞

(ε− argminfkl).(4.12)

Then for every ε > 0, x ∈ lim infk,l→∞(ε − argminfkl). By Proposition 2.2 there
exists a double sequence (xkl) in ε− argmin fkl such that xkl → x. By Lemma 4.2

f(x) ≤ lim inf
k,l→∞

fkl(xkl) ≤ (lim inf
k,l→∞

inf
y∈X

fkl(y) + ε) ∨ (−1

ε
).
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Since ε > 0 is arbitrary,

inf
y∈X

f(y) ≤ f(x) ≤ lim inf
k,l→∞

inf
y∈X

fkl(y)

≤ lim sup
k,l→∞

inf
y∈X

fkl(y)

≤ inf
y∈X

fkl(y).

Hence, we have (4.11).

Corollary 4.1. Let Γ− limk,l→∞ fkl = f .

(i) If there exists a double sequence (εkl) of positive numbers converging to 0 such
that lim supk,l→∞(εkl − argmin fkl) ̸= Ø, then argmin f ̸= Ø and (4.8) holds.

(ii) If there exists a double sequence (εkl) of positive numbers converging to 0 such
that lim infk,l→∞(εkl−argmin fkl) ̸= Ø, then argmin f ̸= Ø and (4.11) holds.

Proof. Since (εkl) is convergent to 0, for arbitrary fixed ε > 0 there exists n0 ∈ N
such that εkl < ε whenever k, l ≥ n0. Therefore εkl − argmin fkl ⊆ ε− argmin fkl.
This implies

lim sup
k,l→∞

(εkl − argminfkl) ⊆ lim sup
k,l→∞

(ε− argminfkl),

lim inf
k,l→∞

(εkl − argminfkl) ⊆ lim inf
k,l→∞

(ε− argminfkl).

Since ε > 0 is arbitrary, (4.7) and (4.10) are satisfied. This completes the proof.

Corollary 4.2. Let Γ − limk,l→∞ fkl = f . For every k, l ∈ N, let xkl ∈ (εkl −
argmin fkl) where εkl ↘ 0.

(i) If x is a Pringsheim limit point of xkl, then x is a minimizer of f and

min
y∈X

f(y) = f(x) = lim sup
k,l→∞

fkl(xkl)

(ii) xkl → x, then

min
y∈X

f(y) = f(x) = lim
k,l→∞

fkl(xkl)

Proof. First, we will prove (i). Suppose that x is a Pringsheim limit point of xkl.
Then x ∈ lim supk,l→∞(εkl−argminfkl). So (4.7) holds. Therefore x is a minimizer
of f and since xkl ∈ (εkl − argminfkl), we have

lim sup
k,l→∞

fkl(xkl) = lim sup
k,l→∞

inf
y∈X

fkl(y).
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From (4.8), we have

f(x) = min
y∈X

f(y) = lim sup
k,l→∞

fkl(xkl).

Now, we will prove (ii). Assume that xkl → x. Then x ∈ lim infk,l→∞(εkl −
argminfkl). So (4.10) holds. By xkl ∈ (εkl − argminfkl) and (4.11), we have

lim
k,l→∞

fkl(xkl) = lim
k,l→∞

inf
y∈X

fkl(y) = f(x) = min
y∈X

f(y),

which completes the proof.

In the next theorem, we will give a necessary and sufficient condition for the
convergence of minimum values.

Theorem 4.5. Assume that Γ− limk,l→∞ fkl = f and argminf ̸= Ø. Then⋂
ε>0

lim inf
k,l→∞

(ε− argminfkl) = argminf.(4.13)

if and only if (4.11) holds.

Proof. Assume that (4.13) holds. Since argminf ̸= Ø, (4.10) holds. By Theorem
4.4, we have (4.11).

Now assume that (4.11) is satisfied. Let x ∈ argminf . Then f(x) = miny∈X f(y)
and

f(x) = lim
k,l→∞

inf
y∈X

fkl(y).

Given ε > 0. Then there exists n0 ∈ N such that for every k, l ≥ n0 we have

f(x)− ε

2
< inf

y∈X
fkl(y).

On the other hand, since Γ− limk,l→∞ fkl = f , for each U ∈ N (x)

lim sup
k,l→∞

inf
y∈U

fkl(y) ≤ f(x).

Thus, there exists n1 ∈ N such that for every k, l ≥ n1 we have

inf
y∈U

fkl(y) < f(x) +
ε

2
.

Let n2 = max{n0, n1}. Then for every k, l ≥ n2 we obtain

inf
y∈U

fkl(y) < inf
y∈X

fkl(y) + ε.
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This implies that U ∩ (ε − argminfkl) ̸= Ø. It follows that x ∈ lim infk,l→∞(ε −
argminfkl). Since ε is arbitrary,

x ∈
⋂
ε>0

lim inf
k,l→∞

(ε− argminfkl).

Applying this result together with Theorem 4.3 we obtain

argminf ⊆
⋂
ε>0

lim inf
k,l→∞

(ε− argminfkl)

⊆
⋂
ε>0

lim sup
k,l→∞

(ε− argminfkl)

⊆ argminf

which completes the proof.

5. Conclusion

In the present paper, we defined the concept of Γ-convergence of a double se-
quence of functions. First, we showed that Γ-convergence and pointwise convergence
of a double sequence (fkl) of functions are independent, and proved uniform con-
vergence of a double sequence of functions implies Γ-convergence. Later, we proved
Γ-convergence of a double sequence of functions coincides with Kuratowski con-
vergence of their epigraphs. Finally, we gave some conditions ensuring that the
Γ-convergence of a double sequence (fkl) to a function f implies the convergence
of the minimum values of fkl to the minimum value of f and proved if the double
sequence (fkl) Γ converges to the function f , then the limit of a double sequence of
points selected from minimum points of fkl is a minimum point of f

In [6, 9] the notion of Γ-limit is extended from the case of functions with values in
R to the case of those with values in an arbitrary complete lattice. So, the definition
and results in this paper can be also given for double sequences of functions with
values in an arbitrary complete lattice in this framework.
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