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Abstract. In this study, we have defined the concepts of invariant continuity, invariant
compactness, invariant boundedness and invariant Cauchy sequence in normed linear
spaces. In general, there is no relation between continuity and invariant continuity. We
have proved that if f is a linear map, then continuity of f implies invariant continuity
of f . Additionally, we have shown that continuity of f and invariant continuity of f
is equal under a condition. Also, we have proved that every invariant convergent se-
quence is invariant Cauchy. Finally, we have proved that invariant continuous image of
an invariant compact space is invariant compact.
Keywords: Invariant convergence, strongly invariant convergence, invariant continu-
ity, invariant compactness, invariant Cauchy sequence.

1. Introduction

Let l∞ denote the Banach space of all real bounded sequences with the usual
norm ∥x∥ = supk|xk|. Banach [1], recognized certain nonnegative linear functionals
defined on l∞ which remain invariant under shift operators. This extended func-
tionals is known as the Banach limits. In 1948, Lorentz [5] defined a new type
of convergence known as the almost convergence. Later, Kurtz [4] introduced the
concept of almost convergent sequence in a normed linear space X as follows:
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A sequence (xk) in a normed linear space X is said to be almost convergent to
x ∈ X if

lim
n→∞

∥∥∥∥∥
∑n−1

i=1 xi+m

n
− x

∥∥∥∥∥ = 0,uniformly in m.

Raimi [12], defined the concept of invariant convergence (σ- convergence) which
is generalization of almost convergence.

Let σ be a mapping of the positive integers into themselves. A continuous linear
functional ϕ on l∞ is said to be an invariant mean or a σ-mean, if and only if,

1. ϕ(x) ≥ 0 when the sequence x = (xn) has xn ≥ 0 for all n (non-negative)

2. ϕ(e) = 1, where e = (1, 1, 1, ...) (normal)

3. ϕ(xσ(n)) = ϕ(xn) for all x ∈ l∞.

The mappings σ are assumed to be one-to-one such that σm(n) ̸= n for all
positive integers n and m, where σm(n) = σ(σm−1(n)) denotes the mth iterate
of the mapping σ at n. Thus, ϕ extends the limit functional on c, the space of
convergent sequences, in the sense that ϕ(x) = limx, for all x ∈ c. In case σ is
translation mapping σ(n) = n + 1, the σ mean is often called a Banach limit and
Vσ, the set of bounded sequences all of whose invariant means are equal, is the set
of almost convergent sequences.

A sequence (xk) is said to be invariant convergent to L if

lim
n→∞

1

n

n∑
j=1

xσj(m) = L

uniformly in m [6]. In this case we write (xk) −→ L(Vσ) and L is called the
σ-limit of (xk).

Strongly invariant convergent sequence was defined by Mursaleen [7] as follows:

A sequence (xk) is said to be strongly invariant convergent to L if

lim
n→∞

1

n

n∑
j=1

|xσj(m) − L| = 0

uniformly in m. In this case we write (xk) −→ L[Vσ].

It is known that c ⊂ [Vσ] ⊂ Vσ ⊂ l∞ ( see [7]).

Several authors including Dündar et al.[3], Mursaleen [6], MA Mursaleen [8],
Mursaleen and Edely [9], Pancaroǧlu and Nuray [11], Raimi [12], Savaş and Nuray
[13], Schaefer [14], Ulusu and Nuray [15] and others have studied invariant conver-
gent sequences.

Continuity and compactness are related to convergence. In [10], Nanda, by
using the definition of almost convergence sequence, defined the concepts of almost
continuity function and almost compactness in any normed linear space.
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In this study, we will introduce the concepts of invariant continuous function
and invariant compactness in any normed linear space. Then we will give some
relations between continuity and invariant continuity. We will also prove that the
invariant continuous image of an invariant compact space is invariant compact.

2. Main Results

Now, we will define the concepts of invariant convergence and invariant conti-
nuity in any normed linear space.

Definition 2.1. Let X be a normed linear space. A sequence (xn) ∈ X is said to
be invariant convergent to x ∈ X if

lim
n→∞

∥∥∥∥∥
∑n

j=1 xσj(m)

n
− x

∥∥∥∥∥ = 0

uniformly in m.

Vσ(X) will denote the set of all invariant convergent sequences in X, that is:

Vσ(X) =

{
(xk) : lim

n→∞

∥∥∥∥∥
∑n

j=1 xσj(m)

n
− x

∥∥∥∥∥ = 0,uniformly in m

}
.

Definition 2.2. Let X and Y be normed linear spaces and f : X −→ Y be a
mapping. f is said to be invariant continuous at a point x ∈ X if

xk −→ x(Vσ(X)) implies f(xk) −→ f(x)(Vσ(X))

Remark 2.1. It is easy to prove that if f and g are invariant continuous then so is
f+g. Also if k is real number and f is invariant continuous functions, then kf is invariant
continuous. Thus, the set of all invariant continuous functions is a vector space.

We can introduce four types of continuity:

lim
n→∞

xn = x implies lim
n→∞

f(xn) = f(x)(2.1)

lim
n→∞

xn = x implies σ − lim
n→∞

f(xn) = f(x)(2.2)

σ − lim
n→∞

xn = x implies lim
n→∞

f(xn) = f(x)(2.3)

σ − lim
n→∞

xn = x implies σ − lim
n→∞

f(xn) = f(x)(2.4)

(2.1) is continuity and (2.4) is invariant continuity. We have

(2.3) ⇒ (2.1) ⇒ (2.2)

(2.3) ⇒ (2.4) ⇒ (2.2)

In general, there is no relation between continuity and invariant continuity. In
[2], the following Lemma 2.1 and Theorem 2.1 were proved for almost continuity.
We will prove similar lemmas for invariant continuity.
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Lemma 2.1. Let X and Y be normed linear spaces. If f : X −→ Y is invariant
continuous at x0 ∈ X, then it is continuous at x0.

Proof. Firstly, we prove that the function f is bounded at x0, i.e., there exists
an a > 0 such that f is bounded on the interval (x0 − a, x0 + a). To prove this it
suffices to show that if (xn) −→ x0, then the sequence f(xn)

∞
n=1is bounded.

Let (xn) −→ x0. Then (xn) −→ x0(Vσ(X)) and by the assumption of Lemma,
we have f(xn) −→ f(x0)(Vσ(X)). Hence (f(xn))

∞
n=1 as an invariant convergent

sequence is bounded. Now, we can prove the continuity of the function f at the
point x0. Suppose that f is discontinuous at x0. Since it is bounded on an interval
(x0 − a, x0 + a), there exists a sequence (yn) of elements of (x0 − a, x0 + a) such
that (yn) −→ x0 and f(yn) −→ b ̸= f(x0). From this we get f(yn) −→ bVσ(X)).
On the other hand from (yn) −→ x0 we have (yn) −→ x0(Vσ(X)) and so by the
assumption of Lemma we get

f(yn) −→ f(x0) ̸= b(Vσ(X)).

This contradicts f(yn) −→ b(Vσ(X)) . Hence, f is continuous and the proof is
completed.

Theorem 2.1. Let X and Y be normed linear spaces. If f : X −→ Y is invariant
continuous at a point x0 ∈ X, then f is a linear function.

Proof. We will prove the theorem in two stages that special and general. First of
all we will prove the following special case. Let g : X −→ Y is invariant continuous
at the point 0 and g(0) = 0 . Let a, b, c be real numbers such that a + b + c = 0.
Construct the sequence

(xn)
∞
n=1 = a, b, c, a, b, c, ....

We show that this sequence is invariant convergent to 0. Let σ(m) = m+ 1, then

lim
n→∞

1

n

n∑
j=1

xσj(m) = 0

uniformly in m. Hence, (xn) is invariant convergent to 0. According to the assump-
tion of theorem g(xn) −→ g(0) = 0(Vσ(X)), i.e.

g(xn) = g(a), g(b), g(c), g(a), g(b), g(c), ...

is invariant convergent to 0. Additonally, a direct calculation shows that

σ − lim g(xn) =
g(a) + g(b) + g(c)

3

Hence g(a) + g(b) + g(c) = 0 . Since c = −a− b, we get g(−a− b) = −g(a)− g(b).
Putting b = 0 we have g(−a) = −g(a).

Let x, y be arbitrary. Put c = x + y a = −x b = −y then we get g(x +
y) = −g(−x) − g(−y) = g(x) + g(y). Hence the function g satisfies the Cauchy
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functional equation. It is continuous at 0 that Lemma 2.1. On the basis of well-
known knowledge on Cauchy equation we get g(x) = ax for x ∈ X , a being a
constant.

Now we will prove the general case. Let f : X −→ Y is invariant continuous at
x0 ∈ X. We introduce new coordinates x′ = x − x0, y

′ = y − f(x0) . Put g(x′) =
f(x)−f(x0) . Since g has the form g(x′) = ax′, f(x)−f(x0) = a(x−x0) = ax−ax0,
f(x) = ax+ (f(x0)− ax0) = ax+ b and f is linear.

Remark 2.2. It follows from Theorem 2.1 that Lemma 2.1 cannot be conversed.

Theorem 2.2. If f is a linear map, then continuity of f implies invariant conti-
nuity of f .

Proof. For linear maps continuity implies invariant continuity. Let (xk) −→ x0

and f is continuous. So,

(xk) −→ x0 implies f(xk) −→ f(x0).

Since f is continuous and linear, f is bounded thus for M > 0 we can write

∥f(xn)− f(x0)∥ = ∥f(xn − x0)∥ ≤ M ∥xn − x0∥ .

Hence, we have∥∥∥∥∥∥ 1n
n∑

j=1

f(xσj(m))− f(x0)

∥∥∥∥∥∥ =

∥∥∥∥∥∥f( 1n
n∑

j=1

xσj(m) − x0)

∥∥∥∥∥∥ ≤ M

∥∥∥∥∥∥ 1n
n∑

j=1

xσj(m) − x0

∥∥∥∥∥∥
for each m. Thus f is invariant continuous and so continuity implies invariant
continuity for linear maps.

But, the situation is changing for nonlinear map. For this, let us take the
example of Teorem 1 in [10]. Let us consider the nonlinear map f : L2[0, 1] −→ [0, 1]
defined by

[fx](s) =

∫ 1

0

x2(t) dt

Let (xk) be a sequence which converges to x in L2[0, 1]. We have

∥f(xk)− f(x)∥2 =

∫ 1

0

(∫ 1

0

(x2
k(t)− x2(t))dt

)2

ds

≤
∫ 1

0

(∫ 1

0

(xk(t) + x(t))2dt

)(∫ 1

0

(xk(t)− x(t))2dt

)
ds

≤ N ∥xk − x∥2

where N = supk ∥xk + x∥2. The continiuty of f follows from the above inequal-
ity.
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Observe that if xk = sinkπt and σ(m) = m+ 1 then,

lim
n→∞

1

n

n∑
j=1

xσj(m) = lim
n→∞

sin(m+ 1)πt+ ...+ sin(m+ n)πt

n
= 0

uniformly in m. So (xk) −→ 0(Vσ) . But

∥f(xk)− f(0)∥ =

∫ 1

0

(sinkπt)2dt =

∫ 1

0

(
1

2
− cos2kπt

2
)dt =

1

2

for all k and so f(xk) ↛ 0. Thus f is not invariant continuous and this completes
the proof.

Theorem 2.3. Let X and Y be normed linear spaces and f : X −→ Y . Continuity
of f and invariant continuity of f are equivalent under the condition that∥∥∥∥f(xσ(m)) + f(xσ2(m)) + ...+ f(xσj(m))

n
− f(xk)

∥∥∥∥ → 0 (n −→ ∞)

uniformly in m.

Proof. Let f be a continuous function as well as the condition holds. Let
(xk) → x. Then

∥f(xk)− f(x)∥ → 0

and ∥∥∥∥∥
∑n

j=1 f(xσj(m))

n
− f(xk)

∥∥∥∥∥ → 0 (n −→ ∞)

unifromly in m. We can write,∥∥∥∥∥
∑n

j=1 f(xσj(m))

n
− f(x)

∥∥∥∥∥ ≤

∥∥∥∥∥
∑n

j=1 f(xσj(m))

n
− f(xk)∥+ ∥f(xk)− f(x)

∥∥∥∥∥
and ∥∥∥∥∥

∑n
j=1 f(xσj(m))

n
− f(x)

∥∥∥∥∥ → 0 (n −→ ∞)

unifromly in m. Hence f is invariant continuous.

Let (xk) → x and f be invariant continuous at x ∈ X. Let the condition
hold.Then ∥∥∥∥∥

∑n
j=1 f(xσj(m))

n
− f(x)

∥∥∥∥∥ → 0 (n −→ ∞)

unifromly in m. We have,

∥f(xk)− f(x)∥ ≤

∥∥∥∥∥
∑n

j=1 f(xσj(m))

n
− f(xk)

∥∥∥∥∥+

∥∥∥∥∥
∑n

j=1 f(xσj(m))

n
− f(x)

∥∥∥∥∥
and hence f is continuous.
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Definition 2.3. Let X and Y be normed linear spaces. A function f : X −→ Y
is said to be invariant bounded if there is a constant M ≥ 0 such that for all n and
m, ∥∥∥∥∥∥ 1n

n∑
j=1

f(xσj(m))

∥∥∥∥∥∥ ≤ M

Theorem 2.4. Boundednes and invariant boundedness of functions are equivalent.

Proof. Observe that

∥f(xk)∥ = sup
1,m

∥∥∥∥∥∥ 1n
n∑

j=1

f(xσj(m))

∥∥∥∥∥∥ ≤ sup
n,m

∥∥∥∥∥∥ 1n
n∑

j=1

f(xσj(m))

∥∥∥∥∥∥ .
Also,

sup
n,m

∥∥∥∥∥∥ 1n
n∑

j=1

f(xσj(m))

∥∥∥∥∥∥ ≤ sup
n

supk ∥f(xk)∥
n

n∑
j=1

1 = sup
k

∥f(xk)∥

The result follows from the above two inequalities.

Definition 2.4. A sequence (xk) in X is said to be invariant Cauchy sequence if∥∥∥∥∥∥ 1

n+ 1

n∑
j=0

xσj(m) −
1

p+ 1

p∑
j=0

xσj(m)

∥∥∥∥∥∥ −→ 0, n, p −→ ∞

uniformly in m.

Theorem 2.5. Let (xk) be invariant Cauchy sequence. If∥∥∥∥∥∥ 1

n+ 1

n∑
j=0

xσj(m) − xn

∥∥∥∥∥∥ −→ 0

uniformly in m, then it is Cauhy and vice-versa.

Proof. Let (xk) be invariant Cauchy sequence and condition hold. We have

∥xk − xn∥ ≤

∥∥∥∥∥∥ 1

n+ 1

n∑
j=0

xσj(m) − xn

∥∥∥∥∥∥
+

∥∥∥∥∥∥ 1

n+ 1

n∑
j=0

xσj(m) −
1

k + 1

k∑
j=0

xσj(m)

∥∥∥∥∥∥+

∥∥∥∥∥∥ 1

k + 1

k∑
j=0

xσj(m) − xk

∥∥∥∥∥∥
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so (xk) is Cauchy sequence.
Conversely, let (xk) be Cauchy sequence and condition hold. Then∥∥∥∥∥∥ 1

n+ 1

n∑
j=0

xσj(m) −
1

p+ 1

p∑
j=0

xσj(m)

∥∥∥∥∥∥ ≤

∥∥∥∥∥∥ 1

n+ 1

n∑
j=0

xσj(m) − xn

∥∥∥∥∥∥+ ∥xn − xp∥+

∥∥∥∥∥∥ 1

p+ 1

p∑
j=0

xσj(m) − xp

∥∥∥∥∥∥
so (xk) is invariant Cauchy sequence. The proof is completed.

Theorem 2.6. Every invariant convergent sequence is invariant Cauchy sequence.

Proof. Let the sequence (xk) be invariant convergent to x. Then we can write∥∥∥∥∥∥ 1

n+ 1

n∑
j=0

xσj(m) −
1

p+ 1

p∑
j=0

xσj(m)

∥∥∥∥∥∥ ≤

∥∥∥∥∥∥ 1

n+ 1

n∑
j=0

xσj(m) − x

∥∥∥∥∥∥+

∥∥∥∥∥∥ 1

p+ 1

p∑
j=0

xσj(m) − x

∥∥∥∥∥∥ .
So (xk) is invariant Cauchy sequence.

Definition 2.5. A Banach space X is said to be invariant compact if every se-
quence in X has an invariant convergent subsequence.

Theorem 2.7. Invariant continuous image of an invariant compact space is in-
variant compact.

Proof. Let X and Y be normed linear spaces, K an invariant compact subspace
of X and let f : X −→ Y be invariant continuous. We have to show that f(K) =
{f(x) : x ∈ K} is also invariant compact.

Let {f(xk)}, be a sequence in f(K). Then (xk) is a sequence in K. Since K
is invariant compact, there is a subsequence (xkn

) which is invariant convergent
to x ∈ X. Observe that {f(xkn

)} is a subsequence of f(xk). Since f is invariant
continuous,

xkn −→ x(Vσ(X)) implies f(xkn) −→ f(x)(Vσ(X)).

Thus, f(K) is invariant compact and the proof is completed.
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