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Abstract. In this paper, we find a necessary and sufficient condition for a non-zero
vector to be a geodesic vector in homogeneous generalized m-Kropina space. Further,
we prove the existence of at least one homogeneous geodesic. However, it is conjectured
that the outcomes and proofs in the case of Finsler geometry are not ideal, since gen-
eral Finsler metrics are non-reversible. In Finsler geometry, the trajectory of unique
homogeneous geodesic should be regarded as two geodesics with initial vectors X and
−X. Hence, we construct an (n + 1)-dimensional and a 4-dimensional space to find
homogeneous geodesics explicitly.
Keywords: generalized m-Kropina space, Finsler geometry, homogeneous geodesic.

1. Introduction

A geodesic can be thought of literally as a curve that reduces the distance be-
tween two places. Homogeneous geodesics have gained attention in both Rieman-
nian and Finsler geometry recently. A geodesic γ(t) : R → M in a Finsler manifold
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(M,F ) is said to be homogeneous geodesic, if there exists one-parameter group of
isometries ϕ : R×M → M such that

γ(t) = ϕ(t, γ(0)), t ∈ R.

Geodesics are treated similar to relative equilibria in mechanics and physics. The
qualitative description of the behavior of the related mechanical system with symme-
tries depends on the description of such relative equilibria. Geodesics have always
been exciting to find and study, and this has been true since geometry’s incep-
tion. Due to the numerous uses of geodesics and homogeneous geodesics in physics
[22, 5, 6, 23] and other mathematics disciplines, there has been an interest in their
study recently.
There is a lot of literature in mechanics devoted to the investigation of relative
equilibria. In [1], author extended Euler’s theory of rigid-motions while studying
left invariant Riemannian metrics on Lie groups. In [20], the author discussed
that in homogeneous space with an invariant metric, geodesic flow can be seen as
framework of Smale’s mechanical system with symmetries. Tóth [26] studied the
paths that were orbits of one-parameter symmetry group G. In fact, he discovered
the conditions for solutions of Euler-Lagrange or Hamiltonian equations to coincide
with the orbit of a one-parameter subgroup of a symmetry group.
Kajzer has studied the existence of homogeneous geodesics in [14]. In this study,
the authors showed that in Lie groups with left invariant metrics, at least one ho-
mogeneous geodesic element can travel through the identity element. Kowalski and
Szenthe [17] also showed that every homogeneous Riemannian manifold has at least
one homogeneous geodesic across each point.
Additionally, Kowalski and Vlášek [18] established a few examples of homogeneous
Riemannian manifolds of any dim n ≥ 4 with precisely one homogeneous geodesic.
Latiffi [21] proposed the term ‘geodesic vector’ in homogeneous Finsler space and
proved that any vector in every connected Lie group with a bi-invariant Finsler
metric is a geodesic vector.
Recently, the existence of homogeneous geodesic for infinite series metric and ex-
ponential metric have been discussed in [15]. Also, some important results re-
lated to homogeneous Finsler spaces have been established in [25]. In homogeneous
Kropina spaces, the existence of homogeneous geodesic through any arbitrary point
have been discussed in [13] and it is also proved that under some conditions result
holds for any (α, β)-homogeneous space. In this paper, homogeneous geodesics of 3-
dimensional non-unimodular real Lie groups equipped with a left invariant Randers
metric of Douglas type are also discussed as an example. In [10], author has showed
the examples of homogeneous Randers manifold admitting just two homogeneous
geodesic. In [2], authors have extended the study of left-invariant (α, β)-metrics on
4-dimensional Lie groups.
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2. Preliminaries

In this section, we discuss basic definitions and notations of Finsler geometry.
For more elaborate concepts of Finsler geometry and homogeneous Finsler geome-
try, refer [3, 4, 7]. Let V be an n-dimensional real vector space endowed with smooth
norm F on V \{0}, which is non-negative i.e., F (u) ≥ 0 ∀ u ∈ V, positively homo-
geneous i.e., F (λu) = λF (u) ∀ λ > 0, and strongly convex i.e., if {u1, u2, ..., un}
be the basis of V such that y = y1u1 + y2u2 + ...+ ynun, then the Hessian matrix

(gij) :=
([

1
2F

2
]
yiyj

)
, is positive definite at every point of V \{0}. The pair (V, F )

is called Minkowski space and F is called Minkowski norm.
Let M be a connected (smooth) manifold. A Finsler metric on M is a function
F : TM → [0,∞) which satisfies:

1. F is smooth on slit tangent bundle TM\{0},

2. The restriction of F to any TxM,x ∈ M is a Minkowski norm.

The space (M,F ) is called Finsler space. Let γ : [0, 1] → M be a C1-curve. Then
Finsler length L(γ) of γ is defined as

L(γ) =
∫ 1

0
F (γ(t), γ

′
(t))dt.

Further, Finsler distance dF (p, q) between two points p, q ∈ M is defined as

dF (p, q) = infγL(γ),

where infimum is taken over all piecewise C1-curves joining p and q.

Definition 2.1. Let F = αϕ(s); s = β/α, where ϕ is a smooth function on an
open interval (−b0, b0), α =

√
aij(x)yiyj is a Riemannian metric, β = bi(x)y

i is a
1-form on an n-dimensional manifold with ||β|| < b0. Then, F is Finsler metric if
and only if following conditions are satisfied:

(2.1) ϕ(s) > 0, ϕ(s)− sϕ
′
(s) + (b2 − s2)ϕ

′′
(s) > 0 ∀ |s| ≤ b < b0.

An (α, β)-metric is said to be singular Finsler metric, if either ϕ(0) is not defined
or ϕ(s) does not satisfy 2.1. In this paper, we study generalized m-Kropina spaces,
which form a special class of (α, β)-metric. Kropina metric is a type of non-regular

(α, β)-metric where ϕ(s) = 1
s , i.e., F = α2

β . The concept is proposed by Russian

physicist V. K. Kropina [19]. Despite having singularities (β = 0), it is useful in
the Lagrangian function’s representation of the general dynamic system. Hence,
due to the physical and applied importance of Kropina metric, we here investigate
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geodesics for generalized m-Kropina metric. Generalized m-Kropina metric is an
important class of (α, β)-metric defined as

F (α, β) =
αm+1(x, y)

βm(x, y)
, (m ̸= 0, 1).

Consider the inner product ⟨, ⟩ on tangent space TxM, x ∈ M defined as

⟨u, v⟩ = aiju
ivj , u, v ∈ TxM,

where aij is a Riemannian metric.
Using the above defined inner product we induce an inner product on the cotangent
space, T ∗

xM, of M at x,
⟨dxi, dxj⟩ = aij .

Using this inner product, a linear isomorphism can be defined between TxM and
T ∗
xM [9]. Hence, 1-form β corresponds to smooth vector field X on M given by

X|x = bi
∂

∂xi
, bi = aijbj ,

which further implies

⟨X|x, y⟩ = ⟨bi ∂

∂xi
, yj

∂

∂xj
⟩ = biyjaij = bjy

j = β(y).

Also, ||β|| = α(X|x) < 1. On the basis of above discussion, w can conclude the
following Lemma:

Lemma 2.1. Let (M,α) be a Riemannian space. Then the generalized m-Kropina

space, (M,F ) where F = αm+1

βm , (m ̸= −1, 0, 1) β = biy
i, a 1-form with ||β|| =

√
bibi,

consists of Riemannian metric α along with a smooth vector field X on M, which
satisfies α(X|x) < 1 ∀ x ∈ M, i.e.,

F (x, y) =
α(x, y)m+1

⟨X|x, y⟩m
,

where ⟨, ⟩ is the inner product on TxM induced by the Riemannian metric α.

Let (M,F ) be a Finsler space. A diffeomorphism of M onto itself is said to be
isometry, if it preserves the Finsler function, i.e., F (ϕ(p), dϕp(X)) = F (p,X) for
any p ∈ M and X ∈ TpM . Let G be a Lie group and M a smooth manifold. If
G has smooth action on M , then G is called Lie transformation group of M . A
connected Finsler space (M,F ) is said to be homogeneous Finsler space, if action
of group of isometries of (M,F ), denoted by I(M,F ) is transitive on M .
Let G ⊂ I(M,F ) be a connected Lie group acting transitively on Finsler space
(M,F ), and at a fixed point p ∈ M, let H be its isotropy group. Then M can be
written as coset space G/H, with a G-invariant Finsler metric F . It is evident to
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see that H is comapct, since action of H leaves invariant unit sphere in TpM .
Hence, we obtain reductive decomposition of g, Lie algebra of G as

g = h+m,

where g and h are Lie algebras of G and H respectively and m ⊂ g is a vector
subspace such that Ad(h)(m) ⊂ m, where Ad denotes Adjoint representation of G.

Remark 2.1. [7] A homogeneous Finsler manifold M = G/H is reductive homogeneous
space.

Next proposition shows that G-invariant Finsler metrics on G/H can be identified
with Minkowski norm F as follows:

Proposition 2.1. [8] Let G/H be a reductive homogeneous manifold satisfying

g = h+m.

Then there exists a one-to-one correspondence between the G-invariant Finsler met-
rics on G/H and the Minkowski norms F on m which satisfy

F (Ad(h)x) = F (x), ∀ h ∈ H,x ∈ m.

A regular smooth curve γ with velocity vector T = γ̇, is said to be Finslerian
geodesic, if it satisfies

DT

(
T

F (T )

)
= 0,

with reference vector T . Here, D is defined from Chern connection, which is torsion
free and almost metric compatible. A geodesic γ(t) passing through origin eH ∈
M = G/H is said to be homogeneous if it is one-parameter subgroup of G, i.e.,
γ(t) = exp(tZ)(eH), t ∈ R and Z is a non zero vector in Lie algbera of G. A
non-zero vector X ∈ g is said to be a geodesic vector, if the curve exp(tX)(eH) is
constant speed geodesic of (M,F ). If all the geodesics of a Riemannian manifold
M are homogeneous, then M is callled g.o.(geodesic orbit) space.
A Finsler space (M,F ) is called a Finsler g.o. space, if every geodesic of (M,F )
is the orbit of a one-parameter subgroup of G = I(M,F ), i.e., if ϕ : R → M is a
geodesic, then there exists a non-zero vector Z ∈ g = Lie(G) and p ∈ M such that
ϕ(t) = exp(tZ).p.
More precisely, a Finsler space (M,F ) is called Finsler g.o.(geodesic orbit) space, if
and only if the projections of all the geodesic vectors cover the set TeH(G/H)−{0}.
A Finsler g.o. space has vanishing S-curvature for Busemann volume form [21, 7].
Further, every Finsler g.o. space is homogeneous [7].
The following result provides criterion to study geodesic vector in Lie algbera level
and hence provide a useful tool to study homogeneous geodesic.
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Lemma 2.2. [21] Suppose (G/H,F ) is a homogeneous Finsler space with a re-
ductive decomposition g = h + m. A non-zero vector Y ∈ g is a geodesic vector if
and only if it satisfies

gYm
(Ym, [Y, Z]m) = 0, ∀Z ∈ g,

where the subscript m denotes the projection of a vector from g to m.

3. Necessary and sufficient condition

In this section, we discuss homogeneous geodesic in homogeneous generalized m-
Kropina space. We provide some necessary and sufficient condition for a non-zero
vector to be geodesic vector in homogeneous generalized m-Kropina space.

Corollary 3.1. Let (G/H,F ) be a homogeneous Finsler space equipped with gen-
eralized m- Kropina metric arising from an invariant Riemannian metric ⟨, ⟩ and
an invariant vector field X̃, such that X = X̃(H). Then necessary and sufficient
condition for a non-zero vector Y ∈ g to be a geodesic vector is
(3.1)
⟨Ym, Ym⟩m

⟨X,Ym⟩2m+1
[(m+ 1)⟨X,Ym⟩⟨Ym, [Y,Z]m⟩ −m⟨Ym, Ym⟩⟨X, [Y, Z]m⟩] = 0, ∀Z ∈ m.

Proof. Using the formula (2.7) for (α, β)-metric from [24], we get the following
corollary directly by taking ϕ(s) = 1

sm .

Further, we use Theorem 2.2 of [24] to get the following remark:

Remark 3.1. Let (G/H,F ) be a homogeneous generalized m-Kropina space with as-
sumptions same as taken in Theorem 3.1. Then the vector X is a geodesic vector of
(G/H, ⟨, ⟩) if and only if it is a geodesic vector of (G/H,F ). In other words, a non zero
vector is a geodesic vector of generalized m-Kropina metric if and only if it is a geodesic
of its base Riemannian metric.

Also, as direct consequence of Corollary 3.1, we can conclude the following corollary:

Corollary 3.2. Let (G/H,F ) be a homogeneous generalized m-Kropina space with
assumptions same as taken in Theorem 3.1. Let Y ∈ g be a non-zero vector such
that ⟨X, [Y, Z]m⟩ = 0 ∀ Z ∈ m. Then Y is a geodesic vector of (G/H, ⟨, ⟩) if and
only if it is a geodesic vector of (G/H,F ).

4. Existence

In this section, we prove the existence of atleast one homogeneous geodesic on
homogeneous generalized m-Kropina space passing through origin.
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Proposition 4.1. Let (G/H,F ) be homogeneous generalized m-Kropina space.
Then there exists atleast one homogeneous geodesic arising from each origin.

Proof. Suppose G ⊂ I(M,F ) be connected Lie group acting transitively on (M,F ).
Let H be isotropy group at {eH} ∈ G/H. Let K be killing form and radK be its
null space.
Firstly, let us suppose radK = m. In [17], it is proved that Lie algebra g has
reductive decomposition m + h such that m-projection [g, g] is a proper subspace
of m. Consider Y ∈ [g, g]m be a non-zero vector which satisfies ⟨Y, Y ⟩ = 1. Let
W = X ∈ [g, g]⊥m. We use Theorem 3.1 to check that W is a geodesic vector. Since,
equation 3.1 with respect to W can be written as:

⟨Wm,Wm⟩m

⟨X,Wm⟩2m+1
[⟨X,Wm⟩⟨(m+ 1)Wm, [W,Z]m⟩ − ⟨Wm,Wm⟩⟨mX, [W,Z]m⟩] = 0,

which implies that
⟨Wm,Wm⟩m

⟨X,Wm⟩2m+1
[⟨X, [W,Z]m⟩] = 0.

This proves the existence of atleast one geodesic through origin.
Secondly, we suppose radK ( m. If radK is a proper subset of m, then from [27],
it is proved that m can be decomposed into eigenspaces as m = V0 + V1 + ...Vr

with respect to K-symmetric endomorphism defined as K(X,Y ) = ⟨θ(X), Y ⟩ which
satisfies V0 = radK0. Consider {f1, f2, f3, ..., fr} be an orthonormal basis of V =
V0 +V1 + ...+Vr and θ be an endomorphism θ(fi) = λifi for i = 1, 2, ..., r. Suppose
that X = X0 +

∑r
i=1 xifi, Y = Y0 +

∑r
i=1 yifi, X0, Y0 ∈ V0, xi, yi ∈ R. Using

Theorem 3.1, Y ∈ g is a geodesic vector if and only if equation 3.1 equals to zero.

Hence, let us consider

[(m+ 1)⟨X,Ym⟩⟨Ym, [Y,Z]m⟩ −m⟨Ym, Ym⟩⟨X, [Y, Z]m⟩]

= [(m+ 1)⟨X0 +
r∑

i=1

xifi, Y0 +
r∑

i=1

yifi⟩⟨Y0 +
r∑

i=1

yifi, [Y, Z]m⟩

−m⟨Y0 +
r∑

i=1

yifi, Y0 +
r∑

i=1

yifi⟩⟨X0 +
r∑

i=1

xifi, [Y, Z]m⟩]

= [(m+ 1)⟨X0 +
r∑

i=1

xifi, Y0 +
r∑

i=1

yifi⟩⟨Y0, [Y, Z]m⟩

−m⟨Y0 +

r∑
i=1

yifi, Y0 +

r∑
i=1

yifi⟩⟨X0, [Y, Z]m⟩]

+ (m+ 1)⟨X0 +
r∑

i=1

xifi, Y0 +
r∑

i=1

yifi⟩K

(
[Y, Z]m,

r∑
i=1

yi
fi
λi

)

−m⟨Y0 +
r∑

i=1

yifi, Y0 +
r∑

i=1

yifiK

(
[Y, Z]m,

r∑
i=1

xifi

)
⟩

(4.1)
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= (m+ 1)

[
⟨X0 +

r∑
i=1

xifi, Y0 +

r∑
i=1

yifi⟩

][
⟨Y0, [Y, Z]m⟩+K

(
[Y,Z]m,

r∑
i=1

yi
fi
λi

)]

−m

[
⟨Y0 +

r∑
i=1

yifi, Y0 +

r∑
i=1

yifi⟩][⟨X0, [Y, Z]m⟩+K

(
[Y,Z]m,

r∑
i=1

xi
fi
λi

)]

= (m+ 1)[⟨X0 +
r∑

i=1

xifi, Y0 +
r∑

i=1

yifi⟩]K(Z, [Y, Y ]m)

−m⟨Y0 +
r∑

i=1

yifi, Y0 +
r∑

i=1

yifi⟩K(Z,X0 +
r∑

i=1

xiλifi, Y0 +
r∑

i=1

yiλifi).

(4.2)

The first term in last resultant of above equation 4.2 vanishes, which on plugging
into equation 3.1, we get

(4.3) m
⟨Y, Y ⟩m+1

⟨X,Y ⟩2m+1

[
K(Z, [x0 +

r∑
i=1

xiλiyi], y0 +

r∑
i=1

yiλifi)

]
.

Above equation vanishes, whenever we have a solution in the form (Y0, y1, ..., yr, t).
It is obvious to check that {Y0 = X0, y1 = t0x1, ..., yr = t0xr, t = t0} is a solution
to satisfy above equation. This completes the proof.

In fact, in [11] author has showed existence of two homogeneous geodesics in any
arbitrary homogeneous Finsler spaces. Hence, in particular, above proposition can
be extended to say that there exists two homogeneous geodesics in this space. With
this motivation in the next section, we construct an (n + 1)-dimensional and 4-
dimensional example and find homogeneous geodesics.

5. Examples of some homogeneous geodesic vectors

In this section, we visualize the homogeneous geodesics in an (n + 1)-dimensional
space and a 4-dimensional space. Let us consider a Lie algebra n with orthonormal
basis B = {e1, e2, ..., en+1} generated by Lie brackets as follows:

[ei, ej ] = 0, ∀i, j ≤ n

[en+1, ei] = aiei + ei+1, ∀i < n

[en+1, en] = anen

for arbitrary non-zero parameters a1, a2, ..., an ∈ R. The family of Lie algebras
(n, ⟨, ⟩) generates an (n-parameter) solvable Lie groups N with a set of invariant
Riemannian metrics. In [18], authors showed that for generic choices of {ai}ni=1 the
corresponding group N acting by left translations is the maximal group of isome-
tries. In [18] authors have assumed that N is diffeomorphic to (n+ 1)-dimensional
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Euclidean space. We use a similar approach as in [10] to solve our further re-
sult. For the sake of simplicity, we shall consider metric F generated by the vector
X = ke1, 0 < k < 1. which are suitable for our purpose.

Example 5.1. Let (G,F ) be an (n+1)-dimensional homogeneous generalizedm-Kropina
space, such that the parameters constructed above satisfies min{ai} > n and left-invariant
metric F is determined by X = ke1 and also ka1 < 1. Then (G,F ) admits exactly two
geodesics whose initial vectors are τ1 = c1en+1 + m

m+1
kF (Ym)e1, and τ2 = −c1en+1 +

m
m+1

kF (Ym)e1.

An arbitrary vector Y ∈ g can be expressed with respect to the basis B = {e1, e2, ..., en+1}
as Y = y1e1 + y2e2 + ...+ yn+1en+1. The Lie brackets can be calculated as follows:

[Y, ei] = yn+1(aiei + ei+1), 1 ≤ i < n,

[Y, en] = yn+1anen,

[Y, en+1] = −y1a1e1 −
n∑

i=2

(yi−1 + yiai)ei.

Next, we plug the vector Z ∈ m in equation 3.1 step by step for all elements of orthonormal
basis B. Using Theorem 3.1 we get the Y ∈ g is geodesic vector, if it satisfies the following
homogeneous system of equations:

(m+ 1)[yn+1(a1y1 + y2)−mF (Ym)ka1] = 0,

(m+ 1)[yn+1(aiyi + yi+1)] = 0, 1 < i < n

(m+ 1)yn+1anyn = 0,

(m+ 1)[−y2
1a1 −

n∑
i=2

(yi−1 + yiai)yi]−mF (Ym)ky1a1 = 0.

In order to solve system of equations, first let us consider the case if yn+1 ̸= 0. Due
to homogeneity of equations, without loss of generality we may assume yn+1 = ± c.
Consequently, from all equations for i = 1, ..., n we immediately get yn = yn−1 = ... =

y2 = 0 and y1 =
(

m
m+1

)
kF (Ym). Hence, we obtain just two geodesics solutions for above

system of equations.
Next, let us consider second case that yn+1 = 0, first n equations are satisfied immediately.
For the last equation, we solve for polynomial p(yi) = 0, where

p(yi) = (m+ 1)y2
1a1 + (m+ 1)

n∑
i=2

yiyi−1 +

n∑
i=2

y2
i ai +

n∑
i=2

y2
i ai +mka1y1F (Ym).

On using the estimates |yiyi+1| < 1 and min ai > n, we get that p(yi) > 0, which implies
above system of equation doesn’t have any other non trivial solution. This completes the
proof.

Example 5.2. Consider a 4-dimensional (R4, F ) equipped withm-Kropina metric, which
can be written as homogeneous space G/H where G is the 5-dimensional group of equiaffine
transformations of a Euclidean space and H is group of rotations around origin. Also g



298 S. Jangir, G. Shanker, J. Kaur and L. Piscoran

has reductive decomposition g = h + m, an orthonormal basis (e1, e2, e3, e4) of m and
generarator Λ of h. Using the multiplication table from [16], we have

[e1, e2] = 0, [e1, e3] = −e1, [e1, e4] = e1,

[e2, e3] = e2, [e2, e4] = e1, [e3, e4] = −2Λ,

[Λ, e1] = −e2, [Λ, e2] = e1, [Λ, e3] = 2e4, [Λ, e4] = −2e3.

Also, we have [g, g] = g. Suppose y ∈ g be geodesic vector,

y = y1e1 + y2e2 + y3e3 + y4e4 + qΛ

Using equation 3.1, we get the following set of equations:

(m+ 1)(x1y1 + x2y2 + x3y3 + x4y4)(y1(y3 − y4)− y2q)

−m(y2
1 + y2

2 + y2
3 + y2

4)(x1(y3 − y4)− x2q) = 0,
(5.1)

(m+ 1)(x1y1 + x2y2 + x3y3 + x4y4)(y1(y3 − y4)− y2q)

−m(y2
1 + y2

2 + y2
3 + y2

4)(x1(q − y4)− x2y3) = 0,
(5.2)

(m+ 1)(x1y1 + x2y2 + x3y3 + x4y4)(−y2
1 + y2

2 + 2qy4)

−m(y2
1 + y2

2 + y2
3 + y2

4)(−x1y1 + x2y2 + 2qx4) = 0,
(5.3)

(m+ 1)(x1y1 + x2y2 + x3y3 + x4y4)(y1(y1 + y2)− 2qy3)

−m(y2
1 + y2

2 + y2
3 + y2

4)(x1(y1 + y2)− 2qx3) = 0.
(5.4)

Using above equations, we also get

(m+ 1)(x1y1 + x2y2 + x3y3 + x4y4)(y1 + y2)(y3 − q)

−m(y2
1 + y2

2 + y2
3 + y2

4)(x1 + x2)(y3 − q) = 0,
(5.5)

(m+ 1)(x1y1 + x2y2 + x3y3 + x4y4)(y2(y1 + y2) + 2q(y4 − y3))

−m(y2
1 + y2

2 + y2
3 + y2

4)(y2(x1 + x2) + 2q(x4 − x3)) = 0.
(5.6)

We consider some assumptions to see geodesic vectors explicitly:
A: X = x3e3
B: X = x4e4
C: X = x3(e3 + e4)
D: X = x1(e1 − e2)
A : For X = x3e3, equation 5.5 gives

(m+ 1)(x3y3)(y1 + y2)(y3 − q) = 0.
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(1) Let us suppose
y1 = −y2, y3 ̸= 0 and
y3 ̸= q. In this case
equation 5.3, implies
2(m+ 1)(x3y3)qy4 = 0,
which again gives two
cases (a) and (b)

(a) q = 0 and y4 ̸= 0, this
implies y1(y3 − y4) = 0. If
y1 = 0, we also have
y2 = 0, which shows
y = y3e3 + y4e4. If
y3 − y4 = 0, implies y =
y1(e1−e2)+y3(e3+e4).

(b) If q ̸= 0 and y4 = 0,
then using equations 5.1
and 5.2, we get
y1(y1 + q) = 0. And again
here, if y1 = 0, y3 ̸= −q
we have y = y3e3 + qΛ,
otherwise for y1 ̸= 0 and
y3 = −q, we have y =
y1(e1−e2)+y3(e3−Λ).

(2) Next, we assume y1 ̸= −y2, y3 ̸= 0, and y3 = q. On plugging these into equation 5.3, we

get y4 =
y2
1−y2

2
2y3

, which gives geodesic vector y = y1e1 + y2e2 + y3e3 +
y2
1−y2

2
2y3

e4 + y3Λ.

(3) At last we suppose
y1 = −y2, y3 ̸= 0 and
y3 = q. On plugging into
(5.3), we get
2(m+ 1)x3q

2y4 = 0. This
takes us to two cases:

(a) If q = 0 and y4 ̸= 0,
this implies y = y4e4 or
y = y1(e1 − e2).

(b) On taking q ̸= 0,
y4 = 0 in (5.1), we get
2qy1 = 0 which vanishes
y1. So the geodesic vector
is y = y3(e3 + Λ).

(4) Next we suppose, y1 ̸= −y2, y3 ̸= q, y3 = 0, from equation 5.4, we have 2mqx3(y
2
1 +

y2
2 + y2

4) = 0. This gives that q vanishes and we get the geodesic vector as y = y1e1 +
y2e2 + y4e4.

Case (B) can be seen similar to the case(A). And it also coincides with the homoge-
neous geodesic in 4-dimensional Randers space example [12].

Case (C): On considering X = x3(e3 + e4), again from 5.5, we get

(m+ 1)x3(y3 + y4)(y1 + y3)(y3 − q) = 0.

This leads to different possiblities: (1) Let us Suppose y1 = −y2, y3 ̸= q, y3 ̸= −y4,

(1) also from equation 5.6,
we have
2q(m+ 1)x3(y

2
3 − y2

4) = 0
which implies two cases,
i.e., either q = 0 or
y3 = y4

(a) If q = 0, and y3 ̸= y4,
from equation (5.1), we
get y1(y3 − y4) = 0,
implies y1 = y2 = 0, which
gives geodesic vector
y = y3e3 + y4e4.

If q ̸= 0, y3 = y4,
equation(5.1), gives
2qy2(m+1)x3(y3+y4) = 0,
which vanishes
y3 = y4 = 0. Hence the
geodesic vector takes the
form
y = y3(e3 + e4) + qΛ.

(2) In this case assume y1 ̸= y2, y3 = q, y3 ̸= y4 using equation 5.6, we have

x3(y3 + y4)[y2(y1 + y2) + 2y3y4 − 2y2
3 ] = 0.

Since, in this case y3+y4 can’t vanish. Hence, we get 2y2
3 −2y3y4+y2(y3+y4) = 0, which

is quadratic in y3. So the roots are y3 =
y4±

√
y2
4+2(y1+y2)y2

2
. So the geodesic vector y is
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written as

y1e1 + y2e2 +
y4 ±

√
y2
4 + 2(y1 + y2)y2

2
(e3 + Λ) + y4e4.

(3) In third case, we assume y1 = −y2, y3 = q, y3 ̸= −y4, from using equation 5.6, we get
2x3y3(y3 + y4)(y3 − y4) = 0, which leads to two cases:

(a) If y3 = 0, the geodesic vector y takes form y = y1(e1 − e2) + y4e4.

(b) If y3 = y4, then y = y1(e1 + e2) + y3(e3 + e4 + Λ).

(4) In this, let us assume
y1 ̸= y2, y3 ̸= q, y3 = y4,
using the above
assumptions in equation
(5.4), we have
−4my23qx3 = 0, which
leads to two cases, i.e.,
either y3 = 0 or q = 0

(a) y3 = 0 implies geodesic
vector takes the form
y = y1e1 + y2e2 + qΛ.

(b) If q = 0, we get y =
y1e1 + y2e2 + y3(e3 − e4).
If both q = y3 = 0, y
reduces to y1e1 + y2e2.

(5) For this case, let us suppose y1 = −y2, y3 = −y4, y3 ̸= q. On plugging into equation
5.3, we get −4mqy2

3x4 = 0, which is similar to the case (4).

(6) For the last case, we take y1 ̸= y2, y3 = q, y3 = −y4. From equation 5.4, we have
−4my3

3x3 = 0, which implies y3 = 0 and this gives geodesic vector is y = y1e1 + y2e2.
For the last assumption X = x3(e3 − e4), we can retrace the steps of above to get the
homogeneous geodesics.
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