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Abstract. The right conoid hypersurfaces in the four-dimensional Euclidean space E4

are introduced. The matrices corresponding to the fundamental form, Gauss map, and
shape operator of these hypersurfaces are calculated. By utilizing the Cayley–Hamilton
theorem, the curvatures of these specific hypersurfaces are determined. Furthermore,
the conditions for minimality are presented. Additionally, the Laplace–Beltrami oper-
ator of this family is computed, and some examples are provided.
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1. Introduction

A ruled surface

r(u, v) = α (v) + uβ (v)

= (0, 0, h (v)) + u (cos f (v) , sin f (v) , 0)

is termed a right conoid in three-dimensional space E3 if it can be generated by the
translation of a straight line that intersects a fixed straight line, while ensuring that
the lines maintain a perpendicular relationship throughout the generation process.
By considering the xy-plane as the perpendicular plane and selecting the z-axis as
the reference line, the parametric Eq. for the right conoid is given by

r(u, v) =

 x(u, v)
y(u, v)
z(u, v)

 =

 u cos f (v)
u sin f (v)

h (v)

 .
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Helicoid, Whitney umbrella, Wallis’s conical edge, Plücker’s conoid, hyperbolic
paraboloid are each examples of a right conoid surface. See Berger and Gostiaux
[2], Do Carmo [4], Gray [5], Kreyszig [6] for details.

The aim of this study is to investigate the properties of the right conoid hyper-
surfaces in the four-dimensional Euclidean space E4. Specifically, we aim to compute
the matrices associated with the fundamental form, Gauss map, and shape operator
of these hypersurfaces. By employing the Cayley–Hamilton theorem, our objective
is to determine the curvatures of these particular hypersurfaces. Additionally, we
aim to establish the conditions for minimality within this context. Moreover, we
seek to unveil the connection the Laplace–Beltrami operator of that kind hypersur-
faces.

In Section 2., a detailed explanation of the fundamental principles and concepts
underlying four-dimensional Euclidean geometry is provided.

Section 3. is dedicated to the presentation of the curvature formulas applicable
to hypersurfaces in E4.

In Section 4., a comprehensive definition of right conoid hypersurfaces is offered,
emphasizing their distinctive properties and characteristics.

In Section 5., the focus shifts to the discussion of the Laplace–Beltrami oper-
ator for a smooth function in E4, and the application of the previously examined
hypersurfaces in its computation.

In the last section, we present a conlusion.

2. Preliminaries

In this paper, we use the following notations, formulas, Eqs., etc.

Let M be an oriented hypersurface in En+1 with its shape operator S, position
vector x. Consider a local orthonormal frame field {e1, e2, . . . , en} consisting of prin-
cipal directions of M coinciding with the principal curvature ki for i = 1, 2, . . . , n.
Let the dual basis of this frame field be {f1, f2, . . . , fn}.

We let sj = σj(k1, k2, . . . , kn), where σj denotes the j-th elementary symmetric
function defined by

σj(a1, a2, . . . , an) =
∑

1≤i1<i2<...<ij≤n

ai1ai2 . . . aij .

We consider the notation

rji = σj(k1, k2, . . . , ki−1, ki+1, ki+2, . . . , kn).

According to the given definition, we have r0i = 1 and sn+1 = sn+2 = · · · = 0. The
function sk is referred to as the k-th mean curvature of the oriented hypersurfaceM .
The mean curvature H = 1

ns1 is also defined, and the Gauss–Kronecker curvature
of M is K = sn. If sj ≡ 0, the hypersurface M is known as j-minimal.
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In Euclidean (n + 1)-space, getting the curvature formulas Ki, i = 0, 1, . . . , n,
(See [1], [3], and [7] for details.), we have the following characteristic polynomial
Eq. PS(λ) = 0 of S:

(2.1)

n∑
k=0

(−1)
k
skλ

n−k = det(S − λIn) = 0.

Here, In indicates the identity matrix. Hence, we reveal the curvature formulas as(
n
i

)
Ki = si.

In this paper, we have identified a vector with its transpose. Let x = x(u, v, w)
be an immersion from M3 ⊂ E3 to E4.

Definition 2.1. An inner product of two vectors φ1 = (φ1
1, φ

1
2, φ

1
3, φ

1
4), φ2 =

(φ2
1, φ

2
2, φ

2
3, φ

2
4) of E4 is determined by〈

φ1, φ2
〉
= φ1

1φ
2
2 + φ1

2φ
2
2 + φ1

3φ
2
3 + φ1

4φ
2
4.

Definition 2.2. A triple vector product of φ1 = (φ1
1, φ

1
2, φ

1
3, φ

1
4), φ

2 = (φ2
1, φ

2
2, φ

2
3, φ

2
4),

φ3 = (φ3
1, φ

3
2, φ

3
3, φ

3
4) in E4 is defined by

φ1 × φ2 × φ3 = det


e1 e2 e3 e4
φ1
1 φ1

2 φ1
3 φ1

4

φ2
1 φ2

2 φ2
3 φ2

4

φ3
1 φ3

2 φ3
3 φ3

4

 .

Definition 2.3. The matrix (gij)
−1·(hij) determines the shape operator matrix

S of hypersurface x in Euclidean 4-space E4, where, (gij)3×3 and (hij)3×3 describe
the first and the second fundamental form matrices, respectively, and gij = ⟨xi, xj⟩ ,
hij = ⟨xij ,G⟩ , i, j = 1, 2, 3, xu = ∂x

∂u when i = 1, xuv = ∂2x
∂u∂v when i = 1 and j = 2,

etc., ek denotes the natural base elements of E4, and

(2.2) G =
xu × xv × xw

∥xu × xv × xw∥
determines the Gauss map of the hypersurface x.

3. Curvatures in Four-Space

In this section, we reveal the curvature formulas of any hypersurface x = x(u, v, w)
in E4.

Theorem 3.1. A hypersurface x in E4 has the following curvature formulas, K0 =
1 by definition,

(3.1) 3K1 =
c2
c3
, 3K2 = − c1

c3
, K3 =

c0
c3
,

where c3λ
3+c2λ

2+c1λ+c0 = 0 describes the characteristic polynomial Eq. PS(λ) =
0 of the shape operator matrix S, c3 = det (gij), c0 = det (hij), and (gij)3×3,
(hij)3×3 denote the first, and the second fundamental form matrices, respectively.
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Proof. The matrix (gij)
−1·(hij) describes the shape operator matrix S of hyper-

surface x in Euclidean 4-space E4. We reveal the characteristic polynomial Eq.
det(S − λI3) = 0 of S. Thus, we obtain the curvatures

K0 = 1,

3K1 = k1 + k2 + k3 = − c2
c3
,

3K2 = k1k2 + k1k3 + k2k3 =
c1
c3
,

K3 = k1k2k3 = − c0
c3
,

Definition 3.1. A hypersurface x is called j-minimal if Kj = 0, where j = 1, 2, 3.

Theorem 3.2. A hypersurface x = x(u, v, w) in E4 has the following relation

K0IV− 3K1III+ 3K2II−K3I = O3,

where I, II, III, IV determines the fundamental form matrices, O3 represents the zero
matrix having order 3 of the hypersurface.

Proof. Regarding n = 3 in (2.1), it runs.

4. Right Conoid Hypersurfaces

In this section, we define the right conoid hypersurface (RCH ), then find its
differential geometric properties in Euclidean 4-space E4.

In E4, we consider a ruled hypersurface

x(u, v, w) = α (v, w) + uβ (v, w)

= (0, 0, 0, h (v, w))

+u (cos f (v) cos g (w) , sin f (v) cos g (w) , sin g (w) , 0) .

Then, we present the following.

Definition 4.1. A right conoid hypersurface is an immersion x : M3 ⊂ E3 −→
E4 with the reference line x4, parametrized by

(4.1) x(u, v, w) =


x1(u, v, w)
x2(u, v, w)
x3(u, v, w)
x4(u, v, w)

 =


u cos f (v) cos g (w)
u sin f (v) cos g (w)

u sin g (w)
h (v, w)

 .

Here, u ∈ R−{0}, f = f (v) , g = g (w) , h = h (v, w) denote the differentiable
functions, and 0 ≤ f, g < 2π.



Right Conoid Hypersurfaces in Four-Space 821

Taking the first derivatives of RCH determined by Eq. (4.1) with respect to
u, v, w, respectively, we obtain the first fundamental form matrix

(4.2) (gij) =

 1 0 0
0 u2f2

v cos2 g (w) + h2
v hvhw

0 hvhw u2g2w + h2
w

 ,

and fv = ∂f
∂v , f

2
v = ∂2f

∂v2 , etc.. Hence, g = det (gij) = u2W, where

W = f2
v

(
u2g2w + h2

w

)
cos2 g (w) + h2

vg
2
w.

Using the Gauss map formula (2.2) , we obtain the following Gauss map of the RCH
determined by Eq. (4.1):

(4.3) G =
1

W1/2


−fvhw cos f (v) sin g (w) cos g (w)− hvgw sin f (v)
−fvhw sin f (v) sin g (w) cos g (w) + hvgw cos f (v)

fvhw cos2 g (w)
−ufvgw cos g (w)

 .

By taking the second derivatives w.r.t. u, v, w, of RCH described by Eq. (4.1) , and
by using the Gauss map given by Eq. (4.3), we find the second fundamental form
matrix

h11 = 0, h12 =
fvgwhv cos g

W
, h13 =

fvgwhw cos g

W
,

h21 =
fvgwhv cos g

W
,

h22 =
u
(
f3
vhw sin g cos g + gw (hvfvv − fvhvv)

)
cos g

W
,(4.4)

h23 = −ufvgw (hvgw sin g + hvw cos g)

W
, h31 =

fvgwhw cos g

W
,

h32 = −ufvgw (hvgw sin g + hvw cos g)

W
,

h33 = −ufv (hwgww − gwhww) cos g

W
,

and fuu = ∂2f
∂u2 , fuv = ∂2f

∂u∂v , etc.. By using (4.2) and (4.4), we compute the following
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shape operator matrix S of (4.1). S = (sij)3×3 has the following components

s11 = 0,

s12 =
hvgwfv cos g

W
,

s13 =
hwgwfv cos g

W
,

s21 =
hvg

3
wfv cos g

W2
,

s22 =
1

uW2
[hwfv

(
g2wh

2
v + f2

v

(
h2
w + u2g2w

)
cos2 g

)
sin g

+gw
(
fvhvhwhvw +

(
h2
w + u2g2w

)
(hvfvv − fvhvv) + u2g2whvfvv

)
cos g],

s23 =
fv

uW2
[
(
−gwhw (hwhvw + hvhww)− u2g3whvw + hvh

2
wgww

)
cos g

−hvg
2
w

(
h2
w + u2g2w

)
sin g],

s31 =
1

W2
hwgwf

3
v cos3 g,

s32 =
1

uW2
[−u2f3

v gwhvw cos3 g

−hvgw (fvhvhvw − fvhwhvv + hvhwfvv) cos g

−hvfv
(
g2wh

2
v + f2

v

(
u2g2w + h2

w

)
cos2 g

)
sin g],

s33 =
fv

uW2
[u2f2

v (gwhww − hwgww) cos
3 g

+hv (gw (hwhvw + hvhww)− hvhwgww) cos g + g2wh
2
vhw sin g].

Finally, using (3.1), with (4.2), (4.4), respectively, we find the curvatures of the
RCH defined by Eq. (4.1) as follows.

Theorem 4.1. Let x be a RCH determined by Eq. (4.1) in E4. x contains the
following curvatures, K0 = 1, by definition,

K1 = − 1

3uW2
[u2f3

v (gwhww − hwgww) cos
3 g

+2fvg
2
wh

2
vhw sin g + f3

vhw

(
h2
w + u2g2w

)
sin g cos2 g

+(gwfv
(
2hvhwhvw + h2

vhww − hvv

(
h2
w + u2g2w

))
+hv

(
gwfvv

(
h2
w + 2u2g2w

)
− fvhvhwgww

)
) cos g],
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K2 = − fv
3W4

[f5
v g

2
wh

2
w

(
h2
w + u2g2w

)
cos6 g

−hwf
5
v

(
h2
w + u2g2w

)
(gwhww − hwgww) sin g cos

5 g

+f3
v g

2
whv

(
2gw

(
h2
w + u2g2w

)
hvw + hvhw (hwgww − gwhww)

)
sin g cos3 g

+f2
v gw(gwfvh

2
vw

(
h2
w + u2g2w

)
+ fvg

3
wh

2
v

(
2h2

w + u2g2w
)

−fvhwhvvgww

(
h2
w + u2g2w

)
+gwhww

(
fvhvv

(
h2
w + u2g2w

)
− hvfvv

(
h2
w + 2u2g2w

))
+hvhwfvvgww

(
h2
w + 2u2g2w

)
) cos4 g + h2

vg
4
wf

3
v

(
h2
w + u2g2w

)
sin2 g cos2 g

+h2
vg

3
w(fvgwh

2
vw − gwhwhvwfvv + fvg

3
wh

2
v + fvgwhvvhww

−fvhwgwwhvv − 2gwhvfvvhww + 2hvhwfvvgww) cos
2 g + fvg

6
wh

4
v sin

2 g

+h3
vg

5
w (2fvhvw − hwfvv) sin g cos g],

K3 =
f2
v g

2
w cos2 g

uW5
[h3

wf
5
v

(
h2
w + u2g2w

)
sin g cos4 g

+f2
v (fv

(
h2
w + u2g2w

) (
2gwhvhwhvw + gwh

2
vhww − gwh

2
whvv − h2

vhwgww

)
+h2

whvgwfvv
(
h2
w + 2u2g2w

)
) cos3 g

+hwh
2
vg

2
wf

3
v

(
3h2

w + 2u2g2w
)
sin g cos2 g

+h2
vg

2
w(2fvgwhvhwhvw + fvgwh

2
vhww − fvgwh

2
whvv

−fvh
2
vhwgww + gwhvh

2
wfvv) cos g + 2fvg

4
wh

4
vhw sin g].

Here, K1 represents the mean curvature, K3 denotes the Gauss–Kronecker curva-
ture.

Proof. By using the Cayley–Hamilton theorem, we reveal the following character-
istic polynomial Eq. PS(λ) = 0 of RCH defined by Eq. (4.1):

K0λ
3 − 3K1λ

2 + 3K2λ−K3 = 0,

where

K0 = 1,

3K1 = s22 + s33,

3K2 = −s12s21 − s13s31 + s22s33 − s23s32,

K3 = −s12s21s33 + s12s31s23 + s32 (s21s13 + s22s23)− s22 (s13s31 + s23s32) .

The curvatures Ki of x are obtained by the above Eqs..

Theorem 4.2. Let x be a RCH described by Eq. (4.1) in E4. x has the following
principal curvatures

k1 =
s12s21s33 − s12s31s23 − s21s13s32 + s13s22s31

s12s21 + s13s31
= k2,

k3 = 0.
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Proof. By using Eq. det(S − kI3) = 0, it is clear.

For the sake of brevity, we use the following notations

Γ = −gwhvΨfvv + fvh
2
vhwgww + gwfvΦhvv −Θ,

Ω = gwhww − hwgww,

Φ = h2
w + u2g2w,

Ψ = h2
w + 2u2g2w,

Θ = fvgwhv (2hwhvw + hvhww) .

Corollary 4.1. Let x be a RCH defined by Eq. (4.1) in E4. x is 1-minimal iff the
following partial differential Eq. appears

u2f3
vΩcos3 g + f3

vhwΦsin g cos2 g + 2fvg
2
wh

2
vhw sin g

+(Θ + hv (gwfvvΨ− fvhvhwgww)− fvgwhvvΦ) cos g = 0,

where u,W ≠ 0.

Corollary 4.2. Let x be a RCH determined by Eq. (4.1) in E5
2. x is 2-minimal iff

the following partial differential Eq. occurs,

f5
v g

2
wh

2
wΦcos6 g − f5

vhwΦΩsin g cos5 g
+f3

v g
2
whv (2gwΦhvw − hvhwΩ) sin g cos

3 g
+f2

v gw(fvgwh
2
vwΦ+ g3wfvh

2
v

(
2h2

w + u2g2w
)
+ hwgww (hvfvvΨ− fvhvvΦ)

+gwhww (−hvfvvΨ+ fvhvvΦ)) cos
4 g + f3

v g
4
wh

2
vΦsin2 g cos2 g

+h2
vg

3
w(gwfv

(
g2wh

2
v + h2

vw

)
+ (1− 2hvfvv) Ω− gwhwhvwfvv) cos

2 g
+fvg

6
wh

4
v sin

2 g + h3
vg

5
w (2fvhvw − hwfvv) sin g cos g = 0,

where fv,W ̸= 0.

Corollary 4.3. Let x be a HRF given by Eq. (4.1) in E5
2. x is 3-minimal iff the

following partial differential Eq. holds

h3
wf

5
vΨsin g cos4 g

+f2
v (gwhvh

2
wfvvΨ+ fvΦ

(
gwhw (2hvhvw − hwhvv) + h2

vΩ
)
) cos3 g

+f3
v g

2
wh

2
vhw

(
3h2

w + 2u2g2w
)
sin g cos2 g

+h2
vg

2
w(2fvgwhvhwhvw + fvh

2
vΩ+ h2

wgw (hvfvv − fvhvv)) cos g
+2fvg

4
wh

4
vhw sin g = 0,

where fv, gw, cos g, u,W ≠ 0.

Note that the solutions for h in Corollary 4.1, Corollary 4.2, and Corollary 4.3
are open problems.



Right Conoid Hypersurfaces in Four-Space 825

5. Right Conoid Hypersurfaces with ∆x = Qx in E4

In this section, our focus is on the Laplace–Beltrami operator of a smooth func-
tion in E4. We will proceed to compute it utilizing the RCH defined by Eq. (4.1).

Definition 5.1. The Laplace–Beltrami operator of a smooth function ϕ = ϕ(x1, x2, x3) |D
(D ⊂ R3) of class C3 depends on the first fundamental form (gij) of a hypersurface
x, is defined by

(5.1) ∆ϕ =
1

g1/2

4∑
i,j=1

∂

∂xi

(
g1/2gij

∂ϕ

∂xj

)
,

where
(
gij

)
= (gkl)

−1
and g = det (gij) .

Therefore, we give the following.

Theorem 5.1. The Laplace–Beltrami operator of the RCH x denoted by Eq. (4.1)
is given by ∆x = 3K1G, where K1 describes the mean curvature, G represents the
Gauss map of x.

Proof. The Laplace–Beltrami operator of the RCH given by Eq. (4.1) is determined
by

∆x =
1

g1/2

[
∂

∂u

(
g1/2g11

∂x

∂u

)
+

∂

∂v

(
g1/2g22

∂x

∂v

)
+

∂

∂v

(
g1/2g23

∂x

∂w

)
+

∂

∂w

(
g1/2g32

∂x

∂v

)
+

∂

∂w

(
g1/2g33

∂x

∂w

)]
,(5.2)

where

g11 = 1, g12 = 0, g13 = 0,(5.3)

g21 = 0, g22 =
u2g2w + h2

w

g
, g23 = −hvhw

g
,

g31 = 0, g32 = −hvhw

g
, g33 =

u2f2
v cos2 g + h2

v

g
,

and g = u2
(
f2
v

(
u2g2w + h2

w

)
cos2 g (w) + h2

vg
2
w

)
. By taking the derivatives of the

functions determined by Eqs. (5.3) in (5.2), w.r.t. u, v, w, resp., we obtain ∆x =
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(∆x1,∆x2,∆x3,∆x4) with components

∆x1 = − 1

uW2
[−u2f4

vhwΩcos f sin g cos4 g − f4
vh

2
wΦcos f sin2 g cos3 g

−u2f3
v gwhvΩsin f cos3 g − 2f2

v g
2
wh

2
vh

2
w cos f cos g sin2 g

−f3
v gwhvhwΦsin f sin g cos2 g + fvhwΓ cos f cos2 g sin g

−2fvg
3
wh

3
vhw sin f sin g + hvgwΓ sin f cos g],

∆x2 = − 1

uW2
[−u2f4

vhwΩsin f sin g cos4 g − h2
wf

4
vΦsin f sin2 g cos3 g

+u2f3
v gwhvΩcos f cos3 g + fvhwΓ cos2 g sin f sin g

+f3
v gwhvhwΦcos f cos2 g sin g − 2f2

v g
2
wh

2
vh

2
w sin f cos g sin2 g

−hvgwΓ cos f cos g + 2fvg
3
wh

3
vhw cos f sin g],

∆x3 = − 1

uW2
[fvhw(u

2f3
vΩcos5 g + f3

vhwΦcos4 g sin g − Γ cos3 g

+2fvg
2
wh

2
vhw cos2 g sin g)],

∆x4 = − 1

uW2
[ufvgw(−u2f3

vΩcos4 g − f3
vhwΦcos3 g sin g

+Γcos2 g − 2fvg
2
wh

2
vhw cos g sin g)].

Definition 5.2. The hypersurface x is called harmonic if each componets of ∆x is
zero.

Example 5.1. Substituting f (v) = v, g (w) = w, h (v, w) = w on a RCH defined by Eq.
(4.1) in E4, we have

(5.4) G =
1

(u2 + 1)1/2
(− cos v sinw,− sin v sinw, cosw,−u) ,

S =


0 0 1

(u2+1)1/2

0 tanw

u(u2+1)1/2
0

1

(u2+1)3/2
0 0

 ,

the principal curvatures are given by k1 = 1
u2+1

= −k2, k3 = tanw

u(u2+1)1/2
, and the curva-

tures are determined by

K1 =
tanw

3u (u2 + 1)3/2
,

K2 = − 1

3 (u2 + 1)2
,

K3 = − tanw

u (u2 + 1)5/2
.
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Then,

∆x =
tanw

u (u2 + 1)2
(− cos v sinw,− sin v sinw, cosw,−u) .

Finally, the hypersurface is non-minimal and non-harmonic.

Example 5.2. By taking f (v) = v, g (w) = w, h (v, w) = v on a RCH determined by
Eq. (4.1) in E4, the Gauss map is determined by

G =
1

(u2 cos2 w + 1)1/2
(− sin v, cos v, 0,−u cosw) .

Then, the shape operator matrix is given by

S =


0 cosw

(u2 cos2 w+1)1/2
0

cosw

(u2 cos2 w+1)3/2
0 − u sinw

(u2 cos2 w+1)3/2

0 sinw

u(u2 cos2 w+1)1/2
0

 .

The principal curvatures are determined by k1 = cos1/2(2w)

u2 cos2 w+1
= −k2, k3 = 0. The curvatures

are described by

K1 = 0,

K2 = − cos 2w

3 (u2 cos2 w + 1)2
,

K3 = 0.

Therefore, ∆x = (0, 0, 0, 0) . That is, the hypersurface is 1-minimal, 3-minimal, and har-
monic.

6. Conclusion

This research has focused on the study of right conoid hypersurfaces in the four-
dimensional Euclidean space E4. The main objective was to analyze and understand
the geometric properties of these hypersurfaces.

We computed the matrices associated with the fundamental form, Gauss map,
and shape operator of the right conoid hypersurfaces. These matrices provide crucial
information about the local geometry of the surfaces, including their curvatures
and tangent spaces. By employing the Cayley–Hamilton theorem, the curvatures of
these specific hypersurfaces were determined. This theorem allowed for an effective
computation of the curvatures by expressing the characteristic polynomial of the
matrices in terms of the matrices themselves. Moreover, the research presented
the conditions for minimality in the context of right conoid hypersurfaces. These
conditions define when a hypersurface can be considered minimal within this specific
family. Additionally, the research explored the Laplace–Beltrami operator of the
right conoid hypersurfaces.

This research contributes to the understanding of right conoid hypersurfaces in
E4, providing valuable insights into their geometric properties, curvatures, mini-
mality conditions, and their relation to the Laplace–Beltrami operator.
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