GENERATORS FOR THE ELLIPTIC CURVE $E_{(p, q)}: y^{2}=x^{3}-p^{2} x+q^{2}$

Mehrdad Khazali ${ }^{1}$, Hassan Daghigh ${ }^{2}$ and Amir Alidadi ${ }^{1}$
${ }^{1}$ Department of Mathematics, Higher Educational Complex of Bam, Iran
${ }^{2}$ Faculty of Mathematical Sciences, University of Kashan, Iran

Abstract

Let $\left\{E_{(p, q)}\right\}$ denote a family of elliptic curves over \mathbb{Q} as defined by the Weierstrass equation $E_{(p, q)}: y^{2}=x^{3}-p^{2} x+q^{2}$ where p and q are both prime numbers greater than 5 . As evidence that this has two independent points, we already showed that at least the rank of $\left\{E_{(p, q)}\right\}$ is two. In this study, we show that the two independent points are part of a \mathbb{Z}-basis for the quotient of $E_{(p, q)}(\mathbb{Q})$ by its torsion subgroup. Keywords: Independent points, Rank of an elliptic curve, Canonical Height.

1. Introduction

Let $\left\{E_{(1, m)}\right\}$ be a family of elliptic curves over \mathbb{Q} as determined by the Weierstrass equation $E_{(1, m)}: y^{2}=x^{3}-x+m^{2}$ where m is an integer number greater than 1. Brown and Myers in [2] discovered that this family included two independent points. Fujita and Nara in [3] proved that the two independent points could be extended to form the basis for this family.

Let $\left\{E_{(n, 1)}\right\}$ be a family of elliptic curves over \mathbb{Q} as defined by the Weierstrass equation $E_{(n, 1)}: y^{2}=x^{3}-n^{2} x+1$ where n is an integer number greater than 1 . In [1], Antoniewicz provided evidence that this family contained two independent points. Fujita and Nara in [3] showed that the two independent points could be extended to form the basis for this family.

The family of elliptic curves over \mathbb{Q}, as described by the Weierstrass equation $E_{(p, q)}: y^{2}=x^{3}-p^{2} x+q^{2}$, where p and q are both prime numbers greater than 5 ,
Received August 12, 2023, revised: October 25, 2023, accepted: October 25, 2023
Communicated by Mojtaba Bahramian Mail, Amirhossein Nokhodkar Mail and Predrag Stanimirović
Corresponding Author: Mehrdad Khazali. E-mail addresses: mehrdad@bam.ac.ir (M. Khazali), hassan@kashanu.ac.ir (H. Daghigh), alidadi@bam.ac.ir (A. Alidadi)
2010 Mathematics Subject Classification. Primary 11G05; Secondary 14G05
is represented by the $\left\{E_{(p, q)}\right\}$. We recently proved that the points $P_{1}=(0, q)$ and $P_{2}=(-p, q)$ are independent points. In this essay, we describe how the two points P_{1} and P_{2} might be extended and expanded to serve as the basis for this family under particular circumstances. Theorem 1.1 demonstrates the most potent single assertion.

Theorem 1.1. [Main Theorem]. Let $\left\{E_{(p, q)}\right\}$ denote a family of elliptic curves over \mathbb{Q} as defined by the Weierstrass equation $E_{(p, q)}: y^{2}=x^{3}-p^{2} x+q^{2}$ where p and q are both prime numbers greater than 5. If $p>2 \sqrt[4]{2} q$, then $P_{1}=(0, q)$ and $P_{2}=(-p, q)$ are part of a \mathbb{Z}-basis for the quotient of $E_{(p, q)}(\mathbb{Q})$ by its torsion subgroup.

2. Upper and Lower bound

We continue exploring the idea of canonical height in this section because it is crucial for elliptic curve arithmetic. Point P's canonical height, expressed as

$$
\begin{array}{r}
\hat{h}: E(\mathbb{Q}) \longrightarrow[0, \infty) \\
P \longmapsto \begin{cases}\lim _{n \rightarrow \infty} \frac{h\left(2^{n} P\right)}{4^{n}} & P \neq \mathcal{O} \\
0 & P=\mathcal{O}\end{cases}
\end{array}
$$

dose is not suitable for computation. The alternative definition of canonical height offered here with [6] is Tate's height. Therefore, we have

$$
\hat{h}(P)=\hat{\lambda}_{\infty}(P)+\sum_{r \mid \Delta} \hat{\lambda}_{r}(P)
$$

In fact, the canonical height is the sum of the archimedean local height and the local height, assuming that r is a prime number such that $r \mid \Delta$. We also note that the discriminant of $E_{(p, q)}$ is $\Delta=16\left(4 p^{6}-27 q^{4}\right)=16 \Delta^{\prime}$. We have previously shown that 3 and $5 \nmid \Delta^{\prime}$. In this article, Δ^{\prime} is assumed to be square-free. At the moment, we claim that the equation $y^{2}=x^{3}-p^{2} x+q^{2}$ is the global minimum.

Proposition 2.1. The Weierstrass equation $y^{2}=x^{3}-p^{2} x+q^{2}$ is the global minimum.

Proof. In view of Lemma 3.1 of [3].
Now, we compute $c_{4}=48 p^{2}, c_{6}=-864 q^{2}, b_{2}=0, b_{4}=-2 p^{2}, b_{6}=4 q^{2}$ and $b_{8}=-p^{4}$. The upper and lower bounds of the canonical heights for P_{1} and P_{2} are established by the following theorems:

Theorem 2.1. Let $\left\{E_{(p, q)}\right\}$ represent a family of elliptic curves over \mathbb{Q} as defined by the Weierstrass equation $E_{(p, q)}: y^{2}=x^{3}-p^{2} x+q^{2}$, where p and q are both prime

$$
\text { Generators for the Elliptic Curve } E_{(p, q)}: y^{2}=x^{3}-p^{2} x+q^{2}
$$

numbers greater than 5. we consider $P_{1}=(0, q) \in E_{(p, q)}(\mathbb{Q})$ and $P_{2}=(-p, q) \in$ $E_{(p, q)}(\mathbb{Q})$. If $p>2 \sqrt[4]{2} q$, then

$$
\hat{h}\left(P_{1}\right) \leqslant \frac{1}{2} \log (p)+\frac{1}{24} \log \left(2^{11} p^{4}\right), \quad \hat{h}\left(P_{2}\right) \leqslant \frac{1}{2} \log (p)+\frac{1}{6} \log \left(2^{11} p^{4}\right) .
$$

Proof. According to (4.1) of [6], we have

$$
H=\operatorname{Max}\left\{4,2 p^{2}, 8 q^{2}, p^{4}\right\}
$$

The theorem's assumption leads to the conclusion that $H=p^{4}$. To compute the upper bound for canonical height for point P_{1} based on Theorem (2.2) of [6], we must apply Equation 2.1.

$$
\begin{equation*}
\hat{\lambda}_{\infty}(P)=\frac{1}{8} \log \left(\left|\left(x^{2}+p^{2}\right)^{2}-8 q^{2} x\right|\right)+\frac{1}{8} \sum_{n=1}^{\infty} 4^{-n} \log \left(\left|z\left(2^{n} P\right)\right|\right) \tag{2.1}
\end{equation*}
$$

Hence, we have

$$
\hat{\lambda}_{\infty}\left(P_{1}\right) \leqslant \frac{1}{2} \log (p)+\frac{1}{24} \log \left(2^{11} p^{4}\right)=U B 1,
$$

and so for point P_{2}. According to Theorem (2.2) of [6], we must apply Equation 2.2.

$$
\begin{equation*}
\hat{\lambda}_{\infty}(P)=\frac{1}{2} \log (|x|)+\frac{1}{8} \sum_{n=0}^{\infty} 4^{-n} \log \left(\left|z\left(2^{n} P\right)\right|\right) \tag{2.2}
\end{equation*}
$$

Hence, we have

$$
\hat{\lambda}_{\infty}\left(P_{2}\right) \leqslant \frac{1}{2} \log (p)+\frac{1}{6} \log \left(2^{11} p^{4}\right)=U B 2
$$

Theorem 2.2. Let $\left\{E_{(p, q)}\right\}$ represent a family of elliptic curves over \mathbb{Q} as defined by the Weierstrass equation $E_{(p, q)}: y^{2}=x^{3}-p^{2} x+q^{2}$ where p and q are both prime numbers greater than 5. Let $P \in E_{(p, q)}(\mathbb{Q})$ be a rational point on $E_{(p, q)}$. If $p>2 \sqrt[4]{2} q$, then

$$
\hat{h}(P)>\frac{1}{8} \log \left(\frac{p^{4}}{2}\right)-\frac{1}{3} \log (2)=L B .
$$

Proof. We have two scenarios for computing the local height based on Proposition 2.1 and Theorem [6]. The condition $\lambda_{2}(P)=0$ occurs if P reduces to a nonsingular point in module 2. Otherwise, P becomes a singular point modulo 2. According to (c) of Theorem (5.2) of [6], we have $\lambda_{2}(P)=-\frac{1}{3} \log (2)$. Next, we show that

$$
\hat{\lambda}_{\infty}(P) \geqslant \frac{1}{8} \log \left(\left|\left(x^{2}+p^{2}\right)^{2}-8 q^{2} x\right|\right) \geqslant \frac{1}{8} \log \left(\left|p^{4}-16 q^{4}\right|\right)>\frac{1}{8} \log \left(\frac{p^{4}}{2}\right)
$$

therefore

$$
\hat{h}(P)>\frac{1}{8} \log \left(\frac{p^{4}}{2}\right)-\frac{1}{3} \log (2)
$$

3. Proof of Theorem 1.1

An important theorem applied to prove Theorem 3.1 is Theorem (3.1) of [5].
Theorem 3.1. Let E be an elliptic curve with a rank of $r \geqslant 2$ over \mathbb{Q}. Let P_{1}^{\prime} and P_{2}^{\prime} be independent points in the $E(\mathbb{Q})$ modulo $E(\mathbb{Q})_{\text {tors }}$. Choose a basis $\left\{Q_{1}, Q_{2}, \ldots, Q_{r}\right\}$ for $E(\mathbb{Q})$ modulo $E(\mathbb{Q})_{\text {tors }}$ according to the condition $P_{1}^{\prime}, P_{2}^{\prime} \in$ $\left\langle Q_{1}\right\rangle+\left\langle Q_{2}\right\rangle$. Assume that $E(\mathbb{Q})$ contains no infinite-order point Q with $\hat{h}(Q) \leqslant \lambda$ where λ is a positive real number. Then, index v of the span of P_{1}^{\prime} and P_{2}^{\prime} in $\left\langle Q_{1}\right\rangle+\left\langle Q_{2}\right\rangle$ satisfies

$$
v \leqslant \frac{2}{\sqrt{3}} \frac{\sqrt{R\left(P_{1}^{\prime}, P_{2}^{\prime}\right)}}{\lambda}
$$

where

$$
R\left(P_{1}^{\prime}, P_{2}^{\prime}\right)=\hat{h}\left(P_{1}^{\prime}\right) \hat{h}\left(P_{2}^{\prime}\right)-\frac{1}{4}\left(\hat{h}\left(P_{1}^{\prime}+P_{2}^{\prime}\right)-\hat{h}\left(P_{1}^{\prime}\right)-\hat{h}\left(P_{2}^{\prime}\right)\right)^{2}<\hat{h}\left(P_{1}^{\prime}\right) \hat{h}\left(P_{2}^{\prime}\right)
$$

thus

$$
v \leqslant \frac{2}{\sqrt{3}} \frac{\sqrt{\hat{h}\left(P_{1}^{\prime}\right) \hat{h}\left(P_{2}^{\prime}\right)}}{\lambda}
$$

This has enabled us to demonstrate Theorem 1.1.
Proof. In addition to the fact that $2 \nmid v$ holds true, we support our claim with three theorems: 2.1, 2.2 and 3.1.

The right-hand side of the equation is now established as follows:

$$
v \leqslant \frac{2}{\sqrt{3}} \cdot \frac{\sqrt{U B 1 \cdot U B 2}}{L B} .
$$

The calculation yields the value $v<3$ for all prime numbers $p \geqslant 41$. The evidence is therefore persuasive.

Acknowledgment

We would like to thank the referees for their careful reading and valuable comments.

REFERENCES

1. A. Antoniewicz: On a family of elliptic curves, Univ. Iagel. Acta Math. 43 (2005), 21-32.
2. E. Brown and T.M. Bruce: Elliptic curves from Mordell to Diophantus and back, The American mathematical monthly 109(7) (2002), 639-649.
3. Y. Fujita and N. Tadahisa: The Mordell-Weil bases for the elliptic curve of the form $y^{2}=x^{3}-m^{2} x+n^{2}$, Publ. Math. Debrecen 92/1-2 (2018), 79-99.
4. M. Khazali and D. Hassan: Family Of Elliptic Curves $E(p, q): y^{2}=x^{3}-p^{2} x+q^{2}$, Facta Universitatis, Series: Mathematics and Informatics 34(4) (2019), 805-813.
5. S. SIKSEK: Infinite descent on elliptic curves, Rocky Mountain J. Math. 25(4) (1995), 1501-1538. MR1371352.
6. J.H. Silverman: Computing heights on elliptic curves, Math. Comp. 51(183) (1988), 339-358.
