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Abstract. Every Berwald metric is a special generalized Berwald metric. In this paper,
we study the class of projectively flat generalized Berwald (α, β)-metrics of isotropic
S-curvature. We find some conditions under which this class of Finsler metrics reduces
to the class of Berwald metrics.
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1. Introduction

The geodesics curves of an arbitrary Finsler metric F = F (x, y) on a manifold
M are characterized by the following system of differential equations

c̈i + 2Gi(ċ) = 0,

where the local functions Gi = Gi(x, y) are called the spray coefficients of F . Two
Finsler metrics F and F̄ on a manifold M are called projectively related if any
geodesic of the first is also geodesic for the second and the other way around. In
this case, there is a scalar function P = P (x, y) defined on the slit tangent bundle
TM0 = TM − {0} such that

Gi = Ḡi + Pyi.
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Here, Gi and Ḡi denote the geodesic spray coefficients of F and F̄ , respectively
[6]. The problem of projectively related Finsler metrics is quite old in geometry
and its origin is formulated in Hilberts Fourth Problem: to determine the metrics
on an open subset in Rn, whose geodesics are straight lines [2]. Projectively flat
Finsler metrics on a convex domain in Rn are regular solutions to Hilbert’s Fourth
Problem. A Finsler metric F on an open subset U ⊂ Rn is called projectively flat
if all geodesics are straight in U . In this case, F and the Euclidean metric on U are
projectively related.

In order to find projectively flat Finsler metrics, one can search in the class of
generalized Berwald metrics. A Finsler metric F = F (x, y) on a manifold M is
called a generalized Berwald metric if there exists a covariant derivative D on M
such that the parallel translations induced by D preserve the Finsler function F
[1][12]. In this case, F is called a generalized Berwald metric on M . If the covariant
derivative D is also torsion-free, then F reduces to a Berwald metric. In this case,
the spray coefficients of F is quadratic in direction y. By definition, the class of
Berwald metrics belongs to the class of generalized Berwald metrics.

The class of generalized Berwald metrics is very large to search, and finding
projectively flat Finsler metrics in this class is very complex. Thus, one can focus
on a meaningful subclasses of these Finsler metrics, maybe the class of generalized
Berwald (α, β)-metrics. An (α, β)-metric is a Finsler metric on a manifoldM defined
by F := αϕ(s), where s = β/α, ϕ = ϕ(s) is a C∞ function on the (−b0, b0)
with certain regularity, α =

√
aijyiyj is a positive-definite Riemannian metric and

β = bi(x)y
i is a 1-form on M .

It is interesting to find some conditions under which a projectively flat gener-
alized Berwald (α, β)-metric reduces to a Berwald metric. To find the mentioned
condition, for an (α, β)-metric F := αϕ(s), let us put

Q :=
ϕ′

ϕ− sϕ′ , Ψ :=
Q′

2[1 + sQ+ (b2 − s2)Q′]
.

Define

Λ := bibjbkbl
[
αβQ

]
yiyjykyl

and Υ := bjbjbkblbm
[
Ψ
]
yiyjykylym

.(1.1)

Then, we will prove the following result.

Theorem 1.1. Let F = αϕ(β/α) be a projectively flat (α, β)-metric on a manifold
M . Suppose that ϕ satisfies ϕ′(0) ̸= 0, Λ ̸= 0 and Υ ̸= 0. Then F is a generalized
Berwald metric of isotropic S-curvature if and only if it is a Berwald metric. In
this case, F is a locally Minkowskian metric.

We remark that the S-curvature is constructed by Zhongmin Shen for given com-
parison theorems on Finsler manifolds [11]. A natural problem is to study and
characterize Finsler metrics of vanishing S-curvature. An n-dimensional Finsler
metric is said to have isotropic S-curvature if S = (n+ 1)cF , for some scalar func-
tion c = c(x) on M .
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2. Preliminary

Let M be an n-dimensional C∞ manifold, TM =
∪

x∈M TxM the tangent space and
TM0 := TM −{0} the slit tangent space of M . A Finsler structure on manifold M
is a function F : TM → [0,∞) with the following properties:
(i) F is C∞ on TM0;
(ii) F is positively 1-homogeneous on the fibers of tangent bundle TM , i.e., F (x, λy) =
λF (x, y), ∀λ > 0;
(iii) The quadratic form gy : TxM × TxM → R is positive-definite on TxM

gy(u, v) :=
1

2

∂2

∂s∂t

[
F 2(y + su+ tv)

]
s=t=0

, u, v ∈ TxM.

Then, the pair (M,F ) is called a Finsler manifold.

Given a Finsler manifold (M,F ), then a global vector field G is induced by F
on TM0, which in a standard coordinate (xi, yi) for TM0 is given by

G = yi
∂

∂xi
− 2Gi(x, y)

∂

∂yi
,

where

Gi :=
1

4
gil

[ ∂2F 2

∂xk∂yl
yk − ∂F 2

∂xl

]
, y ∈ TxM.(2.1)

G is called the spray associated to (M,F ).

For a tangent vector y ∈ TxM0, define By : TxM × TxM × TxM → TxM by
By(u, v, w) := Bi

jkl(y)u
jvkwl∂/∂xi|x where

Bi
jkl :=

∂3Gi

∂yj∂yk∂yl
.

B is called the Berwald curvature. Then F is called a Berwald metric if B = 0 [10].

For a Finsler metric F on an n-dimensional manifoldM , the Busemann-Hausdorff
volume form dVF = σF (x)dx

1 · · · dxn is defined by

σF (x) :=
Vol(Bn(1))

Vol
[
(yi) ∈ Rn

∣∣ F (
yi ∂

∂xi |x
)
< 1

] .
Let Gi denote the geodesic coefficients of F in the same local coordinate system.
Then for y = yi ∂

∂xi |x ∈ TxM , the S-curvature is defined by

S(y) :=
∂Gi

∂yi
(x, y)− yi

∂

∂xi

[
lnσF (x)

]
.



320 A. Jazayeri, B. Rezaei and A. Tayebi

This quantity was first introduced by Shen for a volume comparison theorem [10].
A Finsler metric F on an n-dimensional manifold M has isotropic S-curvature if

S = (n+ 1)cF,

where c = c(x) is a scalar function on M . Also, F has vanishing S-curvature if
S = 0.

It is known that a Finsler metric F (x, y) on U is projective if and only if its
geodesic coefficients Gi are in the form

Gi(x, y) = P (x, y)yi,

where P : TU = U×Rn → R is positively homogeneous with degree one, P (x, λy) =
λP (x, y), λ > 0. We call P (x, y) the projective factor of F (x, y).

For a non-zero vector y ∈ TxM0, the Riemann curvature is a family of linear
transformation Ry : TxM → TxM which is defined by Ry(u) := Ri

k(y)u
k∂/∂xi,

where

Ri
k(y) = 2

∂Gi

∂xk
− ∂2Gi

∂xj∂yk
yj + 2Gj ∂2Gi

∂yj∂yk
− ∂Gi

∂yj
∂Gj

∂yk
.

The family R := {Ry}y∈TM0
is called the Riemann curvature.

For a flag P := span{y, u} ⊂ TxM with flagpole y, the flag curvature K =
K(P, y) is defined by

K(x, y, P ) :=
gy

(
u,Ry(u)

)
gy(y, y)gy(u, u)− gy(y, u)2

.(2.2)

The flag curvatureK(x, y, P ) is a function of tangent planes P = span{y, v} ⊂ TxM .
F is of scalar flag curvature if K = K(x, y) is independent of flag P .

3. Proof of Theorem 1.1

An (α, β)-metric is a Finsler metric on a manifold M defined by F := αϕ(s), where
s = β/α, ϕ = ϕ(s) is a C∞ function on the (−b0, b0) with certain regularity,
α =

√
aijyiyj is a Riemannian metric and β = bi(x)y

i is a 1-form on M . For

an (α, β)-metric, let us define bi|j by bi|jθ
j := dbi − bjθ

j
i , where θi := dxi and

θji := Γj
ikdx

k denote the Levi-Civita connection form of α. Let us define

rij :=
1

2
(bi|j + bj|i), sij :=

1

2
(bi|j − bj|i),

ri0 := rijy
j , r00 := rijy

iyj , rj := birij ,

si0 := sijy
j , sj := bisij , r0 := rjy

j , s0 := sjy
j .
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Let ϕ = ϕ(s) be a positive C∞ function on (−b0, b0). For a number b ∈ [0, b0), put

∆ := 1 + sQ+ (b2 − s2)Q′,

Φ := −(n∆+ 1 + sQ)(Q− sQ′)− (b2 − s2)(1 + sQ)Q′′.

In [4], Cheng-Shen characterized (α, β)-metrics with isotropic S-curvature on a
manifold M of dimension n ≥ 3. Soon, they found that their result holds for the
class of (α, β)-metrics with constant length one-forms, only. Here, we modify their
result as follows.

Lemma 3.1. Let F = αϕ(β/α) be an non-Randers type (α, β)-metric on an man-
ifold M of dimension n ≥ 3. Suppose that β has constant length with respect to
α. Then, F is of isotropic S-curvature S = (n + 1)cF , if and only if one of the
following holds

(i) β satisfies

rij = ϵ
{
b2aij − bibj

}
, sj = 0,(3.1)

where ϵ = ϵ(x) is a scalar function, and ϕ = ϕ(s) satisfies

Φ = −2(n+ 1)k
ϕ∆2

b2 − s2
,(3.2)

where k is a constant. In this case, S = (n+ 1)kϵF .

(ii) β satisfies

rij = 0, sj = 0.(3.3)

In this case, S = 0.

In [18], the following is proved.

Lemma 3.2. ([18]) An (α, β)-metric satisfying ϕ′(0) ̸= 0 is a generalized Berwald
manifold if and only if β has constant length with respect to α.

By Lemmas 3.1 and 3.2, we get the following.

Lemma 3.3. Let F = αϕ(β/α) be an non-Randers type generalized Berwald (α, β)-
metric on a manifold M of dimension n ≥ 3 such that ϕ′(0) ̸= 0. Then, F is of
isotropic S-curvature S = (n+ 1)cF , if and only if one of the following holds:
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(i) β satisfies

rij = ϵ
{
b2aij − bibj

}
, sj = 0,(3.4)

where ϵ = ϵ(x) is a scalar function, and ϕ = ϕ(s) satisfies

Φ = −2(n+ 1)k
ϕ∆2

b2 − s2
,(3.5)

where k is a constant. In this case, S = (n+ 1)kϵF .

(ii) β satisfies

rij = 0, sj = 0.(3.6)

In this case, S = 0.

To prove Theorem 1.1, we need the following.

Proposition 3.1. Let F = αϕ(β/α) be a non-Randers type (α, β)-metric on a
manifold M of dimension n ≥ 3 such that Λ ̸= 0. Then F is a generalized Berwald
metric with vanishing S-curvature S = 0 if and only if it is a Berwald metric.

Proof. Let Gi = Gi(x, y) and Gi
α = Gi

α(x, y) denote the spray coefficients of F and
α respectively in the same coordinate system. By (2.1), we have

Gi = Gi
α + Pyi +Qi,(3.7)

where

P := α−1Θ(r00 − 2Qαs0),

Qi := αQsi0 +Ψ(r00 − 2Qαs0)b
i.

In [3], Cheng proved that every regular (α, β)-metric with isotropic S-curvature has
vanishing S-curvature (see Theorem 2.4). In this case, by Lemma 3.3, we have
r00 = s0 = 0. Then (3.7) reduces to following

Gi = Gi
α + αQsi0.(3.8)

F is a projectively flat Finsler metric which is equal to following

Gi = Pyi,(3.9)

where P = P (x, y) is a local scalar function satisfying P (x, λy) = λP (x, y). By
(3.8) and (3.9), we have

Pyi = Gi
α + αQsi0.(3.10)
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Multiplying (3.10) with bi and yi, respectively, imply that

Pβ = biG
i
α,(3.11)

Pα2 = yiG
i
α.(3.12)

Contracting (3.10) with β yields

Pβyi = βGi
α + αβQsi0.(3.13)

By (3.11) and (3.13) it follows that

(brG
r
α)y

i − βGi
α = αβQsi0.(3.14)

The following holds [
(brG

r
α)y

i − βGi
α

]
yjykylym = 0.(3.15)

(3.14) and (3.15) give us

[αβQsi0]yjykylym = 0.(3.16)

We have[
αβQsi0

]
yjykylym =

[
αβQ

]
yjykyls

i
m +

[
αβQ

]
yjykymsil +

[
αβQ

]
yjylymsik

+
[
αβQ

]
ylykymsij +

[
αβQ

]
yjykylymsi0 = 0(3.17)

By part (b) of Lemma 3.3, we have sk = bmskm = 0. Then multiplying (3.17) with
bjbkblbm and considering (3.16) imply that

bjbkblbm
[
αβQ

]
yjykylymsi0 = 0(3.18)

By assumption, we get

sij = 0.(3.19)

Putting (3.19) in (3.8) gives us Gi = Gi
α. It implies that F is a Berwald metric.

Now, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1: The proof divided to three main cases as follows:

Case (i). F is not a Randers metric and dim(M) ≥ 3: Let F = αϕ(s),
s = β/α, be a generalized Berwald non-Randers type (α, β)-metric on a mani-
fold M of dimension dim(M) ≥ 3. Suppose that F has isotropic S-curvature,
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S = (n + 1)cF , where c = c(x) is a scalar function on M . In this case, by Lemma
3.3 we have

s0 = 0,(3.20)

r00 = c(b2 − s2)α2.(3.21)

Since F is a projectively flat metric, then there exists a local scalar function P =
P (x, y) satisfies P (x, λy) = λP (x, y). By (3.7) and (3.20), it follows that

Pyi = Gi
α + αQsi0 + r00

[
Θ
yi

α
+Ψbi

]
.(3.22)

Multiplying (3.22) with bi and yi, respectively, imply that

Pβ = biG
i
α + r00

[
Θ
β

α
+Ψb2

]
,(3.23)

Pα2 = yiG
i
α + r00

[
Θα+Ψβ

]
.(3.24)

(3.23)× α2 − (3.24)× β yields

Ψr00(b
2α2 − β2) = (yiG

i
α)β − (biG

i
α)α

2.(3.25)

By (3.21) and (3.25), we get

cΨ(b2α2 − β2)2 = (yiG
i
α)β − (biG

i
α)α

2.(3.26)

Since [
(yiG

i
α)β − (biG

i
α)α

2
]
yjykylymyp

= 0

then [
cΨ(b2α2 − β2)2

]
yjykylymyp

= 0.

It is easy to see that the following holds

bt
[
(b2α2 − β2)2

]
yt

= 0.

Then

bjbkblbmbp
[
cΨ(b2α2 − β2)2

]
yjykylymyp

= cbjbkblbmbp
[
Ψ
]
yjykylymyp

(b2α2 − β2)2

= 0(3.27)

According to the assumption, (3.27) implies that c = 0. Then r00 = 0 and by (3.20)
we get s0 = 0. By Lemma 3.3, F has vanishing S-curvature. Then by Proposition
3.1, we conclude that F is a Berwald metric. Since F is projectively flat metric
then it is of scalar flag curvature K = K(x, y). F is not Randers-type and then is
not Riemannian. Then K = 0, and F is a locally Minkowsian metric.
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Case (ii). F is not a Randers metric and dim(M) = 2: Let F = αϕ(s),
s = β/α, be a two-dimensional generalized Berwald non-Randers type (α, β)-metric
on a manifold M . Suppose that F has isotropic S-curvature. By Theorem 2.4 of [3],
every regular (α, β)-metric with isotropic S-curvature has vanishing S-curvature. In
[13], it is proved that such metric reduces to a locally Minkowskian metric. This
completes the proof.

Case (iii). F is a Randers metric: A Randers metric F = α + β is locally
projectively flat if and only if α is locally projectively flat and β is closed, i.e.,
sij = 0 (see [10]). On the other hand, in [18], it is proved that F is a general-
ized Berwald manifold if and only if β is of constant Riemannian length, namely
ri + si = 0. These imply

sij = 0, ri = 0.(3.28)

In [4], it is proved that F = α + β has isotropic S-curvature S = (n + 1)cF if and
only if

e00 = 2c(α2 − β2),(3.29)

where c = c(x) is a scalar function on M , e00 = eijy
iyj and eij = rij + bisj + bjsi.

By (3.28) and (3.29), we get

rij = 2c(aij − bibj).(3.30)

Multiplying (3.30) with bi yields

rj = 2c(1− b2)bj .(3.31)

Since b < 1 then by (3.28) and (3.31) we get bj = 0 or c = 0. If bj = 0 then F is
Riemannian. If c = 0 then by (3.30) implies that rij = 0. By considering (3.28),
β is parallel with respect to α and F reduces to a Berwald metric. This completes
the proof.
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