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POSITION VECTOR OF A W-CURVE IN THE 4D GALILEAN

SPACE G4

Özgür Boyacıoğlu Kalkan

Abstract. In this paper, the position vector of the W-curve in G4 is given and by using
the position vector we obtain some characterizations for the W-curve whose image lies
on the Galilean sphere S3

G in G4. Also, we characterize the unit curves with respect to
the second curvature τ (s) and σ(s).
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1. Introduction

A Galilean space is one of the Cayley-Klein spaces and it has been largely
developed by Röschel [22]. A Galilean space may be considered as the limit case
of a pseudo-Euclidean space in which the isotropic cone degenerates to a plane.
This limit transition corresponds to the limit transition from the special theory of
relativity to the classical mechanics. On the other hand, Galilean space-time plays
an important role in nonrelativistic physics. The fundamental concepts such as
velocity, momentum, kinetic energy, etc. and principles such as laws of motion and
conservation laws of classical physics are expressed in terms of Galilean space.

Differential geometry of the Galilean space G3 has been largely developed in
[22]. In recent years, researchers have begun to investigate curves and surfaces in
the Galilean space and thereafter pseudo-Galilean space. Spherical curves in G3 are
given [18] and [3]. Bertrand curves in this space are given in [1]. It is safe to report
that a good amount of research has also been done in pseudo-Galilean space by using
the important paper by Divjak [5]; and thereafter classical differential geometry
papers of Divjak and MilinŠipuš [6], Divjak and Milin-Šipuš [7] and Öğrenmiş and
Ergüt [2]. The Frenet formulas of a curve in 4-dimensional Galilean space G4 are
given by [23]. Mannheim curves for 4-dimensional Galilean space G4 are given in
[17]. The equiform differential geometry of curves in G4 are given in [19]. In [24],
inextensible flows of curves in G4 are investigated.

A curve α is called a W-curve (or a helix) if it has constant Frenet curvatures.
W-curves in the Euclidean space En have been studied intensively. The simplest
examples are circles as planar W-curves and helices as non-planar W-curves in E3.
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All W-curves in the Minkowski 3-space are completely classified by Walrave in
[12]. For example, the only planar spacelike W-curves are circles and hyperbolas.
All spacelike W-curves in the Minkowski space-time E4

1 are studied in [20]. The
examples of null W-curves in the Minkowski space-time are given in [25]. Timelike
W-curves in the same space have been studied in [13]. The position vectors of a
spacelike W-curve (or a helix), i.e., a curve with constant curvatures, with spacelike,
timelike and null principal normal in the Minkowski 3-space E3

1
are given in [14].

The position vectors of a timelike and a null helix in Minkowski 3-space are studied
in [15].

In this paper, we obtain position vector of a W-curve in 4-dimensional Galilean
space G4 and by using position vector we give some characterizations for W-curve
whose image lies on the Galilean sphere S3

G
in G4. Also we characterize unit curves

with respect to second curvature τ(s) and third curvature σ(s).

2. Preliminaries

The Galilean space is a 3D complex projective space P3 in which the absolute
figure {w, f, I1, I2} consists of a real plane w (the absolute plane), a real line f ⊂ w

(the absolute line) and two complex conjugate points I1, I2 ∈ f [11].

The study of mechanics of plane-parallel motions reduces to the study of a
geometry of three dimensional space with coordinates {x, y, t} is given by the motion
formula Yaglom (1979).

(2.1)
x′ = (cosα)x+ (sinα)y + (ν cosβ)t+ a

y′ = −(sinα)x + (cosα)y + (ν sinβ)t+ b

t′ = t+ d

This geometry can be called three-dimensional Galilean Geometry. Yaglom
(1979) stressed that four-dimensional Galilean Geometry, which studies all
properties invariant under motions of objects in space, is even more complex.
Yaglom (1979) also stated this geometry could be described more precisely as
the study of those properties of four-dimensional space with coordinates that are
invariant under the general Galilean transformations.
(2.2)

x′ = (cosβ cosα− cos γ sinβ sinα)x + (sinβ cosα− cos γ cosβ sinα)y
+(sin γ sinα)z + (v cos δ1)t+ a

y′ = −(cosβ sinα+ cos γ sinβ cosα)x+ (− sinβ sinα+ cos γ cosβ cosα)y
+(sin γ cosα)z + (v cos δ2)t+ b

z′ = (sin γ sinβ)x− (sin γ cosβ)y + (cos γ)z + (v cos δ3)t+ c

t′ = t+ d

with cos2 δ1 + cos2 δ2 + cos2 δ3 = 1.

In affine coordinates, the inner product of two vectors a = (a1, a2, a3, a4) and
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b = (b1, b2, b3, b4) is defined by

(2.3) 〈a, b〉
G
=

{

a1b1 , if a1 6= 0 or b1 6= 0,
a2b2 + a3b3 + a4b4 , if a1 = 0 and b1 = 0.

For the vectors a = (a1, a2, a3, a4), b = (b1, b2, b3, b4) and c = (c1, c2, c3, c4) the
Galilean cross product in G4 is defined as follows:

(2.4) (a ∧ b ∧ c)G =

∣

∣

∣

∣

∣

∣

∣

∣

0 e2 e3 e4
a1 a2 a3 a4
b1 b2 b3 b4
c1 c2 c3 c4

∣

∣

∣

∣

∣

∣

∣

∣

where ei are the standard basis vectors.

A curve α is an arbitrary curve in a 4-dimensional Galilean space G4 defined by

(2.5) α(t) = (x(t), y(t), z(t), w(t))

where x(t), y(t), z(t), w(t) are smooth functions. Let α : I ⊂→ G4,

α(s) = (s, y(s), z(s), w(s)) be a curve parametrized by arc length s in G4.

For the curve α, the Frenet formulas are given in the following form

(2.6)
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where T,N1, N2, N3 are mutually orthogonal vector fields satisfying equations
(2.7)

〈T, T 〉
G
= 〈N1, N1〉G = 〈N2, N2〉G = 〈N3, N3〉G = 1

〈T,N1〉G = 〈T,N2〉G = 〈T,N3〉G = 〈N1, N2〉G = 〈N1, N3〉G = 〈N2, N3〉G = 0.

The Galilean sphere of the space G4 is defined by

(2.8) S3

G(m, r) = {ϕ−m ∈ G4 : 〈ϕ−m,ϕ−m〉
G
= ∓r2}.

See [23].

3. Position Vector of a W-curve in G4

Let α = α(s) be unit speed W-curve in G4, with non-zero curvatures κ, τ and σ.
Then the position vector of the curve α(s) satisfies the equation

(3.1) α(s) = λ(s)T (s) + µ(s)N1(s) + γ(s)N2(s) + υ(s)N3(s)

for some differentiable functions λ(s), µ(s), γ(s) and υ(s). These functions are
called component functions (or simply components) of the position vector.
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Then differentiating (3.1) with respect to s and using the corresponding Frenet
equations (2.6), we obtain

λ′ − 1 = 0,(3.2)

λκ+ µ′ − γτ = 0,

µτ + γ′ − υσ = 0,

γσ + υ′ = 0.

From the first third equations in (3.2) we get

(3.3) λ(s) = s+ c1, c1 ∈ R,

(3.4) γ(s) =
(s+ c1)κ+ µ′

τ

and

(3.5) υ(s) =
µ′′ + µτ2 + κ

στ
.

By using (3.4) and (3.5) in the last equation in (3.2) we easily obtain the differential
equation

(3.6) µ
′′′

+Aµ′ + σ2κ(s+ c1) = 0.

where A = σ2 + τ2. The solution of the previous equation is

(3.7) µ(s) = c2 + c3 cos(
√
As) + c4 sin(

√
As)− σ2κ

A

(

s2

2
− c1s

)

where c1, c2, c3, c4 ∈ R. Then using (3.7) in (3.4) and (3.5) we get
(3.8)

γ(s) = κτ

A
(s+ c1) +

√
A

τ

(

−c3 sin
(√

As
)

+ c4 cos
(√

As
))

υ(s) = τ

σ

(

c2 +
κ

A

)

− τσκ

A

(

s
2

2
− c1s

)

− σ

τ

(

c3 cos
(√

As
)

+ c4 sin
(√

As
))

Thus we find the position vector as;

α(s) = (s+ c1)T (s) +
[

c2 + c3 cos(
√
As) + c4 sin(

√
As)(3.9)

−σ2κ

A

(

s2

2
− sc1

)]

N1(s) +
[κτ

A
(s+ c1)

+

√
A

τ

(

−c3 sin
(√

As
)

+ c4 cos
(√

As
))

]

N2(s)

+

[

τ

σ

(

c2 +
κ

A

)

− τσκ

A

(

s2

2
− c1s

)

−σ

τ

(

c3 cos
(√

As
)

+ c4 sin
(√

As
))]

N3(s)
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Theorem 3.1. Let α = α(s) be a unit W-curve in G4 with κ(s) 6= 0, τ(s) 6= 0
and σ(s) 6= 0 for each s ∈ R. Then position vector of the curve is given by the
equation (3.9).

Next, the following theorems characterize unit speed curves with respect to
second curvature τ(s) and third curvature σ(s).

Theorem 3.2. Let α = α(s) be a unit curve in G4 with non-zero curvature κ.
Then α has τ = 0 if and only if α lies fully in a 2-dimensional hyperplane of G4,

spanned by {T,N1}.

Proof. If α has τ(s) = 0 then by using the Frenet equations we obtain α′ = T,

α′′ = κN1. Next, all higher order derivates of α are in the direction of the vector
α

′′

, so by using the MacLaurin expansion for α given by

(3.10) α(s) = α(0) + α̇(0)s+ α̈(0)
s2

2!
+ ...,

we conclude that α lies fully in a hyperplane of G4, spanned by {T,N1}.
Conversely assume that α satisfies the assumptions of the theorem and lies fully

in a hyperplane π of G4. Then there exist points p, q ∈ G4, such that α satisfies
the equation of π given by 〈α(s) − p, q〉

G
= 0, where q ∈ π⊥. Differentiating the

last equation yields 〈T, q〉
G

= 〈N1, q〉G = 0. Next, differentiation of the equation
〈N1, q〉G = 0 gives τ 〈N2, q〉G = 0. Since N2 is the unit vector perpendicular to
{T,N1}, it follows 〈N2, q〉G 6= 0. Therefore τ = 0.

Theorem 3.3. Let α = α(s) be a unit curve in G4 with non-zero curvatures κ

and τ . Then α has σ = 0 if and only if α lies fully in a 3-dimensional hyperplane
of G4, spanned by {T,N1, N2}.

Proof. If α has σ(s) = 0 then by using the Frenet equations we obtain α′ = T,

α′′ = κN1, α
′′′ = κ′N1+κτN2. Next, all higher order derivates of α are combinations

of vector α
′′

and α
′′′

, so by using the MacLaurin expansion for α given by

(3.11) α(s) = α(0) + α̇(0)s+ α̈(0)
s2

2!
+ ...,

we conclude that α lies fully in a hyperplane of G4, spanned by {T,N1, N2}.
Conversely, assume that α satisfies the assumptions of the theorem and lies fully

in a hyperplane π of G4. Then there exist points p, q ∈ G4, such that α satisfies
the equation of π given by 〈α(s) − p, q〉

G
= 0, where q ∈ π⊥. Differentiating the

last equation yields 〈T, q〉
G
= 〈N1, q〉G = 〈N2, q〉G = 0. Next, differentiation of the

equation 〈N2, q〉G = 0 gives σ 〈N3, q〉G = 0. SinceN3 is the unit vector perpendicular
to {T,N1, N2}, it 〈N3, q〉G 6= 0. Therefore σ = 0.
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4. W-curves on Galilean sphere S3

G
in G4

In this section we give some characterizations for W-curve whose image lies on a
Galilean sphere S3

G
.

Theorem 4.1. Let α = α(s) be a unit W- curve in G4 with non-zero curvatures
κ(s), τ(s) and σ(s). Then α lies on Galilean sphere S3

G
for each s ∈ I ⊂ R if and

only if
(4.1)

s+ c1 = 0,

c2 + c3 cos(
√
As) + c4 sin(

√
As)− σ

2
κ

A

(

s
2

2
− sc1

)

= − 1

κ
,

κτ

A
(s+ c1) +

√
A

τ

(

−c3 sin
(√

As
)

+ c4 cos
(√

As
))

= 0,

τ

σ

(

c2 +
κ

A

)

− τσκ

A

(

s
2

2
− c1s

)

− σ

τ

(

c3 cos
(√

As
)

+ c4 sin
(√

As
))

= − τ

κσ

where A = σ2 + τ2 and c1, c2, c3, c4 ∈ R.

Proof. Let us first suppose that α lies on a Galilean sphere S3

G
with radius r

(4.2) 〈α, α〉
G
= ∓r2

for every s ∈ I ⊂ R. Differentiation in s gives

(4.3) 〈T, α〉
G
= 0.

By a new differentiation, we find that

(4.4) 〈N1, α〉G = − 1

κ

Then one more differentiation in s gives

(4.5) 〈N2, α〉G = 0

and

(4.6) 〈N3, α〉G = − τ

κσ
.

By using Eqs. (4.3), (4.4), (4.5) and (4.6) in Eq. (3.9), we find equations in
(4.1). Conversely, we assume that equations in (4.1) hold for each s ∈ I ⊂ R

then from Eq. (3.9) we find the position vector of the curve α−m = − 1

κ
N1− τ

κσ
N3

which satisfies the equation 〈α, α〉
G

=
(

1

κ

)2
+

(

τ

κσ

)2
= r2 which means that the

curve lies in S3

G
.
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Corollary 4.1. Let α(s) be a unit W-curve in G4 with κ(s) 6= 0, τ(s) 6= 0 and
σ(s) 6= 0 for each s ∈ I ⊂ R. If α is a Galilean spherical curve then the radius of

S3

G
is r =

√

(

1

κ

)2
+
(

τ

κσ

)2
.

Corollary 4.2. Let α(s) be a unit W-curve in G4 with κ(s) 6= 0, τ(s) 6= 0 and
σ(s) 6= 0 for each s ∈ I ⊂ R. If α is a Galilean spherical curve then α lies fully in a
2-dimensional hyperplane of G4, spanned by {N1, N3}.
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6. B. Divjak, Ž. Milin-Šipuš, Special curves on ruled surfaces in Galilean and pseudo-
Galilean spaces, Acta Math. Hungar., 98(3), (2003), 203-215.
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18. M. Ergüt, A.O. Öğrenmiş, Some characterizations of a spherical curves in Galilean
space G3, J. Adv.Res. Pure Math, 1(2), (2009), 18-26.

19. M. Evren Aydın, M. Ergüt, The equiform differential geometry of curves in
4-dimensional galilean space G4, Stud. Univ. Babeş-Bolyai Math, 58(3), (2013),
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