ON $(L C S)_{n}$-MANIFOLDS

Rajesh Kumar

Abstract

In the present paper we studied the Pseudo projectively flat $(L C S)_{n}$ manifold with several properties. Among other interesting results we obtained necessary and sufficient conditions for a 3 -dimensional $(L C S)_{n}$-manifold in the space form. Keywords: Lorentzian manifold, Pseudo projective curvature tensor, Lorentzian metric, characteristic vector

1. Introduction

An n-dimensional Lorentzian manifold M is a smooth connected paracompact Hausdroff manifold with a Lorentzian metric of type $(0,2)$ such that for each point $p \in M$, the tensor $g_{p}: T_{p} M \times T_{p} M \rightarrow \mathbb{R}$ is a non-degenerate inner product of signature $(-,+, \ldots,+)$ where $T_{p} M$ denotes the tangent vector space of M at p and \mathbb{R} is the real number space. A non-zero vector $\nu \in T_{p} M$ is said to be timelike (resp. non-spacelike, null, spacelike, $)$ if it satisfies $g_{p}(\nu, \nu)<0($ res. $\leq 0,=0,>0)([1],[6])$.

Let M be the Lorentzian manifold admitting a unit timelike concircular vector field ξ, called the characteristic vector field of the manifold. Then we have

$$
\begin{equation*}
g(\xi, \xi)=-1 \tag{1.1}
\end{equation*}
$$

Since ξ is a unit concircular vector field, there exists a non-zero 1-form η such that for

$$
\begin{equation*}
g(X, \xi)=\eta(X) \tag{1.2}
\end{equation*}
$$

the equation of the following form holds

$$
\begin{equation*}
\left(\nabla_{X} \eta\right)(Y)=\alpha\{g(X, Y)+\eta(X) \eta(Y)\},(\alpha \neq 0) \tag{1.3}
\end{equation*}
$$

for all vector fields X, Y where ∇ denotes the operator of covariant differentiation with respect to the Lorentzian metric g and α is a non-zero scalar function satisfying

$$
\begin{equation*}
\nabla_{X} \alpha=(X \alpha)=\alpha(X)=\rho \eta(X) \tag{1.4}
\end{equation*}
$$

Received August 31, 2015; accepted March 02, 2016
2010 Mathematics Subject Classification. Primary 53C10; Secondary 53C15, 53C20
ρ being a certain scalar function.
If we put

$$
\begin{equation*}
\varphi X=\frac{1}{\alpha} \nabla_{X} \xi \tag{1.5}
\end{equation*}
$$

then from (1.3) and (1.5) we have

$$
\begin{equation*}
\varphi X=X+\eta(X) \xi \tag{1.6}
\end{equation*}
$$

from which it follows that φ is a symmetric $(1,1)$ tensor. From (1.3) and (1.5) we have

$$
\begin{equation*}
\varphi^{2} X=X+\eta(X) \xi \tag{1.7}
\end{equation*}
$$

Hence M is a manifold with a Lorentzian almost paracontact structure (φ, ξ, η, g) introduced by Matsumoto [4], Mihai and Rosca [5]. Thus the Lorentzian manifold M together with the unit timelike vector field ξ, its associated 1-form η and $(1,1)$ tensor field φ is said to be a Lorentzian almost paracontact manifold with a structure of the concircular type and such a manifold is said to be a $(L C S)_{n}$-manifold ([8], [10]).

2. Preliminaries

A differentiable manifold M of dimension n is called $(L C S)_{n}$-manifold if it admits a $(1,1)$ tensor field φ, a contravariant vector field ξ, a covariant vector field η and a Lorentzian metric g which satisfy

$$
\begin{gather*}
\eta(\xi)=-1 \tag{2.1}\\
\phi^{2}(X)=X+\eta(X) \xi \tag{2.2}\\
g(\phi X, \phi Y)=g(X, Y)+\eta(X) \eta(Y), \tag{2.3}\\
g(X, \xi)=\eta(X) \tag{2.4}\\
\phi \xi=0, \quad \eta(\phi X)=0 \tag{2.5}
\end{gather*}
$$

for all $X, Y \in T M$.
Also in a $(L C S)_{n}$-manifold M the following relations are satisfied [9]

$$
\begin{gather*}
\eta(R(X, Y) Z)=g(R(X, Y) Z, \xi)=\left(\alpha^{2}-\rho\right)[g(Y, Z) \eta(X)-g(X, Z) \eta(Y)] \tag{2.6}\\
R(\xi, Y) Z=\left(\alpha^{2}-\rho\right)[g(Y, Z) \xi-\eta(Z) Y] \tag{2.7}\\
R(X, Y) \xi=\left(\alpha^{2}-\rho\right)[\eta(Y) X-\eta(X) Y] \tag{2.8}\\
R(\xi, X) \xi=\left(\alpha^{2}-\rho\right)[\eta(X) \xi+X] \tag{2.9}\\
\left(\nabla_{X} \varphi\right)(Y)=\alpha[g(X, Y) \xi+\eta(Y) X+2 \eta(X) \eta(Y) \xi] \tag{2.10}\\
S(X, \xi)=\left(\alpha^{2}-\rho\right)(n-1) \eta(X) \tag{2.11}\\
S(\varphi X, \varphi Y)=S(X, Y)+\left(\alpha^{2}-\rho\right)(n-1) \eta(X) \eta(Y) \tag{2.12}
\end{gather*}
$$

where S is the Ricci curvature and Q is the Ricci operator given by $S(X, Y)=g(Q X, Y)$.

3. Pseudo projectively flat $(L C S)_{n}$-manifold

The Pseudo projective curvature tensor is given by [7].

$$
\begin{align*}
\widetilde{P}(X, Y) Z & =a R(X, Y) Z+b[S(Y, Z) X-S(X, Z) Y] \tag{3.1}\\
& -\frac{r}{n}\left(\frac{a}{n-1}+b\right)[g(Y, Z) X-g(X, Z) Y]
\end{align*}
$$

where a and b are constants such that $a, b \neq 0, R$ is the curvature tensor, S is the Ricci tensor and r is the scalar curvature.

If the pseudo projective curvature tensor vanishes, then from (3.1), we have

$$
\begin{align*}
{ }^{\prime} R(X, Y, Z, W) & =-\frac{b}{a}[S(Y, Z) g(X, W)-S(X, Z) g(Y, W)] \tag{3.2}\\
& +\frac{r}{n}\left(\frac{1}{n-1}+\frac{b}{a}\right)[g(Y, Z) g(X, W)-g(X, Z) g(Y, W)]
\end{align*}
$$

where ' $R(X, Y, Z, W)=g(R(X, Y) Z, W)$.
Putting ξ for W in (3.2) and using (2.6) and (2.11), we get

$$
\begin{align*}
\left(\alpha^{2}-\rho\right)[g(Y, Z) \eta(X) & -g(X, Z) \eta(Y)]=-\frac{b}{a}[S(Y, Z) X-S(X, Z) Y] \tag{3.3}\\
+ & \frac{r}{n}\left(\frac{1}{n-1}+\frac{b}{a}\right)[g(Y, Z) \eta(X)-g(X, Z) \eta(Y)]
\end{align*}
$$

Again if we put ξ for X in (3.3) and using (2.5) and (2.11), we obtain

$$
\begin{align*}
& S(Y, Z)=\frac{a}{b}\left[\frac{r}{n}\left(\frac{1}{n-1}+\frac{b}{a}\right)-\left(\alpha^{2}-\rho\right)\right] g(Y, Z) \tag{3.4}\\
& +\frac{a}{b}\left[\frac{r}{n}\left(\frac{1}{n-1}+\frac{b}{a}\right)-n\left(\alpha^{2}-\rho\right)\right] \eta(Y) \eta(Z)
\end{align*}
$$

Differentiating (3.4) covariantly along X, we get

$$
\begin{aligned}
\left(\nabla_{X} S\right)(Y, Z) & =\frac{a}{b}\left[\frac{d r(X)}{n}\left(\frac{1}{n-1}+\frac{b}{a}\right)\right][g(Y, Z)+\eta(Y) \eta(Z)] \\
& +\frac{a}{b}\left[\frac{r}{n}\left(\frac{1}{n-1}+\frac{b}{a}\right)-n\left(\alpha^{2}-\rho\right)\right]\left[\left(\nabla_{X} \eta\right)(Y) \eta(Z)\right. \\
& \left.+\left(\nabla_{X} \eta\right)(Z) \eta(Y)\right]
\end{aligned}
$$

where $d r(X)=\nabla_{X} r$. On using (1.3) this implies that

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, Z)-\left(\nabla_{Y} S\right)(X, Z)=\frac{a}{b}\left[\frac{d r(X)}{n}\left(\frac{1}{n-1}+\frac{b}{a}\right)\right][g(Y, Z) \tag{3.5}
\end{equation*}
$$

$$
\begin{aligned}
& +\eta(Y) \eta(Z)]-\frac{a}{b}\left[\frac{d r(Y)}{n}\left(\frac{1}{n-1}+\frac{b}{a}\right)\right][g(X, Z) \\
& +\eta(X) \eta(Z)]+\frac{a \alpha}{b}\left[\frac{r}{n}\left(\frac{1}{n-1}+\frac{b}{a}\right)-n\left(\alpha^{2}-\rho\right)\right] \\
& {[g(X, Z) \eta(Y)-g(Y, Z) \eta(X)]}
\end{aligned}
$$

On the other hand, in our case, since we have $\left(\nabla_{X} \widetilde{P}\right)(X, Y) Z=0$, we get $\operatorname{div} \widetilde{P}=0$, where div denotes the divergence. So for $n>1$, $\operatorname{div} \widetilde{P}=0$ gives

$$
\begin{align*}
\left(\nabla_{X} S\right)(Y, Z)-\left(\nabla_{Y} S\right)(X, Z)= & \frac{1}{n(a+b)}\left[\frac{a+(n-1) b}{n-1}\right][g(Y, Z) d r(X) \tag{3.6}\\
& -g(X, Z) d r(Y)]
\end{align*}
$$

It follows from (3.5) and (3.6) that

$$
\begin{align*}
\frac{1}{n(a+b)}[& \left.\frac{a+(n-1) b}{n-1}\right][g(Y, Z) d r(X)-g(X, Z) d r(Y)] \tag{3.7}\\
& =\frac{a}{b}\left[\frac{d r(X)}{n}\left(\frac{1}{n-1}+\frac{b}{a}\right)\right][g(Y, Z)+\eta(Y) \eta(Z)] \\
& -\frac{a}{b}\left[\frac{d r(Y)}{n}\left(\frac{1}{n-1}+\frac{b}{a}\right)\right][g(X, Z)+\eta(X) \eta(Z)] \\
& +\frac{a \alpha}{b}\left[\frac{r}{n}\left(\frac{1}{n-1}+\frac{b}{a}\right)-n\left(\alpha^{2}-\rho\right)\right][g(X, Z) \eta(Y) \\
& -g(Y, Z) \eta(X)]
\end{align*}
$$

If r is constant, then from (3.7), we obtain

$$
\frac{a \alpha}{b}\left[\frac{r}{n}\left(\frac{1}{n-1}+\frac{b}{a}\right)-n\left(\alpha^{2}-\rho\right)\right]=0 .
$$

Since $\frac{a \alpha}{b} \neq 0$, the above equation gives

$$
\begin{equation*}
r=\frac{a n^{2}\left(\alpha^{2}-\rho\right)(n-1)}{a+(n-1) b} . \tag{3.8}
\end{equation*}
$$

Now substituting (3.4) in (3.2), we get
$(3.9)^{\prime} R(X, Y, Z, W)=\left(\alpha^{2}-\rho\right)[g(Y, Z) g(X, W)-g(X, Z) g(Y, W)]$

$$
-\left[\frac{r}{n}\left(\frac{1}{n-1}+\frac{b}{a}\right)-n\left(\alpha^{2}-\rho\right)\right][g(X, W) \eta(Y)-g(Y, W) \eta(X)] \eta(Z)
$$

On using (3.8) in (3.9), we have

$$
{ }^{\prime} R(X, Y, Z, W)=\left(\alpha^{2}-\rho\right)[g(Y, Z) g(X, W)-g(X, Z) g(Y, W)] .
$$

This shows that the manifold is of constant curvature. Thus we can state the following:

Theorem 3.1. In a pseudo projectively flat $(L C S)_{n}$-manifold $M(n>1)$ if the scalar curvature r is constant, then M is of constant curvature.

Now putting $X=W=\xi$ in (3.2) and using (2.1) and (2.11), we get

$$
\begin{align*}
{ }^{\prime} R(\xi, Y, Z, \xi)= & \frac{b}{a}\left[S(Y, Z)+(n-1)\left(\alpha^{2}-\rho\right) \eta(Y) \eta(Z)\right] \tag{3.10}\\
& -\frac{r}{n}\left(\frac{1}{n-1}+\frac{b}{a}\right)[g(Y, Z)+\eta(Y) \eta(Z)]
\end{align*}
$$

In view of (2.7) and (3.10), we get

$$
\begin{equation*}
\left[\left(\alpha^{2}-\rho\right)\left(\frac{a+b(n-1)}{a}\right)-\frac{r}{n}\left(\frac{a+b(n-1)}{a(n-1)}\right)\right] g(\varphi Y, \varphi Z)=0 \tag{3.11}
\end{equation*}
$$

Since

$$
g(\varphi Y, \varphi Z) \neq o
$$

hence from (3.11), we get

$$
r=n(n-1)\left(\alpha^{2}-\rho\right)
$$

Hence we can state the following:
Theorem 3.2. The scalar curvature r of a pseudo projective flat $(L C S)_{n}$-manifold M is constant, given by

$$
r=n(n-1)\left(\alpha^{2}-\rho\right),
$$

provided that $\left(\alpha^{2}-\rho\right)$ is constant.
Contracting (3.1) with respect to X, we get

$$
\begin{equation*}
\left(C_{1}^{1} \widetilde{P}\right)(Y, Z)=[a+b(n-1)] S(Y, Z)-\frac{r}{n}[a+b(n-1)] g(Y, Z) \tag{3.12}
\end{equation*}
$$

where $\left(C_{1}^{1} \widetilde{P}\right)(Y, Z)$ denotes the contraction of $\widetilde{P}(X, Y) Z$ with respect to X.
Let us assume that in an $(L C S)_{n}$-manifold,

$$
\begin{equation*}
\left(C_{1}^{1} \widetilde{P}\right)(Y, Z)=0 \tag{3.13}
\end{equation*}
$$

In view of (3.12) and (3.13), we have

$$
\begin{equation*}
[a+b(n-1)]\left[S(Y, Z)-\frac{r}{n} g(Y, Z)\right]=0 \tag{3.14}
\end{equation*}
$$

If $[a+b(n-1)] \neq 0$, then from (3.14), we get

$$
S(Y, Z)=\frac{r}{n} g(Y, Z)
$$

which shows that M is an Einstein manifold.
On putting ξ for Z in (3.14), we get

$$
\begin{equation*}
[a+b(n-1)]\left[(n-1)\left(\alpha^{2}-\rho\right)-\frac{r}{n}\right] \eta(Y)=0 \tag{3.15}
\end{equation*}
$$

Since

$$
\eta(Y) \neq 0
$$

hence from (3.15), we have

$$
r=n(n-1)\left(\alpha^{2}-\rho\right)
$$

Hence we can state the following:
Theorem 3.3. If in an $(L C S)_{n}$-manifold M the relation $\left(C_{1}^{1} \widetilde{P}\right)(Y, Z)=0$ holds, then M is an Einstein manifold with scalar curvature

$$
r=n(n-1)\left(\alpha^{2}-\rho\right), \quad \text { provided that }[a+b(n-1)] \neq 0
$$

4. An Einstein $(L C S)_{n}$-manifold Satisfying $R(X, Y) \cdot \widetilde{P}=0$

In this section we assume that

$$
\begin{equation*}
(R(X, Y) \cdot \widetilde{P})(U, V) W=0 \tag{4.1}
\end{equation*}
$$

Let an $(L C S)_{n}$-manifold be an Einstein manifold, then its Ricci tensor S is of the form

$$
\begin{equation*}
S(X, Y)=k g(X, Y) \tag{4.2}
\end{equation*}
$$

where k is a constant.
From (3.1) and (4.2), we have

$$
\begin{aligned}
\widetilde{P}(X, Y) Z & =a R(X, Y) Z+b k[g(Y, Z) X-g(X, Z) Y] \\
& -\frac{r}{n}\left(\frac{a}{n-1}+b\right)[g(Y, Z) X-g(X, Z) Y] .
\end{aligned}
$$

It can be written as

$$
\begin{gather*}
\prime \widetilde{P}(X, Y, Z, W)=a^{\prime} R(X, Y, Z, W)+\left[b k-\frac{r}{n}\left(\frac{a}{n-1}+b\right)\right] \tag{4.3}\\
{[g(Y, Z) g(X, W)-g(X, Z) g(Y, W)] .}
\end{gather*}
$$

Putting ξ for W in (4.3) and using (2.6), we get

$$
\begin{align*}
\eta(\widetilde{P}(X, Y) Z)= & {\left[a\left(\alpha^{2}-\rho\right)+b k-\frac{r}{n}\left(\frac{a}{n-1}+b\right)\right][g(Y, Z) \eta(X)} \tag{4.4}\\
& -g(X, Z) \eta(Y)]
\end{align*}
$$

Putting ξ for X in (4.4), we get

$$
\begin{align*}
\eta(\widetilde{P}(\xi, Y) Z)= & {\left[a\left(\alpha^{2}-\rho\right)+b k-\frac{r}{n}\left(\frac{a}{n-1}+b\right)\right][-g(Y, Z)} \tag{4.5}\\
& -\eta(Y) \eta(Z)]
\end{align*}
$$

Again putting ξ for Z in (4.4), we get

$$
\begin{equation*}
\eta(\widetilde{P}(X, Y) \xi)=0 \tag{4.6}
\end{equation*}
$$

Now,

$$
\begin{aligned}
(R(X, Y) \cdot \widetilde{P})(U, V) W & =R(X, Y) \widetilde{P}(U, V) W-\widetilde{P}(R(X, Y) U, V) W \\
& -\widetilde{P}(U, R(X, Y) V) W-\widetilde{P}(U, V) R(X, Y) W
\end{aligned}
$$

In view of (4.1), we get

$$
\begin{align*}
& R(X, Y) \widetilde{P}(U, V) W-\widetilde{P}(R(X, Y) U, V) W \tag{4.7}\\
& \quad-\widetilde{P}(U, R(X, Y) V) W-\widetilde{P}(U, V) R(X, Y) W=0
\end{align*}
$$

Therefore,

$$
\begin{aligned}
& g(R(\xi, Y) \widetilde{P}(U, V) W, \xi)-g(\widetilde{P}(R(\xi, Y) U, V) W, \xi) \\
& -g(\widetilde{P}(U, R(\xi, Y) V) W, \xi)-g(\widetilde{P}(U, V) R(\xi, Y) W, \xi)=0
\end{aligned}
$$

From this it follows that

$$
\begin{align*}
& -^{\prime} \widetilde{P}(U, V, W, Y)-\eta(Y) \eta(\widetilde{P}(U, V) W)+\eta(U) \eta(\widetilde{P}(Y, V) W) \tag{4.8}\\
& +\eta(V) \eta(\widetilde{P}(U, Y) W)+\eta(W) \eta(\widetilde{P}(U, V) Y)-g(Y, U) \eta(\widetilde{P}(\xi, V) W) \\
& -g(Y, V) \eta(\widetilde{P}(U, \xi) W)-g(Y, W) \eta(\widetilde{P}(U, V) \xi)=0
\end{align*}
$$

Putting U for Y, in (4.8), we get

$$
\begin{align*}
& -^{\prime} \widetilde{P}(U, V, W, U)-\eta(U) \eta(\widetilde{P}(U, V) W)+\eta(U) \eta(\widetilde{P}(U, V) W) \tag{4.9}\\
& +\eta(V) \eta(\widetilde{P}(U, U) W)+\eta(W) \eta(\widetilde{P}(U, V) U)-g(U, U) \eta(\widetilde{P}(\xi, V) W) \\
& \quad-g(U, V) \eta(\widetilde{P}(U, \xi) W)-g(U, W) \eta(\widetilde{P}(U, V) \xi)=0
\end{align*}
$$

Let $\left\{e_{i}\right\}, i=1,2, \cdots, n$ be an orthonormal basis of the tangent space at any point. Then the sum $1 \leq i \leq n$ of the relation (4.9) for $U=e_{i}$ gives

$$
\begin{align*}
\eta(\widetilde{P}(\xi, V) W) & =\frac{1}{(n-1)}\left[-a S(V, W)-\left\{b k-\frac{r}{n}\left(\frac{a}{n-1}+b\right)\right\}\right. \tag{4.10}\\
& (n-1) g(V, W)-\left\{a\left(\alpha^{2}-\rho\right)+b k-\frac{r}{n}\left(\frac{a}{n-1}+b\right)\right\} \\
& (n-1) \eta(V) \eta(W)]
\end{align*}
$$

Using (4.4) and (4.10), it follows from (4.8) that

$$
\begin{align*}
' \widetilde{P}(U, V, W, Y)= & {\left[a\left(\alpha^{2}-\rho\right)+b k-\frac{r}{n}\left(\frac{a}{n-1}+b\right)\right] } \tag{4.11}\\
& {[g(V, W) g(Y, U)-g(U, W) g(V, Y)] . }
\end{align*}
$$

From (4.3) and (4.11), we get

$$
{ }^{\prime} R(U, V, W, Y)=\left(\alpha^{2}-\rho\right)[g(V, W) g(Y, U)-g(U, W) g(V, Y)], \quad a \neq 0 .
$$

Therefore, we can state
Theorem 4.1. If in an Einstein $(L C S)_{n}$-manifold, the relation $(R(X, Y) \cdot \widetilde{P})=0$ hold, then M is of constant curvature, provided $a \neq 0$.

5. 3-dimentional $(L C S)_{n}$-manifold

Let us consider a 3 -dimensional $(L C S)_{n}$-manifold. In a 3 -dimensional Riemannian manifold we have

$$
\begin{align*}
R(X, Y) Z= & g(Y, Z) Q X-g(X, Z) Q Y+S(Y, Z) X-S(X, Z) Y \tag{5.1}\\
& -\frac{r}{2}[g(Y, Z) X-g(X, Z) Y] .
\end{align*}
$$

Since the dimension of manifold is 3 , so the equation (2.11) reduces to

$$
\begin{equation*}
S(X, \xi)=2\left(\alpha^{2}-\rho\right) \eta(X) \tag{5.2}
\end{equation*}
$$

Putting ξ for Z in (5.1) and using (2.8), we have

$$
\begin{equation*}
\eta(Y) Q X-\eta(X) Q Y=\left[-\left(\alpha^{2}-\rho\right)+\frac{r}{2}\right][\eta(Y) X-\eta(X) Y] \tag{5.3}
\end{equation*}
$$

Putting ξ for Y in (5.3) and using (5.2) and (2.1), we get

$$
Q X=\left[-\left(\alpha^{2}-\rho\right)+\frac{r}{2}\right] X+\left[-3\left(\alpha^{2}-\rho\right)+\frac{r}{2}\right] \eta(X) \xi
$$

i.e.,

$$
\begin{equation*}
S(X, Y)=\left[-\left(\alpha^{2}-\rho\right)+\frac{r}{2}\right] g(X, Y)+\left[-3\left(\alpha^{2}-\rho\right)+\frac{r}{2}\right] \eta(X) \eta(Y) \tag{5.4}
\end{equation*}
$$

Therefore a 3 -dimensional manifold is η-Einstein.
Hence we can state the following:
Theorem 5.1. A 3-dimensional $(L C S)_{n}$-manifold is an η-Einstein manifold.

Using (5.4) in (5.1), we get

$$
\begin{align*}
R(X, Y) Z & =\left[-2\left(\alpha^{2}-\rho\right)+\frac{r}{2}\right][g(Y, Z) X-g(X, Z) Y] \tag{5.5}\\
& +\left[-3\left(\alpha^{2}-\rho\right)+\frac{r}{2}\right][g(Y, Z) \eta(X) \xi-g(X, Z) \eta(Y) \xi \\
& +\eta(Y) \eta(Z) X-\eta(X) \eta(Z) Y]
\end{align*}
$$

An $(L C S)_{n}$-manifold M is said to be a manifold of quasi-constant curvature if its curvature tensor R satisfies

$$
\begin{align*}
R(X, Y) Z & =A[g(Y, Z) X-g(X, Z) Y]+B[g(Y, Z) \eta(X) \xi \tag{5.6}\\
& -g(X, Z) \eta(Y) \xi+\eta(Y) \eta(Z) X-\eta(X) \eta(Z) Y] .
\end{align*}
$$

where A and B are smooth functions on M and B is not identically zero on M. The notion of a manifold of quasi-constant curvature was first introduced by Chen and Yano in 1972 for a Riemannian manifold [2].

Hence in view of (5.5) and (5.6), we have the following theorem:
Theorem 5.2. A 3-dimensional $(L C S)_{n}$-manifold is a manifold of quasi-constant curvature.

An $(L C S)_{n}$-manifold is said to be a space form if the manifold is a space of constant curvature[4].

Hence from (5.5), we have the following:
Theorem 5.3. A 3-dimensional $(L C S)_{n}$-manifold is a space form if and only if

$$
r=6\left(\alpha^{2}-\rho\right)
$$

Next, we consider a 3-dimensional $(L C S)_{n}$-manifold which satisfies the condition

$$
\begin{equation*}
R(X, Y) \cdot S=0 \tag{5.7}
\end{equation*}
$$

From (5.7), we have

$$
\begin{equation*}
S(R(X, Y) U, V)+S(U, R(X, Y) V)=0 \tag{5.8}
\end{equation*}
$$

Again from (2.6), we get

$$
\begin{equation*}
R(X, \xi) Z=\left(\alpha^{2}-\rho\right)[\eta(Z) X-g(X, Z) \xi] \tag{5.9}
\end{equation*}
$$

Putting ξ for Y in (5.8) and using (5.9), we get

$$
\begin{align*}
& \eta(U) S(X, V)-g(X, U) S(V, \xi)+\eta(V) S(U, X) \tag{5.10}\\
& \quad-2\left(\alpha^{2}-\rho\right) g(X, V) \eta(U)=0
\end{align*}
$$

Taking a frame field and contracting over X and U from (5.10), we obtain

$$
\begin{equation*}
S(\xi, V)+\left[r-8\left(\alpha^{2}-\rho\right)\right] \eta(V)=0 \tag{5.11}
\end{equation*}
$$

Using (5.2) in (5.11), we obtain

$$
\left[r-6\left(\alpha^{2}-\rho\right)\right] \eta(V)=0
$$

This gives $r=6\left(\alpha^{2}-\rho\right)($ since $\eta(V) \neq 0)$, which implies by Theorem 5.3 that the manifold is a space form.
Hence we can state the following:
Theorem 5.4. A 3-dimensional Ricci semi-symmetric $(L C S)_{n}$-manifold is a space form.

Since $\nabla S=0$ implies $R(X, Y) \cdot S=0$, we get the following:
Corollary 5.1. A 3-dimensional Ricci semi-symmetric $(L C S)_{n}$-manifold is a space form.

REFERENCES

1. J.K. Beem and P.E. Ehrlich: Global Lorentzian geometry, Marcel Dekker, New Yaark(1981).
2. B.Y. Chain and K. Yano: Hypersurfaces of a conformally space,Tensor N.S., 26(1972),315-321
3. K. Matsumoto: Conformal Killing vector field in a P-Sasakian manifold, J. Korean Math.Soc., 14(1)(1977), 135-142.
4. K. Matsumoto: On Lorintzian para contact manifolds, Bull of Yamagata University Univ. Nat. Sci.,12(1989), 151-156.
5. I. Mihai and R. Rosca: On Lorentzian P-Sasakian manifolds, Classical Analysis, World Scientific Publi., Singapore, (1992), 155-169.
6. B. O'Nill: Semi -Riemannian geometry, Academic Press, New Yark,(1983).
7. B. Prasad: A pseudo projective curvature tensor on a Riemannian manifold, Bull.Call.Math. Soc., 94(3)(2002), 163-166.
8. A.A. Shaikh: On Lorentzian almost paracontact manifolds with a structure of the concircular type, Kyongpook math. J., 43(2003),305-314.
9. A.A. Shaikh, T. Basu and S. Eyasmin: On the existence of φ-recurrent $(L C S)_{n}$-manifolds, Extracta Mathematicae, 23,(1)(2008), 71-83.
10. G.T. Sreenivasa, Venkatesga and C.S. Bagewadi: Some results on $(L C S)_{n}-$ manifold, Bulletin of Mathematical Analysis and Applications, 1(3)(2009), 64-70.

Rajesh Kumar

Department of Mathematics
Pachhunga University College
Aizawl-796001,
Mizoram, India
rajesh_mzu@yahoo.com

