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SOME RESULTS RELATED TO SOFT TOPOLOGICAL SPACES

E. Peyghan, B. Samadi and A. Tayebi

Abstract. The notion of soft sets is introduced as a general mathematical tool for dealing
with uncertainty. In this paper, we consider the concepts of soft compactness, countably
soft compactness and obtain some results. We study some soft separation axioms that
have been studied by Min and Shabir-Naz. By constructing a special soft topological
space, we show that some classical results in general topology are not true about soft
topological spaces, for instance, every compact Housdorff space need not be normal.
Keywords: Soft closed, Soft compact space, Soft open, Soft topological spaces.

1. Introduction

During recent years General Topology has been developed by many mathemati-
cians. The theory of generalized topological spaces, which was founded by Á.
Császár is one of these developments [6]. Recently, in [16] Shabir-Naz introduced
and studied the concepts of soft topological spaces and some related concepts.
The generalized topology is different from topology by its axioms (A collection of
subsets of X is a generalized topology on X if and only if it contains an empty set
and an arbitrary union of its elements). Soft topology, however, is based on soft
sets theory and not sets.

Some notions in Mathematics can be considered as mathematical tools for deal-
ing with uncertainties, namely, theory of fuzzy sets, theory of intuitionistic fuzzy
sets, theory of vague sets, theory of rough sets, etc. But all of these theories have
their own difficulties. In [11], Molodtsov introduced the concept of a soft set in
order to solve complicated problems in economics, engineering and environmental
areas because no mathematical tool can successfully deal with the various kinds
of uncertainties in these problems. He successfully applied the soft theory in
several directions, such as game theory, probability, Perron integration, Riemann
integration and theory of measurement [11, 12].

In [9], Maji-Biswas-Roy defined and studied operations of soft sets. Then
Pei-Miao [14] and Chen [5] improved the work of Maji-Biswas-Roy [8, 9]. The
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properties and applications of soft set theory were studied increasingly in [1]. In
[3],Çağman-Enginoglu redefined the operations of soft sets and constructed a uni-
int decision-making method by using these new operations, and developed soft
set theory. Then to make compaction with the operations of soft sets easy, they
presented soft matrix theory and set up the soft max¢min decision-making method
[4]. These decision-making methods can be successfully applied to many problems
that contain uncertainties. In [16], the authors studied some concepts related to
soft spaces such as soft interior, soft subspace and soft separation axioms. Re-
cently, Aygunoglu-Aygun introduced soft product topology and defined a version
of compactness in soft spaces named soft compactness [2].

In this paper, we consider the concepts of soft compactness and countably soft
compact and get some results. Then, we study some soft separation axioms that
have been studied by Min and Shabir-Naz. By constructing some examples we
show that some classical results in General Topology are not true about soft topo-
logical spaces, for instance, every compact Housdorff space need not be normal.

2. Preliminaries

In this section, we recall some definitions and concepts discussed in [7, 10, 16, 17].
Let U be an initial universe and E be a set of parameters. Let P(U) denote the
power set of U and A be a nonempty subset of E. A pair (F,A) is called a soft set
over U, where F is a mapping given by F : A → P(U). For two soft sets (F,A) and
(G,B) over common universe U, we say that (F,A) is a soft subset (G,B) if A ⊆ B and
F(e) ⊆ G(e), for all e ∈ A. In this case, we write (F,A)⊆̃(G,B) and (G,B) is said to be
a soft super set of (F,A). Two soft sets (F,A) and (G,B) over a common universe U
are said to be soft equal if (F,A)⊆̃(G,B) and (G,B)⊆̃(F,A). A soft set (F,A) over U is
called a null soft set, denoted by ΦA, if for each e ∈ A, F(e) = Ø. Similarly, it is called
absolute soft set, denoted by Ũ, if for each e ∈ A, F(e) = U.

The union of two soft sets (F,A) and (G,B) over the common universe U is the
soft set (H,C), where C = A ∪ B and for each e ∈ C,

H(e) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
F(e) e ∈ A − B
G(e) e ∈ B − A

F(e) ∪ G(e) e ∈ A ∩ B

We write (F,A) ∪ (G,B) = (H,C). Moreover, the intersection (H,C) of two soft sets
(F,A) and (G,B) over a common universe U, denoted by (F,A)∩ (G,B), is defined as
C = A∩ B and H(e) = F(e)∩G(e) for each e ∈ C. The difference (H,E) of two soft sets
(F,E) and (G,E) over X, denoted by (F,E) − (G,E), is defined as H(e) = F(e) − G(e),
for each e ∈ E. Let Y be a nonempty subset of X. Then Ỹ denotes the soft set (Y,E)
over X where Y(e) = Y, for each e ∈ E. In particular, (X,E) will be denoted by X̃.
Let (F,E) be a soft set over X and x ∈ X. We say that x ∈ (F,E), whenever x ∈ F(e),
for each e ∈ E [15].
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The relative complement of a soft set (F,A) is denoted by (F,A)′ and is defined
by (F,A)′ = (F′,A) where F′ : A→ P(U) is defined by following

F′(e) = U − F(e), ∀e ∈ A.

In this paper, for convenience, let SS(X)E be the family of soft sets over X with
set of parameters E. We will apply two next propositions so much in the proofs.

Proposition 2.1. Let (F,E), (G,E), (H,E) and (I,E) be soft sets in SS(X)E. Then the
following holds.

(i) (F,E)⊆̃(G,E) if and only if (F,E)∩ (G,E) = (F,E);

(ii) (F,E)⊆̃(G,E), (H,E) if and only if (F,E)⊆̃(G,E)∩ (H,E);

(iii) If (F,E)⊆̃(H,E) and (G,E)⊆̃(I,E), then (F,E)∪ (G,E)⊆̃(H,E)∪ (I,E);

(iv) (F,E)∩ (F,E)′ = ΦE;

(v) (F,E)∩ (G,E) = ΦE if and only if (F,E)⊆̃(G,E)′;

(vi) (F,E)⊆̃(G,E) if and only if (G,E)′⊆̃(F,E)′.

Proof. Here, we only prove the (iii). Let (F,E) ∪ (G,E) = (J,E) and (H,E) ∪ (I,E) =
(K,E). Since (F,E)⊆̃(H,E) and (G,E)⊆̃(I,E); then

F(e)⊆H(e) and G(e)⊆I(e), ∀e ∈ E.

Therefore
J(e) = F(e) ∪ G(e) ⊆ H(e) ∪ I(e) = K(e).

Hence (J,E)⊆̃(K,E).

Also we can obtain the following easily.

Proposition 2.2. Let (F,E), (G,E) and (H,E) be soft sets and {(Fα,E)}α∈J be a family of
soft sets in SS(X)E. Then the following holds.

(i) (F,E)∩ (F,E)′ = ΦE;

(ii) (F,E)∪ ΦE = (F,E);

(iii) (F,E)∩ (∪α∈J(Fα,E)) = ∪α∈J((F,E)∩ (Fα,E));

(iv) If (F,E)⊆̃(G,E) and (G,E)∩ (H,E) = ΦE, then (F,E)∩ (H,E) = ΦE;

(v) Φ′E = X̃;

(vi) X̃′ = ΦE.
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Let τ be the collection of soft sets over X. Then τ is called a soft topology on X
if τ satisfies the following axioms:

(i) ΦE and X̃ belong to τ.
(ii) The union of any number of soft sets in τ belongs to τ.
(iii) The intersection of any two soft sets in τ belongs to τ.

The triple (X, τ,E) is called a soft topological space over X. The members of τ are
said to be soft open in X, and the soft set (F,E) is called soft closed in X if its relative
component (F,E)′ belongs to τ.

The proof of the following proposition is an easy application of De Morgan’s
laws with the definition of a soft topology on X (see Proposition 3.3 of [17]).

Proposition 2.3. Let (X, τ,E) be a soft space over X. Then

1) ΦE and X̃ are closed soft sets over X;

2) The intersection of any number of soft closed sets is a soft closed set over X;

3) The union of any two soft closed sets is a soft closed set over X.

3. Soft Compactness

In this section, we are going to introduce the concept of soft compactness concerning
soft topological spaces and study some properties related to these spaces (also, see
[17]).

A familyA = {(Fα,E)}α∈J of soft sets is a cover of a soft set (F,E) if

(F,E)⊆̃
⋃
α∈J

(Fα,E).

It is a soft open cover if each member ofA is a soft open set. A subcover ofA is a
subfamily ofAwhich is also a cover. A soft topological space (X, τ,E) is said to be
soft compact if each soft open cover of (X,E) has a finite subcover.

Let (X, τ1,E) and (X, τ2,E) be soft topological spaces. If τ1 ⊆ τ2, then τ2 is soft
finer than τ1. If τ1 ⊆ τ2 or τ2 ⊆ τ1, then τ1 is soft comparable with τ2. Then, we
have the following.

Proposition 3.1. Let (X, τ2,E) be a soft compact space and τ1 ⊆ τ2. Then (X, τ1,E) is
soft compact.

Proof. Let {(Fα,E)}α∈J be a soft open cover of X̃ by soft open sets of (X, τ1,E). Since
τ1 ⊆ τ2, then {(Fα,E)}α∈J is a soft open cover of X̃ by soft open sets of (X, τ2,E). But
(X, τ2,E) is soft compact. Therefore

(X,E)⊆̃(Fα1 ,E)∪ . . . ∪ (Fαn ,E),

for some α1, . . . , αn ∈ J. Hence (X, τ1,E) is soft compact.



Some Results Related to Soft Topological Spaces 329

Let (F,E) be a soft set over X and Y be a nonempty subset of X. Then the sub-soft
set of (F,E) over Y denoted by (YF,E) is defined as follows

YF(e) = Y ∩ F(e),

for each e ∈ E. In other words (YF,E) = Ỹ ∩ (F,E). Now, suppose that (X, τ,E) is a
soft topological space over X and Y is a nonempty subset of X. Then

τY = {(YF,E)|(F,E) ∈ τ},
is said to be soft relative topology on Y and (Y, τY,E) is called a soft subspace of
(X, τ,E). Here, we exhibit a criterion that implies Ỹ is soft compact by soft open
covers of Ỹ, that all of members are soft open sets in X.

Theorem 3.1. Let (Y, τY,E) be a soft subspace of a soft space (X, τ,E). Then (Y, τY,E) is
soft compact if and only if every cover of Ỹ by soft open sets in X contains a finite subcover.

Proof. Let (Y, τY,E) be soft compact and {(Fα,E)}α∈J be a cover of Ỹ by soft open sets
in X. By Propositions 2.1 and 2.2, we can see that {YFα,E}α∈J is a soft open cover of
Ỹ. Therefore

(Y,E)⊆̃(YFα1 ,E)∪ . . . ∪ (YFαn ,E),

for some α1, . . . , αn ∈ J. This implies that {(Fαi ,E)}ni=1 is a subcover of Ỹ by soft open
sets in X. Conversely, let {(YFα,E)}α∈J be a soft open cover of Ỹ. It is easy to see that
{(Fα,E)}α∈J is a cover of Ỹ by soft open sets in X. Then we can write

Ỹ⊆̃(Fα1 ,E)∪, . . . ,∪(Fαn ,E),

for some α1, . . . , αn ∈ J. Therefore {(YFαi ,E)}ni=1 is a subcover of Ỹ. Hence (Y, τY,E) is
soft compact.

Definition 3.1. A soft space (X, τ,E) is said to be soft Hausdorff if for each pair
x, y of distinct points of X, there exist disjoint soft open sets containing x and y,
respectively.

Theorem 3.2. Every soft compact subspace of a soft Hausdorff space is soft closed.

Proof. Let (Y, τY,E) be a soft compact subspace of soft Hausdorff space (X, τ,E). Let
x ∈ (X,E) − (Y,E). Then for all y ∈ (Y,E), x � y. Therefore, there exist soft open sets
(Uy,E) and (Uxy,E) containing x and y, respectively such that (Uy,E) ∩ (Uxy,E) =
ΦE. Obviously, {(Uxy,E)}y∈Y is a cover of Ỹ by soft open sets in X. By Theorem
3.1, we have (Y,E)⊆̃(Uxy1 ,E) ∪ . . . ∪ (Uxyn ,E) for some y1, . . . , yn ∈ Y. Now, x ∈
(Uy1 ,E)∩ . . .∩(Uyn ,E) = (Ux,E) and Proposition 2.2 implies that (Ux,E)∩(Y,E) = ΦE.
Hence x ∈ (Ux,E) ⊆ (X,E) − (Y,E). Then (X,E) − (Y,E) =

⋃
x∈X−Y(Ux,E). Therefore

(X,E) − (Y,E) is soft open. Hence (Y,E) is soft closed.
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Using Propositions 2.1 and 2.2, we are going to prove that every soft closed
subspace of a soft compact space is soft compact.

Theorem 3.3. Every soft closed subset of a soft compact space is soft compact.

Proof. Let (Y, τY,E) be a soft subspace of a soft compact space (X, τ,E) such that
(Y,E) is a soft closed in X. Let {(Fα,E)}α∈J be a cover of Ỹ by soft open sets in X.
Since (Y,E)′ is a soft open set in X then Propositions 2.1 and Proposition 2.2 show
that {(Fα,E)}α∈J ∪ {(Y′,E)} form a soft open cover of X̃. Therefore

(X,E)⊆̃(Fα1 ,E) ∪ . . . ∪ (Fαn,E) ∪ (Y′,E),

for some α1, . . . , αn ∈ J. Applying the propositions 2.1 and 2.2, we can see that
{(YFαi ,E)}ni=1 is a subcover of Ỹ. This completes the proof.

Let (X, τ,E) be a soft topological space and B ⊆ τ. If every element of τ can be
written as a union of elements ofB, thenB is called a soft basis for the soft topology
τ. Each element of B is called a soft basis element.

We can characterize soft compact spaces in terms of basis elements as follows:

Theorem 3.4. A soft topological space (X, τ,E) is soft compact if and only if there is a soft
basis B for τ such that every cover of X̃ by elements of B has a finite subcover.

Proof. Let (X, τ,E) be soft compact. Obviously, τ is a soft basis for τ. Therefore,
every cover of X̃ by elements of τ has finite subcover. Conversely, let {(Uα,E)}α∈J be
a soft open cover of X̃. We can write (Uα,E) as a union of basis elements, for each
α ∈ J. These elements form a soft open cover of X̃ such as {(FB,E)}B∈I. Therefore
X̃ = (FB1 ,E) ∪ . . . ∪ (FBn ,E), for some B1, . . . ,Bn ∈ I. Let (FBi ,E)⊆̃(Uαi ,E), for each
1 ≤ i ≤ n. This implies that {(Uαi ,E)}ni=1 is a finite subcover of X̃. Hence, (X, τ,E) is
soft compact.

Remark 3.1. Clearly, a soft set is not a set. Indeed, the differences between soft topological
spaces and topological spaces arise from this fact. In a sense, when |E| = 1, a soft set (F,E)
behaves similar to a set. In fact, in this case the soft set (F,E) is the same as the set F(e),
where E = {e}. Therefore when |E| = 1, soft topological spaces are the same as topological
spaces. Nevertheless, in this paper we will see some differences between these two concepts
when |E| ≥ 2.

Now, we consider the countably soft compact spaces in soft topology. A soft
topological space (X, τ,E) is said to be countably soft compact if every countable soft
open cover of X̃ contains a finite subcover of X̃. Obviously, every soft compact
space is countably soft compact but the following example shows that the converse
is not true in general.
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Example 3.1. We consider the (topological) space SΩ, the minimal uncountable well-ordered
set with order topology (see [13]). Let X = SΩ, E = {e} and τ = {(F,E)|F(e) is open in SΩ}.
Considering Remark 3.1, the soft topological space (X, τ,E) is countably soft compact but
not soft compact.

There is a criterion for a soft space to be countable soft compact in terms of soft
closed sets rather than soft open sets. First we have a definition.

A collection A of soft set is said to have the finite intersection property if for
every finite sub-collection {(A1,E), . . . , (An,E)} of A, the intersection (A1,E) ∩ . . . ∩
(An,E) is non-null.

Theorem 3.5. A soft topological space is countably soft compact if and only if every
countable family of soft closed sets with the finite intersection property has a non-null
intersection.

Proof. Let the soft space (X, τ,E) be countably soft compact. Let the family {(Fn,E)}∞n=1
of soft closed sets have the finite intersection property. If ∩∞n=1(Fn,E) = ΦE by
Proposition 2.2, {(Fn,E)′}∞n=1 is a countable soft open cover of X̃. Therefore X̃ =
(Fn1 ,E)′ ∪ . . . ∪ (Fnk ,E)′, for some n1, . . . , nk ∈ N. Now, De Morgan’s laws and
Proposition 2.2 imply that (Fn1 ,E)∩ . . .∩ (Fnk ,E) = ΦE. This is a contradiction. Con-
versely, Let {(Fn,E)}∞n=1 be a countable soft open cover of X̃ without any subcover.
Then {(Fn,E)′}∞n=1 is a family of soft closed sets over X such that ∩∞n=1(Fn,E)′ = ΦE.
Let n1, . . . , nk be arbitrary positive integers. If (Fn1 ,E)′ ∩ . . . ∩ (Fnk ,E)′ = ΦE then
X̃ = (Fn1 ,E)∪ . . .∪ (Fnk ,E), that is impossible. Therefore (Fn1 ,E)′ ∩ . . .∩ (Fnk ,E)′ � ΦE,
for each n1, . . . , nk ∈ N. This shows that {(Fn,E)′}∞n=1 have the finite intersection
property. Therefore ∩∞n=1(Fn,E)′ � ΦE. This is a contradiction.

An immediate result of previous theorem is the following.

Corollary 3.1. A soft space (X, τ,E) is countably soft compact if and only if every nested
sequence (F1,E)⊇̃(F2,E)⊇̃ . . . of nonnull soft closed sets over X has a non-null intersection.

Proof. Let (X, τ,E) is countably soft compact. The collection {(Fn,E)}∞n=1 have the
finite intersection property. Therefore ∩∞n=1(Fn,E) � ΦE. Conversely, let {(Cn,E)}∞n=1
be a collection of soft closed sets with the finite intersection property. By Proposition
2.3, we construct nested sequence (F1,E)⊇̃(F2,E)⊇̃ . . . of non-null soft closed sets by
setting (Fn,E) = (C1,E)∩ . . .∩ (Cn,E), for each positive integer n. By the hypothesis
∩∞n=1(Fn,E) = ∩∞n=1(Cn,E) � ΦE. Now, Theorem 3.8 implies that (X, τ,E) is countably
soft compact.

4. Soft Separation Axioms

In this section, we study some soft separation axioms that were studied in [10, 16].
First, we recall the definitions.
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A soft topological space (X, τ,E) over X is called a soft T0-space if for each pair
of distinct points, at least one has a neighborhood not containing the other, and a
soft T1-space if for each pair of distinct points, each one has a neighborhood not
containing the other. Also, a soft space (X, τ,E) is said to be a soft T2- space (or soft
Hausdorff) if for each pair x, y of distinct points of X, there exist disjoint soft open
sets containing x and y, respectively.

Obviously, every soft Ti-space (i = 1, 2) is a soft Ti−1-space. But by Remark 3.6
and general topology the converse is not true. In [16], the authors have shown that
if (x,E) is a soft closed set in soft set (X, τ,E), for all x ∈ X, then (X, τ,E) is soft T1,
but the converse does not hold in general.

A soft space (X, τ,E) over X is called soft regular if for each soft closed set (G,E)
and x ∈ X such that x � (G,E) there exist soft open sets (F1,E) and (F2,E) such that
x ∈ (F1,E), (G,E)⊆̃(F2,E) and (F1,E) ∩ (F2,E) = ΦE. The soft space (X, τ,E) is said to
be soft T3-space if it is soft regular and soft T1-space.

Before proceeding, we introduce the concept of soft closure of a soft set (see [7]).
Let (X, τ,E) be a soft topological space and (F,E) be a soft set over X. Then the soft
closure of (F,E), denoted by (F,E), is the intersection of all soft closed super sets of
(F,E). First, we prove the following.

Lemma 4.1. Let (X, τ,E) be a soft topological space and (F,E) be a soft set over X. If
x ∈ (F,E), then every soft open set (G,E) containing x intersects (F,E).

Proof. Let x ∈ (F,E). Let there be a soft open set (G,E) containing x such that (F,E)∩
(G,E) = ΦE. By Proposition 2.1, we have (F,E)⊆̃(G,E)′. Therefore (F,E)⊆̃(G,E)′.
Hence x ∈ (G,E)∩ (G,E)′. This is a contradiction. Therefore (F,E)∩ (G,E) � ΦE, for
each soft open set (G,E) containing x.

The following example shows that the converse of Lemma 4.1 is not true.

Example 4.1. Suppose that the following sets are given: X = {h1, h2, h3}, E = {e1, e2} and
τ = {ΦE, X̃, (F1,E), (F2,E), . . . , (F30,E)} where F1,F2, . . . ,F30 are given in Example 9 of [16].
Then (X, τ) is a soft topological space over X. We consider the soft set (F25,E), where

F25(e1) = {h2}, F25(e2) = X.

It is easy to see that
(F25,E) = (F25,E), h1 � (F2,E).

But for every soft open set (F,E) containing h1, we have (F,E) ∩ (F25,E) � ΦE.

Proposition 4.1. Let (X, τ,E) be a soft regular space. Then, for each point x of X and a
soft open set (F,E) containing x, there exists a soft open set (G,E) containing x such that
(G,E)⊆̃(F,E).
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Proof. Since (F,E)′ is a soft closed set not containing x, then there exist soft open
sets (G,E) and (H,E) such that x ∈ (G,E), (F,E)′⊆̃(H,E) and (G,E) ∩ (H,E) = ΦE.
Proposition 2.1 implies that (G,E)⊆̃(H,E)′. Therefore (G,E)⊆̃(H,E)′⊆̃((F,E)′)′
= (F,E).

The following example shows that the converse of Proposition 4.1 does not hold
in general.

Example 4.2. Let X = {h}, E = {e1, e2} and τ = {ΦE, X̃, (F1,E), (F2,E)}, where

F1(e1) = {h}, F1(e2) = Ø & F2(e1) = Ø,F2(e2) = {h}

It is easy to see that (X, τ,E) is not soft regular. Nevertheless, for h ∈ X and soft

open set X̃ containing h, X̃ itself is a soft open set containing h such that h ∈ X̃⊆̃X̃.

Now, we exhibit a necessary and sufficient condition for a soft space to be a soft
regular space.

Theorem 4.1. A soft space (X, τ,E) is soft regular if and only if for each x ∈ X and soft
closed set (F,E) not containing x, there is a soft open set (G,E) containing x such that
(G,E) ∩ (F,E) = ΦE.

Proof. Let (X, τ,E) be soft regular. There exist soft open sets (G,E) and (H,E) such
that x ∈ (G,E), (F,E)⊆̃(H,E) and (G,E)∩ (H,E) = ΦE. Then (G,E)⊆̃(H,E)′

⊆̃(F,E)′. This implies that (G,E)⊆̃(H,E)′⊆̃(F,E)′. Therefore (G,E) ∩ (F,E) = ΦE.

Conversely, Proposition 2.1 implies that (F,E)⊆̃(G,E)′. Therefore there is a soft
open set (G,E)′ containing (F,E) such that (G,E)∩ (G,E)′ = ΦE. This completes the
proof.

A soft space topological space (X, τ,E) is said to be soft normal if for each soft closed
sets (F,E) and (G,E) over X with null intersection there exist soft open sets (F1,E)
and (F2,E) containing (F,E) and (G,E) respectively, such that (F1,E) ∩ (F2,E) = ΦE.
Also, a soft topological space (X, τ,E) is said to be a soft T4-space if it is soft normal
and soft T1-space.

Theorem 4.2. Let (X, τ,E) be a soft space. Let for each soft closed set (F,E) and soft
open set (G,E) containing (F,E) there is a soft open set (H,E) containing (F,E) such that
(H,E)⊆̃(G,E). Then (X, τ,E) is soft normal.

Proof. For each soft closed sets (F,E) and (I,E) with null intersection (I,E)′ is a
soft open set containing (F,E). Therefore there exists a soft open set (H,E) con-
taining (F,E) such that (H,E)⊆̃(I,E)′. By Proposition 2.1, (I,E)⊆̃(H,E)′. Since
(H,E)⊆̃((H,E)′)′, we have (H,E)∩ (H,E)′ = ΦE. Hence (X, τ,E) is soft normal.
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There is an obvious question to ask at this point. Is a soft T4-space a soft T3-
space? The soft space (X, τ,E) in Example 4.2, shows that the answer is ”NO”. In
fact, it is easy to see that (X, τ,E) is a soft T4-space and not a soft T3-space.

Remark 4.1. In Theorem 3.17 of [10], the following is proved:

Theorem. ([10]) Let (X, τ,E) be a soft topological space over X and x ∈ X. Then the
following are equivalent:

(1) (X, τ,E) is a soft regular space;

(2) For each soft closed set (G,E) such that (x,E)∩(G,E) = ΦE, there exist two soft open sets
(F1,E) and (F2,E) such that (x,E)⊆̃(F1,E), (G,E)⊆̃(F2,E) and (F1,E)∩(F2,E) = ΦE.

By Example 4.2, we can see that this theorem is incorrect. In fact, the soft space (X, τ,E)
in this example satisfies (2), but it is not soft regular. We note that (x,E)∩ (G,E) = ΦE is
not equivalent to x � (G,E) but (x,E)�̃(G,E) is. Therefore, we must replace the condition
(x,E)�̃(G,E) with (x,E)∩ (G,E) = ΦE in Theorem 3.17 of [10].

Remark 4.2. In Theorem 3.25 of [10], the following is proved:

Theorem. ([10]) Let (X, τ,E) be a soft topological space over X. If (X, τ,E) is a soft
normal space and (x,E) is a soft closed set for each x ∈ X, then (X, τ,E) is a soft T3-space.

This theorem is incorrect. The soft space (X, τ,E) in Example 4.2 satisfies the conditions
of the theorem, but it is not a soft T3-space.

There are some familiar results on the applications of compactness in separation
axioms in General Topology such as: Every compact Hausdorff space is normal. But it
is not true about soft topological spaces. Consider the following example.

Example 4.3. Let X = {h}, E = {ei}5i=1 and τ = {ΦE, X̃, (F1,E), (F2,E), (F3,E)}, where

F1(e1) = Ø, F1(e2) = X, F1(e3) = Ø, F1(e4) = X, F1(e5) = Ø;

F2(e1) = X, F2(e2) = X, F2(e3) = X, F2(e4) = Ø, F2(e5) = X;

F3(e1) = Ø, F3(e2) = X, F3(e3) = Ø, F3(e4) = Ø, F3(e5) = Ø.

It is easy to see that (X, τ,E) is not soft normal. Nevertheless, it is soft compact.

It is remarkable that a soft compact Hausdorff space need not be soft normal,
even if we consider (X, τ,E) as a soft regular space. Indeed, the example 4.2 is a
counterexample.
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5. Conclusion

Here we investigated soft topological spaces with an emphasis on soft compactness.
A soft space (X, ¢¢τ,E¢¢) can be considered as a topological space when |E| = 1.
Therefore we can consider the results of soft spaces for topological spaces. But
there are some classical results in general topology that they fail if we use soft
topology. For example, a soft T¢¢4¢¢-space need not be a soft T¢¢3¢¢-space and a
soft compact Hausdorff space need not be a soft T¢¢4¢¢-space.
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