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GENERALIZATION OF CERTAIN RESULTS ON PROJECTIVE MOTION IN
A FINSLER SPACE

P.N. Pandey and Sweta Kumari∗

Abstract. The paper contains a study of an infinitesimal projective motion in a Finsler
space Fn(n > 2), which leaves invariant the skew-symmetric part of the covariant deriva-
tive of projective deviation tensor and it is proved that either the Finsler space Fn(n > 2)
admitting such projective motion is a space of scalar curvature or the infinitesimal projec-
tivemotion is necessarily an affinemotion. It is established that an infinitesimal projective
motion in a projectively flat as well as in a non-Riemannian symmetric Finsler space of
dimension greater than 2, is necessarily an affine motion while a symmetric Finsler space
Fn(n > 2) admitting a non-affine projective motion is a Riemannian space of constant
Riemannian curvature. An infinitesimal projective motion in a Finsler space Fn(n > 2) of
recurrent projective deviation tensor is an affine motion if the projective motion leaves
invariant the recurrence vector of the space. It is further proved that such result also
holds in case of projective recurrent and recurrent Finsler space of dimension greater
than 2.
Keywords: Finsler space, Projective motion, projectively symmetric space, recurrent
space, projective recurrent space.

1. Introduction

K. Yano and T. Nagano [1] discussed an infinitesimal projective motion in an
n-dimensional Riemannian space Vn(n > 2) which leaves invariant the covariant
derivative of Weyl’s projective curvature tensor. It was proved by them that if the
space is not of constant curvature then the projectivemotion is necessarily an affine
motion. They also discussed an infinitesimal projective motion in a symmetric
Riemannian space Vn(n > 2) and proved that such space is of constant curvature if
the projective motion is non-affine. P. N. Pandey [2] extended these results to an
n-dimensional Finsler space Fn which leaves invariant the covariant derivative of
Weyl’s projective tensor Wi

jkh. He also generalized these results by considering an
infinitesimal projective motion which leaves invariant the covariant derivative of
the projective deviation tensor. This condition is certainly weaker than the earlier.
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Similar results were also found by P. N. Pandey [2] for a projectively symmetric
Finsler space which is more general than a symmetric Finsler space. The aim of
the present paper is to generalize the results of the first author (P. N. Pandey [2])
by considering an infinitesimal projective motion which leaves invariant the skew-
symmetric part of the covariant derivation tensor. We also aim to prove certain
results for recurrent and projective recurrent Finsler spaces of dimension greater
than 2, admitting an infinitesimal projective motion.

2. Preliminaries

Let us consider a Finsler space Fn(n > 2) of dimension n having F as a metric
function satisfying the requisite conditions [3]. Let us denote the components
of corresponding metric tensor, Berwald’s connection parameters, components
of Berwald’s curvature tensor and components of projective curvature tensor by
�i j,Gi

jk,H
i
jkh and Wi

jkh respectively. H
i
jkh and Wi

jkh are positively homogeneous of

degree 0 in yi and are skew-symmetric in their last two lower indices. Following
tensors are obtained after transvectionof curvature andprojective curvature tensors
by the directional arguments yi of the line element (xi, yi):

(a) Hi
kh = Hi

jkhy
j, (b) Hi

h = Hi
khy

k,

(c)Wi
kh =Wi

jkhy
j, (d) Wi

h =Wi
khy

k.
(2.1)

The tensors Hi
h and Wi

h are called deviation tensor and projective deviation
tensor respectively.

The above tensors are also related by

(a)Hi
jkh = ∂̇ jH

i
kh, (b)Hi

kh =
1
3
(∂̇kHi

h − ∂̇hHi
k),

(c)Wi
jkh = ∂̇ jW

i
kh, (d)Wi

kh =
1
3
(∂̇kWi

h − ∂̇hWi
k)

(e)Wi
h = Hi

h −Hδih −
yi

n + 1
(∂̇rHr

h − ∂̇hH)

(2.2)

where H is scalar curvature defined by H = 1
(n−1)H

i
i and ∂̇r ≡ ∂

∂yr .

The directional differential operator ∂̇k and Berwald covariant differential oper-
ator Bh satisfy the commutation formula:

(2.3) ∂̇kBhTi
j −Bh∂̇kTi

j = Tr
jG

i
khr − Ti

rG
r
khj ,

whereTi
j denote the components of an arbitrary tensor of type (1, 1) andGi

khr = ∂̇rG
i
kh

are components of a symmetric tensor i.e. Gi
jkh = Gi

khj = Gi
hjk. A Finsler space Fn is

called symmetric or projectively symmetric according as [4]

(2.4) BmHi
jkh = 0, Hi

jkh � 0.
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or

(2.5) BmWi
jkh = 0, Wi

jkh � 0.

A Finsler space Fn is called recurrent or projectively recurrent according as

(2.6) BmHi
jkh = λmH

i
jkh, Hi

jkh � 0.

or

(2.7) BmWi
jkh = λmW

i
jkh, Wi

jkh � 0.

The vector λm(� 0) is called recurrence vector. It was established by P. N. Pandey
[5] that the recurrence vector of a recurrent space is independent of directional
arguments provided the scalar curvature, H � 0. The tensors Wi

kh and Wi
h of a

recurrent as well as a projectively recurrent Finsler space are recurrent, i.e.

(2.8) (a)BmWi
kh = λmW

i
kh, (b)BmWi

h = λmW
i
h.

Let us consider an infinitesimal transformation T : Fn → Fn such that T(xi) = x̃i and

(2.9) x̃i = xi + εvi(xj)

where ε is an infinitesimal constant. Let us denote the operator of Lie- differentia-
tion with respect to the above transformation by £. The commutation formula for
the operators £ and Bm is given by

(2.10) £BmTi
j −Bm£Ti

j = Tr
j£G

i
rm − Ti

r£G
r
jm − (∂̇rTi

j)£G
r
mhy

h

where Ti
j are components of an arbitrary tensor of type (1, 1).

The transformation (2.9) is known as an affine motion or a projective motion if it
preserves the parallelism of vectors or geodesics respectively. The necessary and
sufficient condition for the transformation (2.9) to be an affine motion is

(2.11) £Gi
jk = 0

while the necessary and sufficient condition for the transformation (2.9) to be a
projective motion is

(2.12) £Gi
jk = yipjk + pjδ

i
k + pkδij,

where

(2.13) (a) pj = ∂̇ jp, (b) pjk = ∂̇ j∂̇kp,

and p is a scalar invariant which is positively homogeneous in yi of degree 1. The
vector pj and the tensor pjk satisfy

(2.14) (a) pjyj = p, (b) pjkyk = 0.

Every affine motion is a projective motion trivially. A non-affine projective motion
is characterized by (2.12) and p � 0.
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3. Projective Motion in Symmetric and Projectively Symmetric Finsler Spaces

Let a Finsler space Fn(n > 2) admits an infinitesimal projective motion. Then, we
have (2.12) together with (2.13). The integrability condition [3] of (2.12) is given by

(3.1) £Wi
jkh = 0.

Transvecting (3.1) by yj and using (2.1c), we get

(3.2) £Wi
kh = 0.

Again transvecting (3.2) by yk and using (2.1d), we get

(3.3) £Wi
h = 0.

Replacing Ti
j in the commutation formula (2.10) by Wi

j and using (3.3), we have

(3.4) £BmWi
j =Wr

j£G
i
rm −Wi

r£G
r
jm − (∂̇rWi

j)£G
r
msy

s

which in view of (2.12) yields

(3.5) £BmWi
j = yiWr

jprm + prWr
jδ

i
m − pjWi

m − 2pmWi
j − (∂̇mWi

j)p.

Taking skew-symmetric part of (3.5) with respect to the indices m and j, we obtain

£(BmWi
j −B jWi

m) = yiWr
jprm − yiWr

mprj + pr(Wr
jδ

i
m −Wr

mδ
i
j)

+(pjWi
m − pmWi

j) − p(∂̇mWi
j − ∂̇ jWi

m).
(3.6)

Under the assumption that the left hand side of (3.6) equals to zero, i.e. £(BmWi
k −

BkWi
m) = 0, it follows that

(3.7) yiWr
jprm − yiWr

mprj + pr(Wr
jδ

i
m −Wr

mδ
i
j) + (pjWi

m − pmWi
j) − 3pWi

mj = 0.

Transvecting (3.7) by ym and using (2.14a), we conclude

(3.8) yiprWr
j − 4pWi

j = 0.

Transvecting (3.8) by pi and using (2.14a), we get

(3.9) 3pprWr
j = 0.

This implies at least one of the following conditions:

(3.10) (a) p = 0, (b) prWr
j = 0.

If (3.10a) holds, the projective motion is an affine motion. If (3.10a) does not hold,
(3.10b) must hold. Using (3.10b) in (3.8), we get pWi

j = 0, which implies Wi
j = 0 for

p � 0. Z. I. Szabo [6] and P. N. Pandey [7] proved that a Finsler space Fn(n > 2)
whose projective deviation tensor vanishes identically, is a Finsler space of scalar
curvature. Therefore, the space considered is a Finsler space of scalar curvature.
Thus, the next statement holds.
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Theorem 3.1. A Finsler space Fn(n > 2) admitting an infinitesimal projective motion
which leaves invariant the skew-symmetric part of the covariant derivative of projective
deviation tensor, i.e. £(BmWi

k −BkWi
m) = 0, is a space of scalar curvature or the projective

motion is an affine motion.

Let us consider a Finsler space Fn(n > 2) which satisfies BmWi
k = 0,Wi

k � 0.
Then, the condition £(BmWi

k − BkWi
m) = 0 is trivially satisfied. The Finsler space

considered cannot be of scalar curvature because a Finsler space of scalar curvature
is projectively flat, which gives Wi

h = 0. Therefore, in view of the above theorem,
the next result can be stated.

Theorem 3.2. If the projective deviation tensor Wi
h of a Finsler space F

n(n > 2) satisfies
BmWi

h = 0, an infinitesimal projective motion in such space is necessarily an affine motion.

Since, the projective deviation tensor of a projective symmetric space satisfies
BmWi

h = 0, it is possible to conclude:

Theorem 3.3. An infinitesimal projectivemotion in a projectively symmetric spaceFn(n >
2) is necessarily an affine motion.

Let Fn(n > 2) be a symmetric Finsler space characterised by (2.4). If it admits
an infinitesimal projective motion, then we have (2.12). On transvecting (2.4) by yj

and using (2.1a), we get

(3.11) BmHi
kh = 0.

Differentiating (3.11) partially with respect to yj and using (2.3) , we get

(3.12) Hr
khG

i
jmr −Hi

rhG
r
jmk −Hi

krG
r
jmh = 0.

Transvecting (3.12) by yk and using (2.1a) and (2.1b), we get

(3.13) Hr
hG

i
jmr −Hi

rG
r
jmh = 0.

Transvecting (3.11) by yk and using (2.1b), we get

(3.14) BmHi
h = 0.

Differentiating (3.14) partially with respect to yk and using (2.3) and (3.13), we have

(3.15) Bm∂̇kHi
h = 0.

Contracting the indices i and h in equations (3.14) and (3.15), one can verify

(3.16) BmH = 0 and Bm∂̇kH = 0.
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Contracting the indices i and h in equation (3.15), we conclude

(3.17) Bm∂̇rHr
h = 0.

Differentiating (2.2 e) covariantly with respect to xm and using (3.14), (3.15), (3.16)
and (3.17), we get

(3.18) BmWi
h = 0.

which implies

(3.19) £BmWi
h = 0.

Taking skew-symmetric part of (3.19) with respect to the indices m and h, the next
follows:

(3.20) £(BmWi
h −BhWi

m) = 0.

In view of Theorem 3.1, either the projectivemotion is an affinemotion or the space
is of scalar curvature. P. N. Pandey [8] established that a symmetric Finsler space
Fn of scalar curvature is a Riemannian space of constant Riemannian curvature.
Hence, we conclude:

Theorem 3.4. An infinitesimal projectivemotion in a non-Riemannian symmetric Finsler
space Fn(n > 2) is necessarily an affine motion.

Theorem 3.5. A symmetric Finsler space Fn(n > 2) admitting a non-affine projective
motion is a Riemannian space of constant Riemannian curvature.

4. Projective Motion in Recurrent and Projective Recurrent Finsler Spaces

Let us consider a Finsler space Fn(n > 2) whose projective deviation tensorWi
h

is recurrent. Such Finsler space is characterized by (2.8b) andWi
h � 0. Suppose that

it admits an infinitesimal projective motion (2.9). Then, we have (2.12) together
with (2.13). Operating equation (2.8b) by the Lie differential operator £, we find
£BmWi

h = £(λmWi
h). This implies

(4.1) £BmWi
h = (£λm)Wi

h.

If £λm = 0, equation (4.1) implies £BmWi
h = 0. Therefore, £(BmWi

h −BhWi
m) = 0.

In view of Theorem 3.1, this implies that either the infinitesimal projective motion
is an affine motion or the space is of scalar curvature. The space considered can
not be of scalar curvature for the projective deviation tensor Wi

h of a space of
scalar curvature necessarily vanishes which contradicts our assumption Wi

h � 0.
Therefore, the projective motion is necessarily affine.

This leads to:
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Theorem 4.1. An infinitesimal projectivemotion in a Finsler space Fn(n > 2) of recurrent
projective deviation tensor, which leaves the recurrence vector invariant, is necessarily an
affine motion.

A projective recurrent Finsler space Fn(n > 2) necessarily satisfies (2.8b) [9]. There-
fore, in view of Theorem 4.1, we have:

Corollary 4.1. An infinitesimal projective motion in a projective recurrent Finsler space
Fn(n > 2) is an affine motion if the infinitesimal projective motion leaves the recurrence
vector of the projective recurrent space invariant.

Let us consider a recurrent Finsler space Fn characterised by (2.6). Transvecting
(2.6) by yj and using (2.1a), we have

(4.2) BmHi
kh = λmH

i
kh

Transvecting (4.2) by yk and using (2.1b), we get

(4.3) BmHi
h = λmH

i
h.

Contracting the indices i and h in (4.3), we get

(4.4) BmH = λmH

whereHr
r = (n−1)H. Differentiating (2.2e) covariantly with respect to ym and using

(4.3) and (4.4), we have

(4.5) BmWi
h = λm(H

i
h −Hδih) −

yi

n + 1
(Bm∂̇rHr

h −Bm∂̇rH)

Using the commutation formula exhibited by (2.3) and using (4.3), (4.4) and (2.2e),
we get

(4.6) BmWi
h = λmW

i
h −

yi

n + 1
(Hr

sG
s
hmr −Hs

hG
r
rms).

P. N. Pandey [5] proved that a recurrent space admits the identity (3.13). Thus,
equation (4.6) gives (2.8 b). Therefore, in view of Theorem 4.1, we have the next
result.

Theorem 4.2. An infinitesimal projective motion in a recurrent Finsler space Fn(n > 2)
which leaves the recurrence vector invariant is necessarily an affine motion.
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