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SOME CHARACTERIZATIONS OF CURVES IN GALILEAN

3-SPACE G3

Sezgin Büyükkütük, İlim Kişi, Vishnu Narayan Mishra & Günay Öztürk

Abstract. In this paper, we consider a unit speed curve in Galilean 3-space G3 as a
curve whose position vector can be written as a linear combination of its Serret-Frenet
vectors. We show that there is no T -constant curve in Galilean 3-space G3, and we
obtain some results of N-constant type of curves in Galilean 3-space G3.
Keywords Galilean 3-space, curve, Serret-Frenet vectors, Galilean geometry

1. Introduction

The basic concepts of Euclidean plane geometry are points and straight lines,
and the best known theorem is Pisagor theorem. In nature, however, every sur-
face is not a plane and every line is not a straight line like in Euclidean geometry.
Ömer Hayyam and Tusi were the first scholars to study Euclid’s postulate. How-
ever, in the 19th century, non-Euclidean geometries were set forth by C.F. Gauss,
N.I. Lobachevsky and J. Bolyai, with the discovery of hyperbolic geometry, which
accepts a new postulate (infinite number of parallels can be drawn to a line from a
point outside the given line) instead of the parallel postulate. G.F.B. Riemann laid
the foundations of a new geometry called the elliptic geometry afterwards. Those
geometries were generalized by F. Klein, and Euclid presented the existence of the
nine geometries including the hyperbolic and elliptic ones [18]. Galilean geometry
is a non-Euclidean geometry and associated with Galileo’s principle of relativity.
This principle can be explained briefly as ”in all inertial frames, all laws of physics
are the same.”

(Except for the Euclidean geometry in some cases), Galilean geometry is the
easiest of all Klein geometries, and it is relevant to the theory of relativity of Galileo
and Einstein. For a comprehensive study of Galilean geometry, one can have a look
at the studies by Yaglom [19] and Röschel [17]. Furthermore, many works related to
Galilean geometry have been done by several authors. In [13], the authors studied
helices in the Galilean space G3 and in [5] the authors studied some curves in the
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Galilean space. Similar studies about Galilean geometry may be found in [1, 2, 14].
In [13], the authors obtained characterizations of helix for a curve with respect to
the Frenet frame in a 3-dimensional Galilean space G3. In [9], the authors give
a short and understandable exposition on differential operators over modules and
rings as a path to the generalized differential geometry. Also, in [16], the authors
gave projective flatness of a new class of metrics.

For a regular curve α(x), the position vector α can be decomposed into its
tangential and normal components at each point:

(1.1) α = αT + αN

A curve α in En is said to be of constant ratio if the ratio
∥

∥αT
∥

∥ :
∥

∥αN
∥

∥ is constant

on α(I) where
∥

∥αT
∥

∥ and
∥

∥αN
∥

∥ denote the length of αT and αN , respectively [6].

Moreover, a curve in En is called T -constant (resp. N -constant) if the tangen-
tial component αT (resp. the normal component αN ) of its position vector α is
of constant length [7, 8]. Recently, the authors give the necessary and sufficient
conditions for curves in Euclidean and Minkowski spaces to become T -constant or
N -constant [3, 4, 10, 12].

In the present study, we consider a unit speed curve in Galilean space G3 whose
position vector satisfies the parametric equation

(1.2) α(x) = m0(x)T (x) +m1(x)N(x) +m2(x)B(x),

for some differentiable functions, mi(x), 0 ≤ i ≤ 2. We characterize the twisted
curves in terms of their curvature functions mi(x) and give the necessary and suf-
ficient conditions for these curves to become T -constant or N -constant.

2. Basic Notations

Galilean space is a three dimensional complex projective space P3, in which the
absolute figure {w, f, I1, I2} consists of a real plane w (the absolute plane), a real
line f ⊂ w (the absolute line) and two complex conjugate points, I1, I2 ∈ f (the
absolute points) [11].

We shall take, as a real model of the space G3, a real projective space P3, with
the absolute {w, f} consisting of a real plane w ⊂ G3, and a real line f ⊂ w, on
which an elliptic involution ε has been defined.

Let ε be in homogeneous coordinates

w...x0 = 0, f...x0 = x1 = 0

ε : (0 : 0 : x2 : x3) → (0 : 0 : x3 : −x2) .

In G3 there are four classes of lines:

a) (proper) nonisotropic lines - they do not meet the absolute line f .
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b) (proper) isotropic lines - lines that do not belong to the plane w but meet the
absolute line f .

c) unproper nonisotropic lines - all lines of w but f .

d) the absolute line f .

Planes x = const are Euclidean and so is the plane w. Other planes are isotropic
[13].

The scalar product and cross product of two vectors v1 = (x1, y1, z1) and v2 =
(x2, y2, z2) in G3 are respectively defined by:

(2.1) 〈v1, v2〉 =

{

x1x2, if x1 6= 0 ∨ x2 6= 0
y1y2 + z1z2 if x1 = 0 ∧ x2 = 0,

(2.2) v1 × v2 =
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, if x1 = 0 ∧ x2 = 0

Also the length of the vector v = (x, y, z) is given by

(2.3) ‖v‖ =

{

|x| , if x 6= 0
√

y2 + z2, if x = 0

[15].

A curve α : I ⊂ R → G3 parameterized by the Galilean invariant parameter
(the arc-length on α) is given in the coordinate form

(2.4) α(x) = (x, y(x), z(x)) ,

the curvature κ(x) and the torsion τ(x) are defined by

(2.5) κ(x) =
√

y′′
2(x) + z′′

2(x)

and

(2.6) τ(x) = det
(α′(x), α′′(x), α′′′(x))

κ2(x)
.

The associated moving trihedron is given by

T (x) = α′(x) = (1, y′(x), z′(x))

N(x) =
α′′(x)

κ(x)
=

1

κ(x)
(0, y′′(x), z′′(x))(2.7)

B(x) = (T ×N) (x) =
1

κ(x)
(0,−z′′(x), y′′(x)) .
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The vectors T,N and B are called the vectors of the tangent, principal normal and
the binormal line, respectively. For their derivatives the following Frenet’s formulas
hold [15]

T ′ = κN

N ′ = τB(2.8)

B′ = −τN.

3. Characterization of Curves in G3

In the present section, we characterize the unit speed curves given with the invariant
parameter x in G3 in terms of their curvatures. Let α : I ⊂ R → G3 be a unit
speed regular curve with curvatures κ(x) ≥ 0 and τ(x). The position vector of the
curve (also defined by α) satisfies the vectorial equation (1.2), for some differential
functions mi(x), 0 ≤ i ≤ 2. Differentiating (1.2) with respect to the arc length
parameter x and using the Serret-Frenet equations (2.8), we obtain

α′(x) = m′

0
(x)T (x)

+(m′

1
(x) + κ(x)m0(x) − τ(x)m2(x))N(x)

+(m′

2
(x) + τ(x)m1(x))B(x).

It follows that

m′

0
(x) = 1

m′

1
(x) + κ(x)m0(x) − τ(x)m2(x) = 0(3.1)

m′

2
(x) + τ(x)m1(x) = 0.

The general solution of the equation system (3.1) is obtained in Theorem 3.1 in [1].

Theorem 3.1. [1] The position vector α(x) of an arbitrary curve with curvature
κ(x) and torsion τ(x) in the Galilean space G3 is computed from the natural repre-
sentation form

α(x) = (x,

∫
[
∫

κ(x) cos [τ(x)dx] dx

]

dx,

∫
[
∫

κ(x) sin [τ(x)dx] dx

]

dx).

Definition 3.1. [1] Let α be a regular curve in Galilean space G3 with the Frenet
frame {T,N,B} and κ be its curvature. If κ = 0, then α is called a straight line
with respect to the Frenet frame.

Similar to [6], we give the following definition;

Definition 3.2. Let α : I ⊂ R → G3 be a unit speed curve given with the invariant
parameter x. Then the position vector α can be decomposed into its tangential and
normal components at each point as in (1.1). If the ratio

∥

∥αT
∥

∥ :
∥

∥αN
∥

∥ is constant
on α(I) then α is said to be of constant ratio.
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Clearly, for a constant ratio curve in Galilean space G3, we have

(3.2)
m2

0

m2

1
+m2

2

= c1

for some constant c1.

Theorem 3.2. Let α : I ⊂ R → G3 be a unit speed curve in G3. Then α is of
constant ratio if and only if

(

κ′ + κ3c1(x+ c)

c1κ2τ

)′

=
τ

c1κ

Proof. Let α : I ⊂ R → G3 be a unit speed curve given with the invariant parameter
x. Then from (3.2), the curvature functions satisfy

(3.3) m1(x)m
′

1
(x) +m2(x)m

′

2
(x) =

x+ c

c1

Also, by the use of the equations (3.1) with (3.3) , we have

m1 = −
1

c1κ

Then

m2 =
κ′ + κ3c1(x+ c)

c1κ2τ

m′

2
=

τ

c1κ

So, we get the result.

Example 3.1. Let us consider the following curve

α : I ⊂ R → G3

(3.4) α(x) = (x,
x

2
[sin(ln x)− cos(ln x)] ,

−x

2
[cos(ln x) + sin(lnx)]).

Differentiating (3.4), we have

(3.5) α
′(x) = (1, sin(lnx),− cos(ln x)).

Galilean inner product follows that < α′, α′ >= 1 . So the curve is parameterized by the
arc length and the tangent vector is (3.5). In order to calculate the first curvature let us
express

T
′ = (0,

1

x
cos(ln x),

1

x
sin(ln x))
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Taking the norm of both sides, we have κ(x) = 1

x
. Thereafter, we arrive at

N = (0, cos(ln x), sin(lnx))

and binormal vector
B = (0,− sin(ln x), cos(ln x))

By the use of the parametric equation (2.2), we have the curvature functions:

m0 = x

m1 = −
x

2

m2 =
x

2

So, from (3.2), we get,
m2

0

m2

1
+m2

2

= 2

As a result of this, α is of constant ratio and the ratio is equal to 2.

3.1. T-constant Curves in G3

Similar to [7, 8], we give the following definition.

Definition 3.3. Let α : I ⊂ R → G3 be a unit speed curve in G3. If
∥

∥αT
∥

∥ is
constant, then α is called a T -constant curve. Further, a T -constant curve α is
called first kind if

∥

∥αT
∥

∥ = 0, otherwise second kind.

As a consequence of (1.2) with (3.1) we get the following result.

Proposition 3.1. There is no T-constant unit speed curve in Galilean space G3.

Proof. Let α : I ⊂ R → G3 be a unit speed curve in G3. Then
∥

∥αT
∥

∥ = m0 is zero
or a nonzero constant. However, m0 = x + c from the equations (3.1). This is a
contradiction. Thus, we get the result.

3.2. N-constant Curves in G3

Similar to [7, 8], we give the following definition.

Definition 3.4. Let α : I ⊂ R → G3 be a unit speed curve in G3. If
∥

∥αN
∥

∥ is
constant then α is called a N -constant curve. For a N -constant curve α, either
∥

∥αN
∥

∥ = 0 or
∥

∥αN
∥

∥ = µ for some non-zero smooth function µ. Further, a N -

constant curve α is called first kind if
∥

∥αN
∥

∥ = 0, otherwise second kind.

Note that, for a N -constant curve α in G3, we can write;

(3.6)
∥

∥αN (x)
∥

∥

2

= m2

1
(x) +m2

2
(x) = c1,

where c1 is a real constant.

As a consequence of (1.2), (3.1) and (3.6), we get the following result.
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Lemma 3.1. Let α : I ⊂ R → G3 be a unit speed curve in G3. Then α is a
N -constant curve if and only if

m′

0
(x) = 1

m′

1
(x) + κ(x)m0(x)− τ(x)m2(x) = 0

m′

2
(x) + τ(x)m1(x) = 0

m1(x)m
′

1
(x) +m2(x)m

′

2
(x) = 0

hold, where mi(x), 0 ≤ i ≤ 2 are differentiable functions.

Proposition 3.2. Let α : I ⊂ R → G3 be a unit speed curve in G3. Then α is a
N−constant curve of first kind if and only if, α is a straight line in G3.

Proof. Suppose that α is N -constant curve of first kind in G3. Then m2

1
+m2

2
= 0,

which means m1 = m2 = 0. Using the second equation of (3.1), we get κ = 0. From
definition, α is a straight line in G3.

Example 3.2. [1] The position vector α(x) of a straight line in Galilean space G3 is
given by

α(x) = (x, c1x+ c3, c2x+ c4)

where ci, (i = 1, 2, 3, 4) are arbitrary constants.

Proposition 3.3. Let α : I ⊂ R → G3 be a unit speed curve in G3. If α is
a N−constant curve of second kind, then the position vector of the curve has the
parametrization of the form

α(x) = (x+ c)T (x)

±

[

sec2(u(x))

√

c1

tan(u(x))2 + 1

+ tan(u(x))

(

c1

tan(u(x))2 + 1

)

−1

2

(

−c1u(x) sec
2(u(x))2

(tan(u(x))2 + 1)
2

)]

N(x)

∓ tan(u(x))

√

c1

tan(u(x))2 + 1
B(x),

where u(x) =
∫

τ(x)dx + c2 and c2 is integral constant.

Proof. Using the equations (3.1) with (3.6), we get m0(x) = (x+ c) and the differ-
ential equation

(m′

2
(x))

2
+ (τ(x))

2
(m2(x))

2
− c1 (τ(x))

2
= 0

where c1 6= 0 is a real constant. Then the solution of this differential equation is

(3.7) m2(x) = ∓ tanu(x)

√

c1

tanu(x)2 + 1
.
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Substituting the equation (3.7) in the third equation of (3.1), one can find

m1(x) = ± sec2(u(x))

√

c1

tan(u(x))2 + 1

+ tan(u(x))

(

c1

tan(u(x))2 + 1

)
−1

2

(

−c1u(x) sec
2(u(x))2

(tan(u(x))2 + 1)2

)

,

which completes the proof of Proposition 3.3.
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