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Ser. Math. Inform. Vol. 31, No 3 (2016), 629–644

SOLVABILITY AND STABILITY FOR NONLINEAR FRACTIONAL
INTEGRO-DIFFERENTIAL SYSTEMS OF HIGHT FRACTIONAL

ORDER

Zoubir Dahmani, Amele Täıeb and Nabil Bedjaoui

Abstract. In this paper, using Riemann-Liouville integral and Caputo derivative, we
study an n−dimensional coupled system of nonlinear fractional integro-differential equa-
tions of hight arbitrary order. The contraction mapping principle and Schaefer fixed
point theorem are applied to prove the existence and the uniqueness of solutions in Ba-
nach spaces. Furthermore, we derive the Ulam-Hyers and the generalized Ulam-Hyers
stabilities of solutions. Some illustrative examples are also presented.
Key words: Riemann-Liouville integral, Caputo derivative, fractional integro-differential
equations, Banach space.

1. Introduction and Preliminaries

The fractional calculus has attracted interest of researchers in several areas of
mathematics, physics, chemistry and engineering sciences. For more details, we refer
the reader to the monographs by Hilfer [19], Lakshmikantham [26], Podlubny [33]
and the papers of [3, 5, 18, 20, 24, 30, 31, 32]. In addition, many authors paid much
attention to the existence and uniqueness of solutions for some fractional differential
equations and systems, see for example [1, 2, 4, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 21,
27, 28, 35, 38] and the references therein. Moreover, the study of Ulam type stability
problems has grown to be one of the most important subjects in the mathematical
analysis area. For instance, J. Wang et al. [17] obtained some results on Ulam type
stability in the case of impulsive ordinary differential equations. Then, J. Wang,
L. Lv and Y. Zhou [37] presented some interesting results on Ulam stability for
fractional differential equations with Caputo derivative. Recently, R. Ibrahim [22,
23] obtained some results about Ulam-Hyers stability of solutions for fractional order
dynamic equations. Very recently, in [12, 36], the Ulam-Hyers stability of solutions
has been done for that problems of singular fractional differential equations.

Motivated by the above works, in this paper, we discuss the existence, the
uniqueness and the Ulam-Hyers stability as well as the generalized Ulam-Hyers
stability for the following fractional problem:
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Dα1x1 (t) =
m∑
i=1

g1
i (t, x1 (t) , ..., xn (t)) +

m∑
i=1

Jδ1g1
i (t, x1 (t) , ..., xn (t)) ,

Dα2x2 (t) =
m∑
i=1

g2
i (t, x1 (t) , ..., xn (t)) +

m∑
i=1

Jδ2g2
i (t, x1 (t) , ..., xn (t)) ,

...

Dαnxn (t) =
m∑
i=1

gni (t, x1 (t) , ..., xn (t)) +
m∑
i=1

Jδngni (t, x1 (t) , ..., xn (t)) ,

n∑
k=1

|xk (0)| =
n∑
k=1

∣∣∣x′k (0)
∣∣∣ = ... =

n∑
k=1

∣∣∣x(l−2)
k (0)

∣∣∣ = 0,

x
(l−1)
k (1) = 0, k = 1, 2, ..., n, l ∈ N∗ − {1} ,

(1.1)

where, t ∈ J = [0, 1] , l ∈ N∗ \ {1} , n ∈ N∗, m ∈ N∗, and for k = 1, ..., n,
l− 1 < αk < l, δk, is a nonnegative real number. The operator Jα is the Riemann-
Liouville fractional integral given by:

Jαg(t) =
1

Γ (α)

∫ t

0

(t− s)α−1
g (s) ds, α > 0, t ≥ 0,(1.2)

where Γ (α) :=
∫∞

0
e−xxα−1dx. The operator Dα is the derivative in the sense

of Caputo defined by the following relation

Dαx(t) =
1

Γ (l − α)

∫ t

0

(t− s)l−α−1
x(l) (s) ds = J l−αx(l)(t), l − 1 < α < l.(1.3)

Finally, the functions gki : J ×Rn → R, for k = 1, ..., n, and i = 1, ...,m, will be
specified later.

Now, let us recall some lemmas that we need to prove our main results [25, 29,
34].

Lemma 1.1. For l ∈ N∗ \ {1} , and l − 1 < α < l, the general solution of the
fractional differential equation Dαx(t) = 0, is given by

x(t) =

l−1∑
j=0

cj t
j ,(1.4)

where cj ∈ R, j = 0, ..., l − 1.

Lemma 1.2. Given l ∈ N∗ \ {1} , and l − 1 < α < l. Then

JαDαx(t) = x(t) +

l−1∑
j=0

cj t
j ,(1.5)

where cj ∈ R, j = 0, 1, ..., l − 1.



Solvability and Stability for Nonlinear Fractional Integro-Differential Systems 631

Lemma 1.3. Let q > p > 0, g ∈ L1 ([a, b]) . Then,

DpJqg (t) = Jq−pg (t) , t ∈ [a, b] .

Lemma 1.4. Let E be a Banach space and T : E → E be a completely continuous
operator. If the set V := {x ∈ E : x = νTx, 0 < ν < 1} is bounded, then T has a
fixed point in E.

Also, the following auxiliary result is important to give the integral solution of
(1.1):

Lemma 1.5. Let given l ∈ N∗\{1} , n ∈ N∗, m ∈ N∗, and a family
(
Gki
)
∈ C (J,R)

for i = 1, ...,m, k = 1, ..., n, and consider the problem

Dα1x1(t) =
m∑
i=1

G1
i (t) +

m∑
i=1

∫ t
0

(t−s)δ1−1

Γ(δ1) G1
i (s)ds, t ∈ J,

Dα2x2(t) =
m∑
i=1

G2
i (t) +

m∑
i=1

∫ t
0

(t−s)δ2−1

Γ(δ2) G2
i (s)ds, t ∈ J,

...

Dαnxn(t) =
m∑
i=1

Gni (t) +
m∑
i=1

∫ t
0

(t−s)δn−1

Γ(δn) Gni (s)ds, t ∈ J,

(1.6)

where δk ∈ R+, l − 1 < αk < l,
with the conditions:

n∑
k=1

|xk (0)| =

n∑
k=1

∣∣∣x′k (0)
∣∣∣ = ... =

n∑
k=1

∣∣∣x(l−2)
k (0)

∣∣∣ = 0,

x
(l−1)
k (1) = 0, k = 1, 2, ..., n.(1.7)

Then, the solution (x1, x2, ..., xn) of (1.6)− (1.7) is given by

xk(t) =

m∑
i=1

∫ t

0

(t− s)αk−1

Γ (αk)
Gki (s) ds+

m∑
i=1

∫ t

0

(t− s)αk+δk−1

Γ (αk + δk)
Gki (s) ds

− tl−1

(l−1)!Γ(αk−l+1)

m∑
i=1

∫ 1

0
(1− s)αk−lGki (s) ds

− tl−1

(l−1)!Γ(αk+δk−l+1)

m∑
i=1

∫ 1

0
(1− s)αk+δk−lGki (s) ds, k = 1, 2, ..., n.

(1.8)

Proof. Using Lemma 1.1 and Lemma 1.2 and (1.6) , we get

xk(t) =

m∑
i=1

t∫
0

(t− s)αk−1

Γ (αk)
Gki (s) ds+

m∑
i=1

∫ t

0

(t− s)αk+δk−1

Γ (αk + δk)
Gki (s) ds−

l−1∑
j=0

ckj t
j ,

(1.9)
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where ckj ∈ R, j = 0, 1, 2, ..., l − 1 and l − 1 < αk < l, k = 1, 2, ..., n.

For all k = 1, 2, ..., n, j = 0, 1, ..., l − 2, we can write

x
(j)
k (0) = −j! ckj .

Using Lemma 1.3 and applying the boundary conditions (1.7), we obtain:

ckj = 0, j = 0, 1, ..., l − 2,(1.10)

and

ckl−1 =

m∑
i=1

∫ 1

0

(1− s)αk−l

(l − 1)! Γ (αk − l + 1)
Gki (s) ds

+

m∑
i=1

∫ 1

0

(1− s)αk+δk−l

(l − 1)! Γ (αk + δk − l + 1)
Gki (s) ds,(1.11)

Substituting the values of ckj into (1.9) , we end the proof of Lemma 1.5.

Now, to study the problem (1.1), we introduce the Banach space

S := {(x1, x2, ..., xn) : xk ∈ C ([0, 1] ,R) , k = 1, 2, ..., n} ,

equipped with the norm

‖(x1, x2, ..., xn)‖S = max (‖x1‖∞ , ‖x2‖∞ , ..., ‖xn‖∞) .(1.12)

2. Main Results

In this section, we will formulate and prove sufficient conditions for the existence
and uniqueness of solutions for the system (1.1). Then, we study its Ulam-Hyers
stability as well as its generalized Ulam-Hyers stability.

We begin by listing the following hypotheses:

(H1) : There exist nonnegative constants
(
ωk, k=1,2,...,n
i, i=1,...,m

)
j
, j = 1, 2, ..., n, such that

for all t ∈ [0, 1] and all (x1, x2, ..., xn) , (y1, y2, ..., yn) ∈ Rn, we have

∣∣gki (t, x1, x2, ..., xn)− gki (t, y1, y2, ..., yn)
∣∣ ≤ n∑

j=1

(
ωki
)
j
|xj − yj | , k = 1, ..., n, i = 1, ...,m.

(H2) : The functions gki : [0, 1]×Rn → R are continuous for each i = 1, 2, ...,m and
k = 1, 2, ..., n, m, n ∈ N∗.

(H3) : There exist nonnegative constants
(
Lki
)k=1,2...,n

i=1,...,m
, such that for each t ∈ J

and all (x1, x2, ..., xn) ∈ Rn, we have∣∣gki (t, x1, x2, ..., xn)
∣∣ ≤ Lki , i = 1, ...,m, k = 1, 2, ..., n.
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We also need to define the following quantities:

∆k =
1

Γ (αk + 1)
+

1

Γ (αk + δk + 1)
, k = 1, 2, ..., n,(2.1)

Σk =

m∑
i=1

((
ωki
)

1
+
(
ωki
)

2
+ ...+

(
ωki
)
n

)
, k = 1, 2, ..., n,(2.2)

and

θk =
1

(l − 1)!Γ (αk + 2− l)
+

1

(l − 1)!Γ (αk + δk + 2− l)
, k = 1, 2, ..., n.(2.3)

2.1. Existence and Uniqueness of Solutions

The first result is based on Banach contraction principle. We have:

Theorem 2.1. Assume that (H1) holds and

max (Σ1∆1 + θ1,Σ2∆2 + θ2, ...,Σn∆n + θn) < 1.(2.4)

Then, the system (1.1) has a unique solution on J.

Proof. We define the following nonlinear operator T : S → S, by

T (x1, ..., xn) (t) := (T1 (x1, ..., xn) (t) , T2 (x1, ..., xn) (t) , ..., Tn (x1, ..., xn) (t)) ,
(2.5)
such that,

Tk (x1, ..., xn) (t) =
m∑
i=1

t∫
0

(t−s)αk−1

Γ(αk) Gki (s) ds+
m∑
i=1

∫ t
0

(t−s)αk+δk−1

Γ(αk+δk) Gki (s) ds

− tl−1

(l−1)!Γ(αk−l+1)

m∑
i=1

∫ 1

0
(1− s)αk−lGki (s) ds

− tl−1

(l−1)!Γ(αk+δk−l+1)

m∑
i=1

∫ 1

0
(1− s)αk+δk−lGki (s) ds,

(2.6)

where,

Gki (s) = gki (s, x1 (s) , x2 (s) , ..., xn (s)) , k = 1, 2, ..., n, i = 1, 2, ...,m.(2.7)

We show that T is a contractive operator.

Let (x1, ..., xn) , (y1, ..., yn) ∈ S. Then, for each k = 1, 2, ..., n and t ∈ J, we have:
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|Tk (x1, ..., xn) (t)− Tk (y1, ..., yn) (t)|(2.8)

≤ tαk

Γ (αk + 1)
sup
s∈J

m∑
i=1

∣∣gki (s, x1 (s) , ..., xn (s))− gki (s, y1 (s) , ..., yn (s))
∣∣

+
tαk+δk

Γ (αk + δk + 1)
sup
s∈J

m∑
i=1

∣∣gki (s, x1 (s) , ..., xn (s))− gki (s, y1 (s) , ..., yn (s))
∣∣

+
tl−1

(l − 1)!Γ (αk + 2− l)
sup
s∈J

m∑
i=1

∣∣gki (s, x1 (s) , ..., xn (s))− gki (s, y1 (s) , ..., yn (s))
∣∣

+
tl−1

(l − 1)!Γ (αk + δk + 2− l)
sup
s∈J

m∑
i=1

∣∣gki (s, x1 (s) , ..., xn (s))− gki (s, y1 (s) , ..., yn (s))
∣∣ .

By the hypothesis (H1) , for each k = 1, 2, ..., n, we can write

‖Tk (x1, ..., xn)− Tk (y1, ..., yn)‖(2.9)

≤
(

1

Γ (αk + 1)
+

1

Γ (αk + δk + 1)
+

1

(l − 1)!Γ (αk − l + 2)

+
1

(l − 1)!Γ (αk + δk − l + 2)

)
×max (‖x1 − y1‖ , ..., ‖xn − yn‖)

m∑
i=1

n∑
j=1

(
ωki
)
j
.

Then, we obtain

‖Tk (x1, ..., xn)− Tk (y1, ..., yn)‖ ≤ max
1≤k≤n

(∆kΣk + θk) ‖(x1 − y1, ..., xn − yn)‖S .

(2.10)
Therefore,

‖T (x1, ..., xn)− T (y1, ..., yn)‖S ≤

max (∆1Σ1 + θ1, ...,∆nΣn + θn) ‖(x1 − y1, ..., xn − yn)‖S .(2.11)

Using (2.4), we can see that T is a contractive operator. Consequently, by Banach
fixed point theorem, T has a fixed point which is a solution of the system (1.1) .
Theorem 2.1 is thus proved.

Our second main result is based on Lemma 1.4. We have:

Theorem 2.2. Assume that the hypotheses (H2) and (H3) are satisfied. Then,
the system (1.1) has at least a solution on J.

Proof. (i) : We prove that T is completely continuous.
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Let us take for µ > 0, the set Bµ := {(x1, ..., xn) ∈ S, ‖(x1, ..., xn)‖S ≤ µ}.
Then for any (x1, ..., xn) ∈ Bµ and for each k = 1, 2, ..., n, we can write

‖Tk (x1, ..., xn)‖(2.12)

≤
(

tαk

Γ (αk + 1)
+

tαk+δk

Γ (αk + δk + 1)

)
sup
s∈J

m∑
i=1

∣∣gki (s, x1(s), ..., xn(s))
∣∣

+θk sup
s∈J

m∑
i=1

∣∣gki (s, x1(s), ..., xn(s))
∣∣

≤ (∆k + θk)

m∑
i=1

Lki .

Thus,

‖T (x1, x2, ..., xn)‖S ≤ max

(
m∑
i=1

L1
i (∆1 + θ1) , ...,

m∑
i=1

Lni (∆n + θn)

)
<∞.(2.13)

Using the above inequality (2.13) , we deduce that T maps bounded sets into
bounded sets in S.

The operator T is continuous on S, in view of the continuity of gki given in the
hypothesis (H2).

For any 0 ≤ t1 < t2 ≤ 1, (x1, x2, ..., xn) ∈ Bµ and k = 1, ..., n, we have:

|Tk (x1, ..., xn) (t2)− Tk (x1, ..., xn) (t1)| ≤Mk sups∈J

m∑
i=1

∣∣gki (s, x1 (s) , ..., xn (s))
∣∣ ,

where

Mk =
1

Γ (αk + 1)
(2 (t2 − t1)

αk + (tαk2 − t
αk
1 ))

+
1

Γ (αk + δk + 1)

(
2 (t2 − t1)

αk+δk +
(
tαk+δk
2 − tαk+δk

1

))
+

(
1

(l − 1)!Γ (αk + 2− l)
+

1

(l − 1)!Γ (αk + δk + 2− l)

)(
tl−1
2 − tl−1

1

)
.

Therefore,

|Tk (x1, ..., xn) (t2)− Tk (x1, ..., xn) (t1)| ≤Mk

m∑
i=1

Lki ,(2.14)

such that,

‖T (x1, ..., xn) (t2)− T (x1, ..., xn) (t1)‖S = max
1≤k≤n

|Tk (x1, ..., xn) (t2)− Tk (x1, ..., xn) (t1)| .
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The right-hand side of (26) is independent of (x1, x2, ..., xn) ∈ Bµ and tends to zero
as t2 − t1 → 0. Therefore, T is an equi-continuous operator. We conclude that T is
a completely continuous operator.

(ii) : We shall show that the set Ω defined by

Ω := {(x1, ..., xn) ∈ S, (x1, ..., xn) = λT (x1, ..., xn) , 0 < λ < 1 } ,(2.15)

is bounded.
Let (x1, x2, ..., xn) ∈ Ω, then (x1, ..., xn) = λT (x1, ..., xn) , for some 0 < λ < 1. We
have:

xk (t) = λTk (x1, ..., xn) (t) , k = 1, 2, ..., n.(2.16)

Corresponding to (24), we get:

‖xk‖ ≤ λ (∆k + θk)

m∑
i=1

Lki , k = 1, ..., n.(2.17)

Thus,

‖(x1, ..., xn)‖S ≤ λmax

(
m∑
i=1

L1
i (∆1 + θ1) , ...,

m∑
i=1

Lni (∆n + θn)

)
<∞.(2.18)

Consequently, the set Ω is bounded. So by Lemma 1.4, we deduce that the operator
T has at least one fixed point, which is a solution of the system (1.1) . Theorem 2.2
is thus proved.

2.2. Ulam-Hyers and Generalized Ulam-Hyers Stabilities

In this section, we prove some results on the Ulam-Hyers and the generalized Ulam-
Hyers stabilities for the solutions of (1.1).

Definition 2.1. The fractional system (1.1) is Ulam-Hyers stable if there exists a
real number C > 0, such that for each εk > 0, k = 1, 2, ..., n, and for each solution
(x1, x2, ..., xn) ∈ S of∣∣∣∣∣∣∣∣

Dαkxk (t)−
m∑
i=1

gki (t, x1 (t) , ..., xn (t))

−
m∑
i=1

Jδkgki (t, x1 (t) , ..., xn (t))

∣∣∣∣∣∣∣∣ ≤ εk,(2.19)

there exists (y1, y2, ..., yn) ∈ S of (1) with
n∑
k=1

|yk (0)| =
n∑
k=1

∣∣∣y′k (0)
∣∣∣ = ... =

n∑
k=1

∣∣∣y(l−2)
k (0)

∣∣∣ =

0, y
(l−1)
k (1) = 0, k = 1, 2, ..., n, satisfying

‖(x1 − y1, x2 − y2, ..., xn − yn)‖S ≤ Cε, ε > 0.(2.20)
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Definition 2.2. The fractional system (1.1) is generalized Ulam-Hyers stable if
there exists Υ ∈ C (R+,R+) , such that for each ε > 0 and for each solution
(x1, x2, ..., xn) ∈ S of (2.19) , there exists (y1, y2, ..., yn) ∈ S of (1.1) with

‖(x1 − y1, x2 − y2, ..., xn − yn)‖S ≤ Υ (ε) .

We prove the following result:

Theorem 2.3. Suppose that:

(a) : The assumptions of Theorem 2.1 are satisfied.

(b) : The hypotheses (H2) and (H3) are valid.

(c) : The quantity (2.2) satisfies: 0 < Σk < 1.

(d) : For each k = 1, 2, ..., n,

sup
t∈J
|Dαkxk (t)| ≥ (∆k + θk)

m∑
i=1

Lki .(2.21)

Then, the problem (1.1) has the generalized Ulam-Hyers stability in S.

Proof. Let ∣∣∣∣∣∣∣∣
Dαkxk (t)−

m∑
i=1

gki (t, x1 (t) , x2 (t) , ..., xn (t))

−
m∑
i=1

Jδkgki (t, x1 (t) , x2 (t) , ..., xn (t))

∣∣∣∣∣∣∣∣ < εk,(2.22)

where, εk > 0 and k = 1, 2, ..., n.

Using Theorem 2.1, we conclude that (1.1) has a unique solution (y1, y2, ..., yn) ∈
S satisfying:

Dαkyk (t) =

m∑
i=1

gki (t, y1 (t) , y2 (t) , ..., yn (t)) +

m∑
i=1

Jδkgki (t, y1 (t) , y2 (t) , ..., yn (t)) ,(2.23)

with,
n∑
k=1

|yk (0)| =
n∑
k=1

∣∣∣y′k (0)
∣∣∣ = ... =

n∑
k=1

∣∣∣y(l−2)
k (0)

∣∣∣ = 0, y
(l−1)
k (1) = 0, k =

1, 2, ..., n.

Thanks to (H2) and (H3) , we get

|xk (t)| ≤ (∆k + θk)
m∑
i=1

Lki , k = 1, 2, ..., n.(2.24)

Combining (2.21) and (2.24) , we obtain:

sup
t∈J
|xk (t)| ≤ sup

t∈J
|Dαkxk (t)| .(2.25)
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Then,
sup
t∈J
|xk (t)− yk (t)| ≤ sup

t∈J
|Dαk (xk (t)− yk (t))|(2.26)

≤ sup
t∈J

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

 Dαkxk (t)−
m∑
i=1

gki (t, x1 (t) , x2 (t) , ..., xn (t))

−
m∑
i=1

Jδkgki (t, x1 (t) , x2 (t) , ..., xn (t))


+

 −D
αkyk (t) +

m∑
i=1

gki (t, y1 (t) , y2 (t) , ..., yn (t))

+
m∑
i=1

Jδkgki (t, y1 (t) , y2 (t) , ..., yn (t))


+


m∑
i=1

gki (t, x1 (t) , x2 (t) , ..., xn (t))

+
m∑
i=1

Jδkgki (t, x1 (t) , x2 (t) , ..., xn (t))


−


m∑
i=1

gki (t, y1 (t) , y2 (t) , ..., yn (t))

+
m∑
i=1

Jδkgki (t, y1 (t) , y2 (t) , ..., yn (t))



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.(2.27)

Using (34) and (35) , we get

sup
t∈J
|xk (t)− yk (t)|

≤ εk +

m∑
i=1

((
ωki
)

1
+
(
ωki
)

2
+ ...+

(
ωki
)
n

)
max

1≤k≤n
‖xk (t)− yk (t)‖ .(2.28)

By (2.28) , we obtain

max
1≤k≤n

‖xk (t)− yk (t)‖ ≤ max
1≤k≤n

εk
1− Σk

= Cε,(2.29)

ε = max
1≤k≤n

εk, C = max
1≤k≤n

1

1− Σk
,(2.30)

which implies that

‖(x1 − y1, x2 − y2, ..., xn − yn)‖S = max
1≤k≤n

‖(xk − yk)‖ ≤ Cε.(2.31)

Thus, the system (1.1) is stable in the sense of Ulam-Hyers.
Taking Υ (ε) = Cε, we see that the system (1.1) is generalized Ulam-Hyers stable.
This completes the proof of Theorem 2.3.

3. Examples

In this section, we present two examples to illustrate the application of our main
result.
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Example 3.1. Consider the following system:

D
5
2 x1 (t) = |x1(t)+x2(t)+x3(t)|

8π2(1+|x1(t)+x2(t)+x3(t)|)

+ 1
32π2e

(
sin(x1(t))+sin(x2(t))

2et+1 + sin (x3 (t))
)

+
∫ t

0

(t−s)
5
2

Γ( 7
2 )


|x1(t)+x2(t)+x3(t)|

8π2(1+|x1(t)+x2(t)+x3(t)|)

+ 1
32π2e

(
sin(x1(t))+sin(x2(t))

2et+1 + sin (x3 (t))
)
 ds, t ∈ [0, 1] ,

D
7
3 x2 (t) = |x1(t)+x2(t)+x3(t)|

8π3e2(1+|x1(t)+x2(t)+x3(t)|)

+ t2

16π2et
2+1

(
sin(x1(t))+cos(x2(t))+cos(x3(t))

1+|sin(x1(t))+cos(x2(t))+cos(x3(t))|

)

+
∫ t

0

(t−s)
3
2

Γ( 5
2 )


|x1(t)+x2(t)+x3(t)|

8π3e2(1+|x1(t)+x2(t)+x3(t)|)

+ t2

16π2et
2+1

(
sin(x1(t))+cos(x2(t))+cos(x3(t))

1+|sin(x1(t))+cos(x2(t))+cos(x3(t))|

)
 ds, t ∈ [0, 1] ,

D
9
4 x3 (t) = cos(x1(t))+cos(x2(t))+cos(x3(t))

4πe2

+ 1

16π(t2+1)

(
sinx1 (t) + |x2(t)+x3(t)|

3π3(1+|x2(t)+x3(t)|)

)

+
∫ t

0

(t−s)
1
3

Γ( 4
3 )


cos(x1(t))+cos(x2(t))+cos(x3(t))

4πe2

+ 1

16π(t2+1)

(
sinx1 (t) + |x2(t)+x3(t)|

3π3(1+|x2(t)+x3(t)|)

)
 ds, t ∈ [0, 1] ,

|x1 (0)|+ |x2 (0)|+ |x3 (0)| =
∣∣∣x′1 (0)

∣∣∣+
∣∣∣x′2 (0)

∣∣∣+
∣∣∣x′3 (0)

∣∣∣ = 0,

x
′′

1 (1) = x
′′

2 (1) = x
′′

3 (1) = 0.

(3.1)

In this example, we have:
n = 3, m = 2, l = 3, α1 = 5

2 , α2 = 7
3 , α3 = 9

4 , δ1 = 7
2 , δ2 = 5

2 , δ3 = 4
3 , J = [0, 1] ,

g1
1 (t, x1, x2, x3) =

|x1 + x2 + x3|
8π2 (1 + |x1 + x2 + x3|)

,

g1
2 (t, x1, x2, x3) =

1

32π2e

(
sinx1 + sinx2

2et+1
+ sinx3

)
,(3.2)

g2
1 (t, x1, x2, x3) =

|x1 + x2 + x3|
8π3e2 (1 + |x1 + x2 + x3|)

,

g2
2 (t, x1, x2, x3) =

t2

16π2et2+1

(
sinx1 + cosx2 + cosx3

1 + |sinx1 + cosx2 + cosx3|

)
,(3.3)
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g3
1 (t, x1, x2, x3) =

cosx1 + cosx2 + cosx3

4πe2
,

g3
2 (t, x1, x2, x3) =

1

16π (t2 + 1)

(
sinx1 +

|x2 + x3|
3π3 (1 + |x2 + x3|)

)
.(3.4)

So, for t ∈ [0, 1] and (x1, x2, x3) , (y1, y2, y3) ∈ R3, we have:∣∣g1
1 (t, x1, x2, x3)− g1

1 (t, y1, y2, y3)
∣∣ ≤

1

8π2
|x1 − y1|+

1

8π2
|x2 − y2|+

1

8π2
|x3 − y3| ,(3.5)

∣∣g1
2 (t, x1, x2, x3)− g1

2 (t, y1, y2, y3)
∣∣ ≤

1

64π2e2
|x1 − y1|+

1

64π2e2
|x2 − y2|+

1

32π2e
|x3 − y3| ,(3.6)

∣∣g2
1 (t, x1, x2, x3)− g2

1 (t, y1, y2, y3)
∣∣ ≤

1

8π3e2
|x1 − y1|+

1

8π3e2
|x2 − y2|+

1

8π3e2
|x3 − y3| ,(3.7)

∣∣g2
2 (t, x1, x2, x3)− g2

2 (t, y1, y2, y3)
∣∣ ≤

1

16π2e
|x1 − y1|+

1

16π2e
|x2 − y2|+

1

16π2e
|x3 − y3| ,(3.8)

∣∣g3
1 (t, x1, x2, x3)− g3

1 (t, y1, y2, y3)
∣∣ ≤

1

4πe2
|x1 − y1|+

1

4πe2
|x2 − y2|+

1

4πe2
|x3 − y3| ,(3.9)

∣∣g3
2 (t, x1, x2, x3)− g3

2 (t, y1, y2, y3)
∣∣ ≤

1

16π
|x1 − y1|+

1

48π4
|x2 − y2|+

1

48π4
|x3 − y3| .(3.10)

We can take(
ω1

1

)
1

=
(
ω1

1

)
2

=
(
ω1

1

)
3

=
1

8π2
,
(
ω1

2

)
1

=
(
ω1

2

)
2

=
1

64π2e2
,
(
ω1

2

)
3

=
1

32π2e
,(3.11)

(
ω2

1

)
1

=
(
ω2

1

)
2

=
(
ω2

1

)
3

=
1

8π3e2
,
(
ω2

2

)
1

=
(
ω2

2

)
2

=
(
ω2

2

)
3

=
1

16π2e
,(3.12)
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(
ω3

1

)
1

=
(
ω3

1

)
2

=
(
ω3

1

)
3

=
1

4πe2
,
(
ω3

2

)
1

=
1

16π
,
(
ω3

2

)
2

=
(
ω3

2

)
3

=
1

48π4
.(3.13)

It follows that

Σ1 = 0.039589, Σ2 = 0.008626, Σ3 = 0.052631,(3.14)

∆1 = 0.302290, ∆2 = 0.370998, ∆3 = 0.468782,(3.15)

θ1 = 0.585, θ2 = 0.419 96, θ3 = 0.795 44.(3.16)

Which implies that the condition (2.4) holds

max (Σ1∆1 + θ1,Σ2∆2 + θ2,Σ3∆3 + θ3) < 1.(3.17)

Then by Theorem 2.1, we deduce that the fractional coupled system (3.1) has a
unique solution on [0, 1].

Example 3.2. To illustrate the second main result, we consider the following system:

D
3
2 x1 (t) = πet

(t+2)+sin(x1(t)+x2(t)+x3(t))
+ et cos(x2(t))

2π+sin(x1(t)) sin(x3(t))

+
∫ t

0

(t−s)
5
2

Γ( 7
2 )

(
πet

(t+2)+sin(x1(t)+x2(t)+x3(t))
+ et cos(x2(t))

2π+sin(x1(t)) sin(x3(t))

)
ds, t ∈ [0, 1] ,

D
5
3 x2 (t) = cos(x1(t)+x3(t))

2πe+cos(x2(t)+x3(t))
+ (t+1) sin(x2(t)+x3(t))

et
2+1−cos(x1(t))

+
∫ t

0

(t−s)
3
2

Γ( 5
2 )

(
cos(x1(t)+x3(t))

2πe+cos(x2(t)+x3(t))
+ (t+1) sin(x2(t)+x3(t))

et
2+1−cos(x1(t))

)
ds, t ∈ [0, 1] ,

D
9
5 x3 (t) = cos(x3(t))

π+t sin(x1(t)+x2(t))
+ sin (x1 (t)) sin (x2 (t) + x3 (t))

+
∫ t

0

(t−s)
1
3

Γ( 4
3 )

(
cos(x3(t))

π+t sin(x1(t)+x2(t))
+ sin (x1 (t)) sin (x2 (t) + x3 (t))

)
ds, t ∈ [0, 1] ,

|x1 (0)|+ |x2 (0)|+ |x3 (0)| = x
′
1 (1) = x

′
2 (1) = x

′
3 (1) = 0.

(3.18)

We have:

n = 3, m = 2, l = 2, α1 = 3
2 , α2 = 5

3 , α3 = 9
5 , δ1 = 7

2 , δ2 = 5
2 , δ3 = 4

3 , J = [0, 1] .
And for i = 1, 2, k = 1, 2, 3, the functions gki are continuous.

It is clear that:∣∣g1
1 (t, x1, x2, x3)

∣∣ ≤ πe, ∣∣ g1
2 (t, x1, x2, x3)

∣∣ ≤ e

2π − 1
,(3.19)

∣∣g2
1 (t, x1, x2, x3)

∣∣ ≤ 1

2πe− 1
,
∣∣ g2

2 (t, x1, x2, x3)
∣∣ ≤ 1

e− 1
,(3.20) ∣∣g3

1 (t, x1, x2, x3)
∣∣ ≤ 1

π − 1
,
∣∣g3

2 (t, x1, x2, x3)
∣∣ ≤ 1.(3.21)

Also, the functions gki are also bounded on [0, 1] × R3. So, by Theorem 2.2, the
system (3.18) has at least one solution on [0, 1].
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