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P−CONNECTEDNESS BETWEEN SOFT SETS

Samajh Singh Thakur and Alpa Singh Rajput

Abstract. In the present paper, the concepts of soft P-connectedness between soft sets
and soft set P-connected mappings in soft topological spaces have been introduced and
studied.
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1. Introduction

Most of our real life problems in engineering, social and medical science, economics,
environment, etc. involve imprecise data and their solutions involve the use of mathe-
matical principles based on uncertainty and imprecision. To handle such uncertainties,
a number of theories have been proposed. Some of these are vague sets [8], fuzzy sets
[23], intuitionistic fuzzy sets [3], and rough sets [17]. Recently, soft set have played
an important role in this field. The concept of soft set theory has been initiated by
Molodtsov [15] in 1999 as a general mathematical tool to deal with uncertainties while
modeling problems in engineering physics, computer science, economics, social sciences
and medical sciences. In ([15],[16]), Molodtsov successfully applied the soft theory in
several directions such as smoothness of functions, game theory, operations research,
Riemann integration, Perron integration, probability, and theory of measurement. Maji
et al. ([6],[14]) gave the first practical application of soft sets in decision making prob-
lems. In 2003, Maji et al. [13] defined and studied several basic notions of soft set
theory. In 2005, Pei and Miao [18] and Chen [7] improved the work of Maji et al.
([13],[14]). In recent years, an increasing number of papers have been written about
soft sets theory and its applications in various fields ([5],[16]). Shabir and Naz [20]
introduced the notion of soft topological spaces which are defined to be over an initial
universe with a fixed set of parameters and the notions of soft open sets, soft closed sets,
soft closure, soft interior and soft separation axioms. After the publication of Shabir
and Naz [20] paper, many topological concepts such as connectedness [19] , compact-
ness [24], semi-open ([4],[7]) , α−open [11], b−open [11] , preopen[11], clopen [11],
β−open [11],g−closed [21], gβ−closed [2] and gsβ−closed [2] sets have been extended
in soft topological spaces. Recently J. Subhashinin , Dr. C. Sekar. [21] introduced the
concepts of soft P-connectedness in soft topological spaces.
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In this paper we introduce the concepts of soft P-connectedness between the soft
sets and soft P-connected mappings in soft topological spaces and study some of their
properties.

2. Preliminaries

Let U be an initial universe set, E be a set of parameters, P(U) be the power set of
U and A ⊆ E.

Definition 2.1. [15] A pair (F, A) is called a soft set over U , where F is a mapping
given by F: A → P(U).
In other words, a soft set over U is a parameterized family of subsets of the universe U.
For all e ∈ A, F(e) may be considered as the set of e−approximate elements of the soft set
(F, A).

Definition 2.2. [13] For two soft sets (F, A) and (G, B) over a common universe U, we
say that (F, A) is a soft subset of (G, B) denoted by (F, A) ⊆ (G, B), if
(a) A ⊆ B and
(b) F (e) ⊆ G (e) for all e ∈ E.

Definition 2.3. [13] Two soft sets (F, A) and (G, B) over a common universe U are said
to be soft equal denoted by (F, A) = (G, B) if (F, A) ⊆ (G, B) and (G, B) ⊆ (F, A).

Definition 2.4. [1] The complement of a soft set (F, A) denoted by (F,A)c, is defined
by: (F,A)c = (F c, A), where, F c : A → P(U) is a mapping given by, F c(e) = U − F(e),
for all e ∈ E.

Definition 2.5. [13] Let a soft set (F, A) over U.
(a) Null soft set denoted by φ if for all e ∈ A , F(e) = φ.

(b) Absolute soft set denoted by Ũ , if for each e ∈ A , F(e) = U.

Clearly, Ũc = φ and φc = Ũ .

Definition 2.6. [1] Union of two sets (F, A) and (G, B) over the common universe U is
the soft (H, C), where C = A ∪ B, and for all e ∈ C,

H(e) =





F (e), ife ∈ A−B

G(e), ife ∈ B − A

H(e), if e ∈A ∩ B

Definition 2.7. [1] Intersection of two soft sets (F, A) and (G, B) over a common uni-
verse U, is the soft set (H, C) where C = A ∩ B and H (e) = F(e) ∩ G(e) for each e ∈
E.

Let X and Y be the initial universe sets and E and K be the nonempty sets of
parameters, S(X, E) denotes the family of all soft sets over X, and S(Y, K) denotes the
family of all soft sets over Y.
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Definition 2.8. [12] Let S(X, E) and S(Y, K) be families of soft sets. Let u: X → Y
and p: E → K be mappings. Then a mapping fpu: S(X, E) → S(Y, K) is defined as:

(a) Let (F, A) be a soft set in S(X, E). The image of (F, A) under fpu, Written as fpu
(F, A) = ( fpu(F), p(A)), is a soft set in S(Y, K) such that

fpu(F )(k) =

{⋃
e∈p−1(k)

⋂
A
u(F (e)) , p−1(k)

⋂
A 6=φ

φ , p−1(k)
⋂

A =φ

For all k ∈ K.

(b) Let (G, B) be a soft set in S(Y, K). The inverse image of (G, B) under fpu, written
as

f
−1
pu (G,B) =

{
u−1G(p(e)) , p(e)∈B

φ , otherwise

For all e ∈ E.

The soft mapping fpu is called surjective if p and u are surjective. The soft mapping
fpu is called injective if p and u are injective.

Definition 2.9. [20]A subfamily τ of S(X, E) is called a soft topology on X if:

1. φ̃, X̃ belong to τ .

2. The union of any number of soft sets in τ belongs to τ .

3. The intersection of any two soft sets in τ belongs to τ .

The triplet (X, τ , E) is called a soft topological space over X. The members of τ are called
soft open sets in X and their complements called soft closed sets in X.

Definition 2.10. If (X, τ , E) is a soft topological space and (F, E) ∈ S(X, E).
(a) The soft closure of (F, E) is denoted by Cl(F, E), is defined as the intersection of all
soft closed super sets of (F, E) [20].
(b) The soft interior of (F, E) is denoted by Int(F, E), is defined as a soft union of all soft
open subsets of (F, E) [24].

Theorem 2.1. Let (X, τ , E) be a soft topological space and let (F, E), (G, E) ∈ S(X,
E). Then :
(a)(F, E) is soft closed iff (F, E) = Cl (F, E) [20].
(b) If (F, E) ⊆ (G, E), then Cl(F, E) ⊆ Cl(G, E) [20].
(c) (F, E) is soft open iff (F, E) = Int(F, E) [24].
(d) If (F, E) ⊆ (G, E), then Int(F, E) ⊆ Int(G, E) [24].
(e) (Cl(F,E)c) = Int((F,E)c) [24].
(f) (Int(F,E))c = Cl((F,E)c) [24].

Definition 2.11. Let (X, τ , E) and (Y, υ, K) be soft topological spaces. A soft mapping
fpu : (X, τ , E)→(Y, υ, K) is called :
(a) Soft continuous if f−1

pu (G, K) is soft open in X, for every soft open set (G, K) in Y. [24]
(b) Soft open if fpu (F, E) is soft open in Y, for all soft open sets (F, E) in X. [25]
(c) Soft closed if fpu (F, E) is soft closed in Y, for all soft closed sets (F, E) in X. [25]
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Definition 2.12. [9] A soft topological space (X, τ , E) is soft connected if and only if
no nonempty soft subset of (X, τ , E) which is both soft open and soft closed in (X, τ , E) .

Definition 2.13. [22] A soft topological space (X ,τ , E) is said to be soft connected
between its soft subsets (F1, E) and (F2, E) if and only if there is no soft clopen subset
(F, E) over X such that (F1,E) ⊂ (F, E) and (F, E) ∩ (F2,E) = φ.

Definition 2.14. [21] Let (X, τ , E) be a soft topological space, a soft set (F, A) is said
to be soft preopen set if there exists a soft open set (F, O) such that (F, A) ⊆ (F, O) ⊆
Cl(F, A). Then (F,A)c is said to be soft preclosed .

Remark 2.1. [21] A soft set (F, A) which is both soft preopen and soft preclosed is
known as soft preclopen set. Clearly, φ and X̃ are soft preclopen sets.

Remark 2.2. [21] Every soft open set (respectively soft closed set ) is a soft preopen set
(respectively soft preclosed set) but the converse may not be true.

Theorem 2.2. [21] (i) Arbitrary soft union of soft preopen sets is a soft preopen set.
(ii) Arbitrary soft intersection of soft preclosed sets is a soft preclosed set.

Definition 2.15. [21] The intersection of all soft preclosed sets containing a soft set (F,
A) in a soft topological space (X, τ , E) is called the soft preclosure of (F, A) and is denoted
by Pcl(F, A).

Definition 2.16. [21] The union of all soft preopen sets contained in a soft set (F, A)
in a soft topological space (X, τ , E) is called the soft preinterior of (F, A) and is denoted
by Pint(F, A).

Definition 2.17. [21] Let (X, τ , E) be a soft topological space. Two nonempty soft sub
sets (F, A) and (F, B) of S(X, E) are called soft preseparated iff Pcl(F, A) ∩ (F, B) = (F,
A) ∩ Pcl(F, B) = φ .

Definition 2.18. [21] Let (X, τ , E) be a soft topological space. If there does not exist a
soft preseparation of X, then it is said to be soft P-connected .

Lemma 2.1. [21] A soft topological space (X, τ , E) is said to be soft P-connectedness if
there is no nonempty proper soft set over X which is both soft preopen and soft preclosed.

Lemma 2.2. [10] If (F, E) is soft open and (G, E) is soft preopen then (G, E) ∩ (F, E)
is soft preopen .

Definition 2.19. [24] The soft set (F, E) ∈ S(X, E) is called a soft point if there exist
x ∈ X and e ∈ E such that F(e) = {x} and F(e’) = φ for each e’ ∈ E – {e}, and the soft
point (F, E) is denoted by (xe)E .

Remark 2.3. [21] Every soft P-connected space is soft connected space but the converse
is not true .
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3. P-Connectedness Between Soft Sets

Definition 3.1. A soft topological space (X, τ , E) is said to be soft P-connected between
between soft sets (F1, E) and (F2, E) if and only if there is no soft preclopen set (F, E)
over X such that (F1, E) ⊂ (F, E) and (F, E) ∩ (F2, E) = φ.

Theorem 3.1. Every soft topological space which is soft P-connected between soft sets
(F1, E) and (F2, E) is soft connected between (F1, E) and (F2, E).

Proof. Suppose soft topological space (X, τ , E) is not soft connected between (F1, E) and
(F2, E). Then, there is a soft clopen set (F, E) over X such that (F1, E) ⊂ (F, E) and
(F, E) ∩ (F2, E) = φ. Since, every soft clopen set is soft preclopen, it follows that (X, τ ,
E) is not soft P-connected between (F1, E) and (F2, E). This is a contradiction.

Remark 3.1. The converse of Theorem 3.1 may not be true.

Example 3.1. Let X = {x1, x2, x3, x4 } ,E = {e1, e2 } and soft sets are defined as :
(F, E) = {(e1,{x1, x3 }),(e2, {x1 ,x3 } )} , (F1, E) = {(e1 ,{x1}) ,(e2,{x1 })} and (F2,
E) = {(e1 ,{x3 }),(e2 ,{x3 })} . Let τ = {φ , (F ,E) , X̃ } is topology on X. Then, soft
topological space (X, τ , E) is soft connected between the soft sets (F1, E) and (F2, E) but
not soft P-connectedness between (F1, E) and (F2, E)

Theorem 3.2. A soft topological space (X, τ , E) is soft P-connected between soft sets
(F1, E) and (F2, E) if and only if there is no soft preclopen set (F, E) over X such that
(F1, E) ⊂ (F, E) ⊂ (F2, E)C.

Proof. It follows from definition 3.1.

Theorem 3.3. If a soft topological space (X, τ , E) is soft P-connected between soft sets
(F1, E) and (F2, E) then (F1, E) 6= φ 6= (F2, E) .

Proof. If any soft set (F1, E) = φ , then φ being soft preclopen set over X,(X, τ , E) cannot
be soft P-connected between soft sets (F1, E) and (F2,E).

Theorem 3.4. If a soft topological space (X, τ , E) is soft P-connected between soft sets
(F1, E) and (F2, E) and (F1, E) ⊂ (F3, E) and (F2, E) ⊂ (F4, E) then (X, τ , E) is soft
P-connected between soft sets (F3, E) and (F4, E).

Proof. Suppose a soft topological space (X, τ , E) is not soft P-connected between soft sets
(F3, E) and (F4, E) then there is a soft P-clopen set (F, E) over X such that (F3,E) ⊂ (F,
E) and (F, E) ∩ (F4, E) = φ. Consequently, (X, τ , E) is not soft P-connected between
soft sets (F1, E) and (F2, E) .

Lemma 3.1. A soft point (xe)E ∈ Pcl(F, E) if and only if (F, E) ∩ (G,E) 6= φ for all
soft preopen set (G,E) containing (xe)E over X .

Proof. It is obvious .
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Theorem 3.5. If a soft topological space (X, τ , E) is soft P-connected between soft sets
(F1, E) and (F2, E) if and only if (X, τ , E) is soft P-connected between soft sets Pcl(F1,
E) and Pcl(F2, E).

Proof. Necessity: It follows from Theorem (7)(ii) [10] and Theorem 3.4 .
Sufficiency: If a soft topological space (X, τ , E) is not soft P-connected between soft sets
(F1, E) and (F2, E) then there exists a soft preclopen set (F, E) over X such that (F1, E)
⊂ (F, E) and (F, E) ∩ (F2, E) = φ. Since (F, E) is soft preclosed Pcl(F1,E) ⊂ Pcl(F, E)
= (F, E). Clearly, (F, E) cap Pcl(F2,E) = φ. For if (xe)E ∈ (F, E) ∩ Pcl(F2, E) then
by lemma 3.1, (F, E) ∩ (F2, E) 6= φ , because (F, E) is soft preopen. Hence, (X, τ , E) is
not soft P-connected between soft sets Pcl(F1, E) and Pcl(F2, E).

Theorem 3.6. If a soft topological space (X, τ , E) is soft P-connected between soft sets
(F1, E) and (F2, E) then (X, τ , E) is soft P-connected between soft sets Cl(F1, E) and
Cl(F2, E).

Proof. Follows from theorems 3.4 .

Remark 3.2. The converse of theorem 3.6 is not true in general .

Example 3.2. Let X = {x1, x2, x3, x4 }, E = {e1, e2 } and soft sets are defined as:
(F, E) = {(e1,{x1 ,x3 }),(e2, {x1 ,x3 } )} , (F1, E) = {(e1 ,{x1}) ,(e2,{x1 })} and (F2,
E) = {(e1 ,{x2 }),(e2 ,{x2 })} . Let τ = {φ , (F ,E) , X̃ } is topology on X. Then, soft
topological space (X,τ ,E) is soft P-connected between the soft sets Cl(F1,E) and Cl(F2,E)
but not soft P-connected between (F1, E) and (F2, E) .

Theorem 3.7. A soft topological space (X, τ , E) is not soft P-connected between (FA0
,

E) and (FA1
, E) if and only if there exist soft preclopen disjoint soft sets (F0, E) and (F1,

E) such that X = (F0,E) ∪ (F1, E) and (FAi
, E) ⊂ (Fi,E), i = 0,1.

Proof. This immediately follows from the definition of a space which is soft P-connected
between two of its soft subsets.

Theorem 3.8. If (F1, E) and (F2, E) are soft sets over X and (F1, E) ∩ (F2, E) 6= φ,
then the soft topological space (X, τ , E) is soft P-connected between (F1, E) and (F2, E).

Proof. If (F, E) is any soft preclopen set over X such that (F1, E) ⊂ (F, E) ,then (F1, E)
∩ (F2, E) 6= φ ⇒ (F, E) ∩ (F2, E) 6= φ. This proves the theorem .

Remark 3.3. The converse of theorem 3.5 need not be true .

Example 3.3. Let X = {x1, x2, x3, x4 } ,E = {e1, e2 } and soft sets are defined as :
(F, E) = {(e1,{x1 ,x3 }),(e2, {x1 ,x3 } )} and (F1,E) = {(e1 ,{x2 ,x4}),(e2 ,{x2 ,x4 })} .
Let τ = {φ , (F ,E) , X̃ } is topology on X. Then, a soft topological space (X, τ , E) is soft
P-connected between the soft sets (F, E) and (F1, E) whereas, (F, E) ∩ (F1,E) = φ .

Theorem 3.9. If a soft topological space (X, τ , E) is neither soft connected between
(A ,E) and (B0,E) nor soft P-connected between (A ,E) and (B1,E) then it is not soft
P-connected between (A ,E) and (B0,E) ∪ (B1,E).
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Proof. Since a soft topological space (X, τ , E) is not soft connected between (A ,E) and
(B0,E) ,there is a soft clopen set (F0,E) over X such that (A,E) ⊂ (F0,E) and (F0,E) ∩
(B0,E) = φ. Also, since (X, τ , E) is not soft P-connected between (A ,E) and (B1,E) there
exists a soft preclopen set (F1,E) over X such that (A ,E) ⊂ (F1,E) and (B1,E) ∩ (F1,E)
= φ .Put (F ,E) = (F0,E) ∩ (F1,E). Since, each soft closed set is soft preclosed and any
intersection of soft preclosed set is soft preclosed, (F, E) is soft preclosed . Also, by lemma
2.2 (F, E) is soft preopen . Therefore (F, E) is soft preclopen over X such that (A,E) ⊂
(F, E) and (F, E) ∩ ((B0,E) ∪ (B1, E)) = φ. Hence, (X, τ , E) is not soft P-connected
between (A,E) and (B0 ,E) ∪ (B1 ,E) .

Remark 3.4. If a soft topological space (X, τ , E) is soft P-connected neither between
(A,E) and (B0,E), nor between (A ,E) and (B1,E) then it is not necessarily true that (X,
τ , E) is not soft P-connected between (A ,E) and (B0,E) ∪ (B1,E).

Example 3.4. Let X = {x1 , x2 ,x3 ,x4 } ,E = {e1, e2 } and soft sets are defined as : (F,
E) = {(e1,{x1 ,x3 }),(e2, {x1 ,x3 } )} , (F1,E) = {(e1 ,{x2}) ,(e2,{x2 })} , (F2,E) = {(e1
,{x1 }),(e2 ,{x1 })} and (F3,E) = {(e1 ,{x3 }) , (e2,{x3})} Let τ = {φ , (F ,E) , X̃ } is
topology on X . Then soft topological space (X,τ ,E) is soft P-connected neither between
the soft sets (F1,E) and (F2,E) nor (F1,E) and (F3,E) but it is soft P-connected between
(F1,E) and (F, E).

Theorem 3.10. A soft topological space (X, τ , E) is soft P-connected if and only if it
soft P-connected between every pair of its nonempty soft sets.

Proof. Let (A, E) and (B, E) be a pair of nonempty soft sets over X. Suppose (X, τ , E) is
not soft P-connected between (A, E) and (B, E). Then, there is a soft preclopen set (F, E)
over X such that (A, E) ⊂ (F, E) and (B, E) ∩ (F, E) = φ .Since, (A, E) and (B, E) are
nonempty it follows that (F, E) is a nonempty soft proper preclopen set over X. Hence, by
lemma 2.1 (X, τ , E) is not soft P-connected.
Conversely, suppose that (X, τ , E) is not soft P-connected. Then, there exists a nonempty
soft proper (F, E) over X which is both soft preopen and preclosed. Consequently, (X, τ , E)
is not soft P-connected between (F, E) and (F,E)c. Thus (X, τ , E) is not soft P-connected
between arbitrary pair of its nonempty soft sets.

Remark 3.5. If a soft topological space (X, τ , E) is soft P-connected between a pair of
its soft sets, then it is not necessarily soft P-connected between each pair of its soft sets
and so is not necessarily soft P-connected .

Example 3.5. Let X = {x1 , x2 ,x3 ,x4 } ,E = {e1, e2 } and soft sets are defined as: (F,
E) = {(e1,{x1 ,x3 }),(e2, {x1 ,x3 } )} , (F1,E) = {(e1 ,{x2}) ,(e2,{x2 })} , (F2,E) = {(e1
,{x1 }),(e2 ,{x1 })} and (F3,E) = {(e1 ,{ x3 }) , (e2,{x3})}. Let τ = {φ , (F ,E) , X̃ } is
topology on X. Then, soft topological space (X,τ ,E)is soft P-connected between soft sets
(F1,E) and (F, E) but it is not soft P-connected between (F2,E) and (F3,E). Also a soft
topological space (X, τ , E) is not soft P-connected.

Lemma 3.2. Let a soft set (A, E) of a subspace (Y, τY , E) of a soft topological space
(X, τ , E) and (A, E) is soft preopen set over X, then (A, E) is a soft preopen set over Y.

Proof. It is obvious .
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Lemma 3.3. Let (Y, τY , E) be a soft topological subspace of soft topological (X, τ , E)
and (F, E) be a soft preopen set over X, then (F, E) ∩ Ỹ is soft preopen in Y.

Proof. Follows from lemma 2.2 and lemma 3.2 .

Lemma 3.4. Let (Y, τY , E) be a soft subspace of a soft topological space (X, τ , E) and
(, E) be a soft preopen set over Y then (F, E) is soft preopen in X.

Proof. It is obvious .

Lemma 3.5. If (Y, τY , E) is soft open in (X, τ , E) and (B,E) is a soft preclosed set
over X then Ỹ ∩ (B, E) is soft preclosed in (Y, τY , E) .

Proof. We have , (B, E) is soft preclosed over X
⇒ (B,E)C is soft preopen over X
⇒ Ỹ ∩ (B,E)c = (Ỹ ∩ (B,E))c is soft preopen in Y (by lemma 3.3)
⇒ Ỹ ∩ (B,E) is soft preclosed over Y.

Theorem 3.11. Let (Y, τY , E) be an open soft subspace of a space (X, τ , E). If (Y,τY ,E)
is soft P-connected between the soft sets (AY , E) and (BY , E) over Y, then the whole space
(X, τ , E) is soft P-connected between (AY , E) and (BY , E) .

Proof. Suppose (X, τ , E) is not soft P-connected between (AY , E) and (BY , E). Then,
there is soft Preopen set (F ,E) over X such that (AY , E) ⊂ (F, E) and (F, E) ∩ (BY ,
E) = φ .Hence, By lemma 3.3 and lemma 3.5 , Ỹ ∩ (F ,E) is soft preclopen over Y such
that (AY , E) ⊂ (F, E) ∩ Ỹ and ((F, E) ∩ Ỹ ) ∩ (BY , E) = φ .
Consequently, (Y,τY ,E) is not soft P-connected between (AY , E) and (BY , E), a contra-
diction.

Lemma 3.6. A soft set (F ,E) over X is soft preclosed if and only if (F ,E) ⊃ Cl(Int(F
,E)).

Proof. We have , (F ,E) is soft preclosed over X
⇔ (F,E)c in X .
⇔ (F,E)c ⊂ Int(Cl( (F,E)c )
⇔ (F ,E) ⊃ (Int(Cl((F,E)c)))c = Cl(Int(F ,E)).

Lemma 3.7. Let (Y, τY , E) be a soft subspace of a space (X, τ , E). If a soft set (FY ,
E) is soft preclosed over Y and Ỹ is soft preclosed over X then (FY , E) is soft preclosed
in X.

Proof. If a soft set (FY , E) is soft preclosed over Y and Ỹ is soft preclosed over X, then by
lemma 3.6 (FY , E) ⊃ ClY (IntY (FY , E)) and Ỹ ⊃ Cl(Int(Ỹ )) ,where IntY (resp. ClY )
denotes the interior (resp. closure) operators relative over Y. Clearly IntY (FY , E) ⊂ Ỹ

.Therefore, ClY (IntY (FY , E)) = Cl(IntY (FY , E)) ∩ Ỹ . But, IntY (FY , E) ⊃ IntY (FY ,
E) ∩ Int(Ỹ ) = Int(FY , E) . Thus we have Cl(IntY (FY , E)) ∩ Ỹ ⊃ Cl(Int(FY , E)) ∩
Ỹ ⊃ Cl(Int(FY , E)) ∩ Cl(Int(Ỹ )) ⊃ Cl(Int((FY , E) ∩ Ỹ )). Consequently, (FY , E) ⊃
Cl(Int(FY , E)) .Hence, by lemma 3.6 (FY , E) is soft preclosed over X.



P−Connectedness Between Soft Sets 343

Theorem 3.12. Let (Y, τY , E) be a soft preclopen subspace of a soft topological space
(X, τ , E) and soft subsets (AY , E) and (BY , E) over Y .If (X, τ , E) is soft P-connected
between (AY , E) and (BY , E) then (Y,τY ,E) is soft P-connected between (AY , E) and
(BY , E).

Proof. Suppose (Y, τY , E) is not soft P-connected between (AY , E) and (BY , E). Then,
there is a soft preclopen set (FY , E) of Y such that (AY , E) ⊂ (FY , E) and (FY , E) ∩
(BY , E) = φ .Since, Ỹ is soft preclopen in X, by lemma 3.4 and lemma 3.7, (FY , E) is soft
preclopen set of X such that (AY , E) ⊂ (FY , E) and (FY , E) ∩ (BY , E) = φ. Consequently,
(X, τ , E) is not soft P-connected between (AY , E) and (BY , E), a contradiction .

Lemma 3.8. If (C, E) is soft closed and (T, E) is soft preclosed in X, then (C, E) ∪
(T, E) is soft preclosed in X.

Proof. We have (C, E) is soft closed and (T, E) is soft preclosed in X Rightarrow (C,E)c

is soft open and (T,E)c is soft preopen in X Rightarrow (C,E)c ∩ (T, E)c = ((C,E) ∩
(T,E)c is soft preopen in X [by lemma 2.2] Rightarrow (C, E) ∩ (T, E) is soft preclosed
in X.

Remark 3.6. [22] Every soft connected space is connected between any pair of its
nonempty subsets .

Example 3.6. Let X={x1, x2,x3 } and E = {e1,e2 } . Soft sets (F1,E), (F2,E),(F3,E),(F4,E)
are defined as : (F1,E) = {(e1,{x1 }), (e2,{x1})} , (F2,E) = {(e1,{x2 }), (e2,{x2})},(F3,E)
= {(e1,{x1,x2 }),(e2, {x1,x2 } )}, (F4,E) = {(e1,{x2,x3 }),(e2, {x2,x3 } )} and (F5,E) =

{(e1,{x3 }),(e2,{x3 })} .Let τ = { φ, X̃, (F1,E), (F2,E),(F3,E),(F4,E)} be soft topology on
X . Then a soft topological space (X,τ ,E) is soft P-connected between soft sets (F2,E) and
(F5,E) and hence soft connected between (F2,E) and (F5,E). However, the soft topological
space (X,τ ,E) is neither soft connected nor soft P-connected.

Example 3.7. Let X = {x1, x2,x3 ,x4 }, E = {e1,e2 } and soft sets are defined as: (F, E)
= {(e1,{x1,x3 }),(e2, {x1,x3 } )},(F1,E) = {(e1,{x1 }), (e2,{x1})} and (F2,E) = {(e1,{x3

}),(e2,{x3 })} .Let τ = { φ, X̃, (F, E) } is soft topology on X .Then soft topological space
(X,τ ,E) is soft connected but not soft P-connected between soft sets (F1, E) and (F2, E).

Thus we reach the following diagram of implications.

Soft P-connected ⇒ Soft connected
⇓ ⇓

Soft P-connectedness ⇒ Soft connectedness
between soft sets between soft sets

4. Soft Set P-Connected Mappings
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Definition 4.1. A soft mapping fpu : (X,τ ,E) → (Y,ϑ,K) is said to be soft set P-
connected provided, if a soft topological space (X,τ ,E) is soft P-connected between sets
(A,E) and (B,E) then a soft subspace (fpu(X),ϑfpu(X),K) is soft P-connected between
fpu(A,E) and fpu(B,E) with respect to relative topology.

Theorem 4.1. A soft mapping fpu : (X,τ ,E) → (Y,ϑ,K) is soft set P-connected mapping
if and only if f−1

pu (F,K) is a soft preclopen set over X for any soft preclopen set (F,K) of
(fpu (X), ϑfpu(X), K).

Proof. Necessity: Let fpu be soft set P-connected mapping and (F,K) be a soft preclopen set
in (fpu (X),ϑfpu(X),K). Suppose f−1

pu (F,K) is not soft preclopen in (X,τ ,E). Then, (X,τ ,E)

is soft P-connected between f−1
pu (F,K) and (f−1

pu (F,K))c . Therefore, (fpu (X),ϑfpu(X),K)

is soft P-connected between fpu (f−1
pu (F,K)) and fpu((f

−1
pu (F,K))c) because fpu is soft

set P-connected. But, fpu ( f−1
pu (F,K)) = (F,K) ∩ (fpu (X),ϑfpu(X),K) = (F,K) and

fpu((f
−1
pu (F,K))c = (F,K)c imply that (F,K) is not soft preclopen in (fpu (X),ϑfpu(X),K),

a contradiction. Hence, f−1
pu (F,K) is soft preclopen in (X,τ ,E) .

Sufficiency: Let (X,τ ,E) be soft P-connected between (A, E) and (B, E). If (fpu (X),ϑfpu(X),K)
is not soft P-connected between fpu(A, E) and fpu(B, E) then there exists a soft preclopen
set (F, K) in (fpu(X),ϑfpu(X),K) such that fpu(A, E) ⊂ (F,K) ⊂ (fpu(B,E))c. By hypoth-

esis f−1
pu (F,K) is a soft preclopen set over X and (A,E) ⊂ f−1

pu (F,K) ⊂ (B,E)c. Therefore,
(X,τ , E) is not soft P-connected between (A, E) and (B, E). This is a contradiction. Hence,
fpu is soft set P-connected.

Remark 4.1. The concepts of soft set P-connected mapping and soft set-connected map-
ping are independent.

Example 4.1. Let X = {x1, x2, x3 }, E = {e1, e2 } and Y = {y1, y2, y3}, K = {k1, k2
} . Let τ = {φ, (F1,E),(F2,E) , X̃ }, and υ = {φ, (G1,K),(G2 ,K), Ỹ } are topologies on X
and Y respectively, where (F1,E) = {(e1,{x1 }),(e2, {x1})}, (F2,E) = {(e1,{x2,x3 }),(e2,
{x2,x3 })} and (G1,K) = {(k1, {y1 }) ,(k2, {y1 })}, (G2,K) = {(k1, {y2,y3 }),(k2, {y2,y3
})}. Then soft mapping fpu : (X, τ , E)→ (Y,υ,K) defined by u(x1) = y3, u (x2)= y2, u(x3)
= y1 and p(e1 )= k1, p(e2 ) = k2 is soft set P-connected but it is not soft set-connected .

Example 4.2. Let X = {x1, x2, x3 }, E = {e1, e2 } and Y = {y1, y2, y3}, K = {k1, k2 }
. Let τ = {φ, (F1,E),(F2,E),(F3,E), X̃ }, and υ = {φ, (G1 ,K),(G2,K), Ỹ } are topologies
on X and Y respectively, where (F1,E) = {(e1,{x1 }),(e2, {x1})},(F2,E) = {(e1,{x2 }),(e2,
{x2})}, (F3,E) = {(e1,{x2,x3 }) ,(e2, {x2,x3 })} and (G1,K) = {(k1, {y1 }),(k2, {y1 })},
(G2,K) = {(k1, {y2,y3 }),(k2, {y2,y3 })}. Then, soft mapping fpu : (X, τ , E)→ (Y,υ,K)
defined by u(x1) = y3, u (x2)= y2, u(x3) = y2 and p(e1 )= k1, p(e2 ) = k2 is soft set-
connected but it is not soft set P-connected .

Theorem 4.2. Every soft mapping fpu : (X,τ ,E)→ (Y,ϑ,K) such that (fpu (X),ϑfpu(X),K)
is a soft P-connected set is a soft set P-connected.

Proof. Let (fpu (X),ϑfpu(X),K) be soft P-connected. Then, by lemma 2.1 no nonempty
proper soft set of (fpu (X),ϑfpu(X),K) which is soft preclopen. Hence, fpu is soft set P-
connected.
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Theorem 4.3. Let fpu : (X,τ ,E) → (Y,ϑ,K) be a soft set P-connected mapping. If
(X,τ ,E) is soft P-connected set, then (fpu (X),ϑfpu(X),K) is a soft P-connected set of
(Y,ϑ,K).

Proof. Suppose (fpu (X),ϑfpu(X),K) is not soft P-connected in (Y,ϑ,K). Then, by lemma
2.1, there is a nonempty proper soft preclopen set (F,K) of (fpu (X),ϑfpu(X),K). Since

fpu is soft set P-connected, f−1
pu (F,K) is a nonempty proper soft preclopen set over X.

Consequently, (X,τ ,E) is not soft P-connected.

Theorem 4.4. Let fpu : (X,τ ,E) → (Y,ϑ,K) be a soft set P-connected mapping and
(A,E) be a soft open set over X such that fpu(A,E) is soft preclopen set of (fpu (X),ϑfpu(X),K).
Then, fpu /(A,E) : (A,E) → (Y,ϑ,K) is soft set P-connected mapping.

Proof. Let (A,E) be soft P-connected between (U,E) and (V,E). Then, by theorem 3.11,
(X,τ ,E) is soft P-connected between (U,E) and (V,E). Since fpu is soft set P-connected,(fpu
(X) ,ϑfpu(X),K) is soft P-connected between fpu(U,E) and fpu(V,E). Now, since fpu(A,E)
is a soft preclopen set of (fpu (X),ϑfpu(X),K), it follows by theorem 3.12 that fpu(A,E) is
soft P-connected between fpu(U,E) and fpu(V,E). This proves the theorem.

Theorem 4.5. Let fpu : (X,τ ,E) → (Y,ϑ,K) be a soft set P-connected surjection. Then,
for any soft preclopen set (F,K) of (Y,ϑ,K) is soft P-connected if f−1

pu (F,K) is soft P-
connected in (X ,τ ,E). In particular, if (X,τ ,E) is soft P-connected then (Y,ϑ,K) is soft
P-connected.

Proof. By theorem 4.4 fpu / f−1
pu (F,K): f−1

pu (F,K) → (Y,ϑ,K) is soft set P-connected.
And, since f−1

pu (F,K) is soft P-connected by theorem 4.3, fpu / f−1
pu (F,K)(f−1

pu (F,K)) =
(F,K) is soft P-connected .

Theorem 4.6. Let fp1u1
: (X,τ ,E) → (Y,ϑ,K) be a surjective soft set P-connected and

gp2u2
:(Y,ϑ,K) → (Z,η,T) a soft set P-connected mapping. Then, (gp2u2

ofp1u1
) : (X,τ ,E)

→ (Z,η,T) is soft set P-connected.

Proof. Let (F,T) be a soft preclopen set in gp2u2
(Y ). Then, g−1

p2u2
(F,T) is soft pre-

clopen over Y = fp1u1
(X) and so f−1

p1u1
(g−1

p2u2
(F,T)) is soft preclopen in (X,τ ,E) .Now,

(gp2u2
ofp1u1

)(X ) = gp2u2
(Y) and (gp2u2

ofp1u1
)−1 (F,T) = f−1

p1u1
(g−1

p2u2
(F,T)) is soft

preclopen in (X,τ ,E). Hence (gp2u2
ofp1u1

) is soft set P-connected.
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