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Abstract. In this note, we interrelate curvature properties between almost Hermitian
and almost contact metric manifolds.
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1. Introduction

Curvatures tensors in Riemannian geometry have been studied by [3, 5, 7, 8] among
many others and recently by [1]. Almost Hermitian and almost contact geometries
are two branches of Riemannian geometry. The first being furnished with an almost
complex structure J, while the second is involving with the contact tensor fields ϕ
of type (1, 1).

On the other hand, it is known that an almost Hermitian manifold enjoys with
the Riemannian curvature tensor called the Kähler identity, denoted by K1 and
defined by R(D,E, F,G) = R(D,E, JF, JG). In [3], A. Gray studied curvature
tensors for various classes of almost Hermitian manifolds considering the Nijenhuis
tensor of J.

In the present note, we pursue the study of Gray by adding some other classes
and their analogues in contact geometry. Examples of manifolds verifying the con-
dition of Gray are given such as ω1 ⊕ω3 and G1−manifolds. We have extended the
results of Gray to Hermitian and Hermitian semi-Kählerian manifolds.

The case of almost contact manifolds deals with the classes of cosymplectic,
closely cosymplectic, nearly cosymplectic and
nearly-K-cosymplectic. These classes have in common the property that (∇φ)(D,E) =
0 which is exploited. This property, used in the defining relation of the total space
of an almost contact metric submersion of type I, leads to the Kähler identity on
the fibres.

The paper is organized as follows. In Section §2, we treat the case of almost
Hermitian manifolds. Section §3 is devoted to almost contact metric manifolds while
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Section §4 treats the case of Riemanniann curvature properties including the use of
almost contact metric submersions.

We are grateful to the referee for his/her judicious comments on this paper.

2. Almost Hermitian manifolds

By an almost Hermitian manifold, one understands a Riemannian manifold,
(M, g), of even dimension 2m, furnished with a tensor field , J, of type (1, 1) satis-
fying the following two conditions:

(i) J2D = −D, and

(ii) g(JD, JE) = g(D,E), for all D,E ∈ Γ(M).

Any almost Hermitian manifold admits a differential 2-form, Ω, called the fun-
damental form or the Kähler form, defined by

Ω(D,E) = g(D, JE).

Almost Hermitian structures have been completely classified by A. Gray and
L.M. Hervella [4]. We just recall the defining relations of some classes which will
be used in this note.

An almost Hermitian manifold (M2m, g, J) is said to be :

(1) Hermitian if (∇DΩ)(E,G)− (∇JDΩ)(JE,G) = 0;

(2) quasi Kählerian if (∇DΩ)(E,G) + (∇JDΩ)(JE,G) = 0;

(3) Hermitian semi-Kähler manifold if
(∇DΩ)(E,G) − (∇JDΩ)(JE,G) = 0 = δΩ,

where the codifferential δ of Ω is defined by

δΩ(D) = −
m
∑

i=1

{(∇Ei
Ω)(Ei, D) + (∇JEi

Ω)(JEi, D)} .

Recall that Nijenhuis tensor, NJ , of J is defined by

NJ(D,E) = [D,E] + J [JD,E] + J [D, JE]− [JD, JE] .

With this in mind, one has [∇D, J ] = ∇DJ − J∇D.

Lemma 2.1. ([3]). If an almost Hermitian manifold (M2m, g, J) is such that
[∇JD, J ] = ±J [∇D, J ] , then

[

∇NJ (D,E), J
]

= [R(D,E)−R(JD, JE), J ]± J [R(JD,E) +R(D,E), J ] .
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Proof. It is known that R(D,E) = ∇[D,E] − [∇D,∇E ] . Combining this with the
definition of NJ (D,E), we get
[

∇NJ (D,E), J
]

− [R(D,E)−R(JD, JE), J ]∓ J [R(JD,E) +R(D,E), J ] =
[[∇D,∇E ]− [∇JD,∇JE , J ]]± J [[∇JD,∇E ] + [∇D,∇JE ], J ] .

Consider the right hand-side, apply the Jacobi identity and use the fact that
[∇JD, J ] = ±J [∇D, J ]. Thus the right hand-side vanishes and the proof follows.

Among manifolds satisfying the above condition, we note the following

(a) quasi Kählerian manifolds;

(b) Hermitian manifolds;

(c) Hermitian semi-Kählerian (or ω3−manifolds) defined by
(∇DΩ)(E,G) = (∇JDΩ)(JE,G) and NJ = 0 = δΩ;

(d) ω1 ⊕ ω3−manifolds in which
(∇DΩ)(D,E) = (∇JDΩ)(JD,E) and δΩ = 0;

(e) G1−manifolds defined by (∇DΩ)(D,E) = (∇JDΩ)(JD,E).

Proposition 2.1. If M is Hermitian or a Hermitian semi-Kählerian manifold,
then

[R(D,E), J ] + J [R(JD,E), J ] + J [R(D, JE), J ] = [R(JD, JE), J ] .

Proof. It is known that the manifolds under consideration verify NJ = 0. Putting
this in Lemma 2.1, we get the proof.

Proposition 2.2. ([3]). Let (M2m, g, J) be a quasi Kählerian manifold, then

[R(D,E)−R(JD, JE, J)]− J [R(JD,E) +R(D, JE), J ] =
2J [∇[∇D ,J]D, J ]− 2J [∇[∇E ,J]D, J ].

Proof. Since the manifold is quasi Kählerian, we have

[∇JD,, J ] = −J [∇D, J ]

On the other hand, it can be shown that

NJ (D,E) = 2J {[∇D, J ]E − [∇E , J ]D} .

With this and the use of Lemma 2.1, we get the proof.

Now, let us turn to

3. Almost contact metric manifolds

Recall that almost contact metric manifolds are extensively developed in [2].
Let M be a differentiable manifold of odd dimension (2m+ 1). An almost contact
structure on M is a triple (ϕ, ξ, η) where:
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(1) ξ is a characteristic vector field,

(2) η is a 1-form such that η(ξ) = 1, and

(3) ϕ is a tensor field of type (1, 1) satisfying

(3.1) ϕ2 = −I+ η ⊗ ξ,

where I is the identity transformation.

If M is equipped with a Riemannian metric g such that

(3.2) g(ϕD,ϕE) = g(D,E)− η(D)η(E),

then (g, ϕ, ξ, η) is called an almost contact metric structure. Therefore, the quintuple
(M2m+1, g, ϕ, ξ, η) is an almost contact metric manifold. As in the case of almost
Hermitian manifolds, any almost contact metric manifold admits a fundamental
2-form, φ, defined by

(3.3) φ(D,E) = g(D,ϕE).

In this study, among the known classes of almost contact manifolds, we have settled
the following.

An almost contact metric manifold is said to be :

(1) cosymplectic if ∇ϕ = 0, where ∇ is the Levi-Civita connection;

(2) closely cosymplectic if (∇Dϕ)D = 0 and dη = 0;

(3) nearly cosymplectic if (∇Dϕ)D = 0;

(4) nearly-K-cosymplectic if (∇Dϕ)E + (∇Eϕ)D = 0 and ∇Dξ = 0;

Proposition 3.1. Let (M2m+1, g, ϕ, ξ, η) be an almost contact metric manifold.
If it satisfies (∇Dφ)(D,E) = 0, then

R(D,E, F,G) = R(D,E, ϕF, ϕG).

Proof. On an almost contact metric manifold, the Ricci identity is such that

R(D,E)ϕ− ϕR(D,E) = ∇D∇Eϕ−∇E∇Dϕ−∇[D,E]ϕ(3.4)

Since (∇Dφ)(D,E) = 0, then (∇Dϕ)E = 0. Thus the right hand side of (3.4)
vanishes and, therefore the proof follows.

As examples of almost contact metric manifolds verifying the above properties, we
have cosymplectic, closely cosymplectic, nearly cosymplectic and nearly-K-cosymplectic.
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4. Riemannian curvature properties

Recall that the Riemannian curvature tensor R of a Khlerian manifold satisfies
the K1−identity, named the Kähler identity, defined by

(4.1) R(D,E, F,G) = R(D,E, JF, JG).

Other Ki-identities (i = 1, 2, 3) have been studied by A. Gray in [3].

Let (M2m, g, J) be an almost Hermitian manifold. The Ki-curvature properties
are defined in the following way.

K1 : R(D,E, F,G) = R(D,E, JF, JG),

K2 : R(D,E, F,G) = R(JD,E, JF,G) +R(JD, JE, F,G) +R(JD,E, F, JG),

K3 : R(D,E, F,G) = R(JD, JE, JF, JG).

In their study of curvature tensors of almost contact metric manifolds, D. Janssens
and L. Vanhecke [5], have obtained the following properties of the Riemannian
curvature tensor.

(1) the cosymplectic curvature property, defined by

R(D,E, F,G) = R(D,E, ϕF, ϕG);

(2) the Kenmotsu curvature property, defined by

R(D,E, F,G) = R(D,E, ϕF, ϕG) + g(D,F )g(E,G)− g(D,G)g(E,F )

−g(D,ϕF )g(E,ϕG) + g(D,ϕG)g(E,ϕF );

(3) the Sasakian curvature property, defined by

R(D,E, F,G) = R(D,E, ϕF, ϕG) − g(D,F )g(E,G) + g(D,G)g(E,F )

+g(D,ϕF )g(E,ϕG)− g(D,ϕG)g(E,ϕF ).

The curvature tensors of an almost contact metric manifold are called C(α)-curvature
tensors where α is a real number. For instance, the cosymplectic curvature tensor is
a C(0)-curvature tensor, the Kenmotsu curvature tensor is a C(−1)-curvature ten-
sor and the Sasakian curvature tensor is a C(1)-curvature tensor. For more details,
we refer to [5]. It is clear that the cosymplectic curvature tensor resembles to the
Kähler identity.

Now, we want to determine the classes of almost contact metric manifolds sat-
isfying the cosymplectic curvature property.

Theorem 4.1. [5] Let (M2m+1, g, ϕ, ξ, η) be an almost contact metric manifold. If
M satisfies the condition

(∇Dϕ)E = 0,

then it has the cosymplectic curvature property.
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Proof. For an almost contact metric manifold, the Ricci identity is given by

R(D,E)ϕ − ϕR(D,E) = [∇D,∇E ]ϕ−∇[D,E]ϕ.

The condition on M being equivalent to ∇ϕ = 0, the right hand side of the above
relation vanishes. We get

R(D,E)ϕF − ϕR(D,E)F = 0

which gives

g(R(D,E)ϕF, ϕG) = g(ϕR(D,E)F, ϕG)

= −g(R(D,E)F, ϕ2G)

from which we get

g(R(D,E)ϕF, ϕG) = −g(R(D,E)F,−G) − g(R(D,E)F, η(G)ξ).

It remains to show that g(R(D,E)F, η(G)ξ) = 0. Indeed,
g(R(D,E)F, η(G)ξ) = g(R(D,E)F, ξ)η(G),

but

g(R(D,E)F, ξ) = R(D,E, F, ξ)

= −R(D,E, ξ, F )

= −g(R(D,E)ξ, F ).

Since, ∇Dξ = 0, we get R(D,E)ξ = 0 from which we deduce
g(R(D,E)F, ξ) = 0 so that g(R(D,E)ϕF, ϕG) = g(R(D,E)F,G),

hence R(D,E, ϕF, ϕG) = R(D,E, F,G) follows immediately.

Now, let us examine the case of almost contact metric submersions, which are
Riemannian submersions whose total space is an almost contact metric manifold
studied by B. Watson [9].

Let (M2m+1, g, ϕ, ξ, η) and (M ′2m′+1, g′, ϕ′, ξ′, η′) be two almost contact metric
manifolds. By an almost contact metric submersion of type I, in the sense of Watson
[9], one understands a Riemannian submersion

π : M2m+1 → M ′2m′+1

satisfying

(i) π∗ϕ = ϕ′π∗,

(ii) π∗ξ = ξ′.
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Recall that in [6], O’Neill has defined two configuration tensors T and A, of the
total space of a Riemannian submersion by setting

TDE = H∇VDVE + V∇VDHE;

ADE = V∇HDHE +H∇HDVE,

where H and V denote respectively horizontal and vertical projections.

Tensor T is used in the study of the fibres as it is in the following

Proposition 4.1. Let F 2p −→ M2m+1 π
−→ M ′2m′+1 be an almost contact metric

submersion of type I. If the total space M is such that

(∇Dφ)(D,E) = α.η(D)φ(E,D),

then the fibres F 2p verify the NK1−curvature identity.

Proof. Consider α = 0, then we have (∇Dφ)(D,E) = 0; this leads to the condition
of Proposition 3.1.

Let U, V,W and S be vertical vector fields tangent to the fibres. In the light of
Proposition 3.1, we have

R(U, V,W, S) = R(U, V, ϕW,ϕS)(4.2)

Recall that the Gauss equation gives

R(U, V,W, S) = R̂(U, V, ϕW,ϕS)− g(TUW,TV S) + g(TV W,TUS)(4.3)

such that

R(U, V, ϕW,ϕS) = R̂(U, V, ϕW,ϕS)− g(TUϕW, TV ϕS) + g(TV ϕW, TUϕS).(4.4)

On the other hand, in this situation, we have TUϕW = ϕTUW and
TV ϕS = ϕTV S which gives

−g(TUϕW, TV ϕS) = −g(ϕTUW,ϕTV S)

= g(TUW,ϕ2TV S)

= −g(TUW,TV S) + g(TUW, η(TV S)ξ).

Since η(TV S) = 0, then −g(TUϕW, TV ϕS) = −g(TUW,TV S);

analogously g(TV ϕW, TUϕS) = g(TV W,TUS). In this way, equation (4.4) be-
comes

R(U, V, ϕW,ϕS) = R̂(U, V, ϕW,ϕS)− g(TUW,TV S) + g(TV W,TUS)(4.5)
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Substracting (4.5) from (4.3) gives

R(U, V,W, S)−R(U, V, ϕW,ϕS) = R̂(U, V,W, S)− R̂(U, V, ϕW,ϕS)(4.6)

According to equation (4.2), the left hand side of (4.6) vanishes; thus the fibres
verify the Kähler identity. Since the fibres are nearly Kahlerian, then they verify
the NK1−identity.

Suppose that α 6= 0. It is known that η vanishes on vertical vector fields. Thus,
(∇Uφ)(U, V ) = 0 which leads to (4.2) and gives the proof.

Theorem 4.2. Let π : M2m+1 −→ M ′2m′+1 be an almost contact metric submer-
sion of type I satisfying the following conditions

(1) the total space satisfies the Kenmotsu curvature property,

(2) the configuration tensor T is ϕ-linear on the vertical distribution,

(3) TUξ = 0 for all vertical vector fields U.

Then the fibres have the K2-curvature identity.

Proof. Since T is ϕ−linear and TUξ = 0, by calculation we get
g(TUϕW ), TV ϕS) = g(TUW,TV S) and g(TϕUϕW, TV S) = −g(TUW,TV S).
By virtue of the Kenmotsu curvature property, we have

(4.7) R(U, V,W, S) = R(U, V, ϕW,ϕS) +R(ϕU, V, ϕW, S) +R(ϕU, V,W,ϕS).

So, the Gauss equation gives

(i) R(U, V, ϕW,ϕS) = R̂(U, V, ϕ̂W, ϕ̂S)− g(TUW,TV S) + g(TV W,TUS),

(ii) R(ϕU, V, ϕW, S) = R̂(ϕ̂U, V, ϕ̂W, S) + g(TUW,TV S) + g(TV W,TUS),

(iii) R(ϕU, V,W,ϕS) = R̂(ϕ̂U, V,W, ϕ̂S)− g(TUW,TV S)− g(TV W,TUS).

Therefore, summing (i), (ii) and (iii), we obtain a relation yielding to

R̂(U, V,W, S) = R̂(U, V, ϕ̂W, ϕ̂S) + R̂(ϕ̂U, V, ϕ̂W, S) + R̂(ϕ̂U, V,W, ϕ̂S),

which shows that the fibres verify the K2-curvature identity.

Theorem 4.3. Let π : M2m+1 −→ M ′2m′+1 be an almost contact metric submer-
sion of type I. Suppose that the total space satisfies the condition

(∇Dϕ)E = 0,

then the base space verifies the cosymplectic curvature property and, on the fibres,
this property corresponds to the Kähler identity.
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Proof. Let X and Y be basic vector fields. It is known that H(∇Xϕ)Y is basic
associated to (∇′

X∗

ϕ′)Y∗. Thus, since (∇Xϕ)Y = 0, one deduces that (∇′
X∗

ϕ′)Y∗ =
0. Therefore, according to the preceding Theorem 4.1, the base space verifies the
cosymplectic curvature property. Now, consider the vector fields U, V, W and S

tangent to the fibres. For a Riemannian submersion, the Gauss equation is given
by

(4.8) R(U, V,W, S) = R̂(U, V,W, S)− g(TUW,TV S) + g(TV W,TUS)

This equation can be transformed in

(4.9) R(U, V, ϕW,ϕS) = R̂(U, V, ϕ̂W, ϕ̂S)− g(TUϕW, TV ϕS) + g(TV ϕW, TUϕS).

Since T is ϕ−linear in the second variable, which means TUϕW = ϕTUW, we have

g(TUϕW, TV ϕS) = g(ϕTUW,ϕTV S)

= −g(TUW,ϕ2TV S)

= g(TUW,TV S)− g(TUW, η(TV S)ξ);

Also

η(TV S) = g(ξ, TV S)

= −g(S, TV ξ)

= 0

because TV ξ = 0.

Thus, g(TUϕW, TV ϕS) = g(TUW,TV S) and

g(TV ϕW, TUϕS) = g(TV W,TUS).

In this case, (4.9) leads to

(4.10) R(U, V, ϕW,ϕS) = R̂(U, V, ϕ̂W, ϕ̂S)− g(TUW,TV S) + g(TV W,TUS).

Subtracting (4.9) from (4.8), we get,

R(U, V,W, S)−R(U, V, ϕW,ϕS) = R̂(U, V,W, S)− R̂(U, V, ϕ̂W, ϕ̂S).

Since R(U, V,W, S) = R(U, V, ϕW,ϕS),

then R̂(U, V,W, S) = R̂(U, V, ϕ̂W, ϕ̂S)

which shows that the fibres have the K1−curvature identity.

The above theorem can be viewed as a way to establish the following.

Corollary 4.1. Let π : M2m+1 −→ M ′2m′+1 be an almost contact metric submer-
sion of type I. Suppose the following conditions satisfied
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(1) the total space satisfies the cosymplectic curvature property,

(2) the configuration tensor T is ϕ-linear on the vertical distribution,

(3) TUξ = 0 for all vertical vector fields U.

Then the fibres have the Kähler identity.
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