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A CLASSIFICATION OF CONFORMAL-WEYL MANIFOLDS IN

VIEW OF NON-METRIC CONNECTIONS ∗
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Abstract. We give a classification of conformal-Weyl manifolds based on the perspec-
tive of semi-symmetric non-metric connections. This research is an extension of a
geometrized theory of gravitation and electromagnetism with conformal-Weyl connec-
tions.
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1. Introduction

It is well known that due to Einstein’s theory of relativity Weyl [22] and Lyra [17]
made an ingenious attempt to unify the gravitational and electromagnetic fields in
geometrical arguments, respectively. They defined and studied the Weyl and Lyra
manifolds in view of non-metric semi-symmetric connections.

The main purpose of this paper is to derive some further contribution for a clas-
sification of conformal-Weyl manifolds from the point of view of Weyl connections,
which are a type of the so-called semi-symmetric essentially metric (non-metric)
connections.

The concept of a semi-symmetric connection in a Riemannian manifold was
firstly introduced by A. Hayden in [12]. K. Yano first in [24] introduced and investi-
gated a semi-symmetric metric connection by using the idea of a metric connection
with torsion. U. C. De et al studied some properties of a semi-symmetric metric con-
nection on different manifolds, see [6, 7, 8]. A physical model of a semi-symmetric
non-metric connection was studied by K. A. Dunn in [9]. P. Zhao et al in[26]studied
a semi-symmetric connection in a sub-Riemannian manifold and arrived at some in-
teresting invariant results. F. Unal and A. Uysal [21] consideredWeyl manifold with
a semi-symmetric connection. H. V. Le [16] regarded Amari-Chentsov connection as
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a geometrical structure of a statistical manifold and E. S. Stepanova [18] discovered
a conjugate symmetric condition of the connection of the statistical manifold. S. K.
Chaubeg, R. H. Ojha [2], J. P. Jaiswal, R. H. Ojha [15] investigated the properties
of semi-symmetric non-metric connections. I. Suhendro [19] introduced the concept
of a new semi-symmetric connection and studied its physical model.

A manifold associated with a semi-symmetric connection is exactly a Weyl mani-
fold [20]. Many researchers have recently paid attention to Weyl manifolds and have
produced some remarkable works (one can see [10], [21], [13], [23], [19] for details).

In this paper we will continue to consider Weyl manifolds and propose a classi-
fication of Weyl manifolds from a semi-symmetric projective conformal connection
defined here that is a projective and conformal equivalent connection. We also
study an α-type semi-symmetric projective conformal connection as a special type
of a semi-symmetric projective conformal connection. We further consider an α-
type (ϕ, ω) non-metric connection and discovered its geometrical properties and
conjugate symmetric conditions.

The paper is organized as follows. The first two sections briefly introduce some
necessary notations and terminologies. Section 3 proposes a projective conformal
Weyl connection, and considers a geometrical nature of a conformal-Weyl manifold.
The authors get Section 4 is devoted to an α−type (ϕ, ω) semi-symmetric non-metric
Weyl connection. Finally, we also study the mutual connection of an α−type (ϕ, ω)
semi-symmetric non-metric Weyl connection.

2. Preliminaries

A semi-symmetric projective conformal connection ∇ is considered as a con-
nection that is projective and conformal equivalent to a semi-symmetric metric
connection ∇̂, namely, by a conformal transformation of the metric

(2.1) gij → ḡij = e2σ(x)gij ,

and by a projective transformation of the connection

(2.2) Γ̂k
ij → Γk

ij = Γ̂k
ij + ψiδ

k
j + ψjδ

k
i ,

which satisfies

(2.3) ∇kḡij = 2(σk − ψk)ḡij − ψiḡjk − ψj ḡik, T
k
ij = ϕjδ

k
i − ϕiδ

k
j ,

where Γ̂k
ij is the connection coefficient of a semi-symmetric metric connection ∇̂

that satisfies the following equation

(2.4) ∇̂kgij = 0, T̂ k
ij = ϕjδ

k
i − ϕiδ

k
j ,

And the coefficient of this connection is given as

(2.5) Γ̂k
ij = {kij}+ ϕjδ

k
i − gijϕ

k,
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where gij is a component of a Riemannian metric g and ψi, ϕi are components of 1-
form ψ and ϕ, {kij} is a Christoffel symbol of the metric gij , namely, the connection

coefficient of a Levi-Civita connection ∇◦ and σk = ∂kσ. Also T k
ij and T̂ k

ij are

respectively the torsion tensors of connections ∇ and ∇̂.

Remark 2.1. A Weyl manifold is characterized by a 1-form φ and the Weyl con-
nection is determined by

(∇Zg)(X,Y ) = −φ(Z)g(X,Y ), T (X,Y ) = 0.

thus it is torsion free but not metric preserving [20]. We call a manifold associated
with (2.3) a semi-symmetric Weyl manifold.

Definition 2.1. A connection ∇ is called a semi-symmetric projective conformal
connection if there hold (2.1) and(2.3).

The coefficient Γk
ij of a semi-symmetric projective conformal connection by (2.3) is

written as

(2.6) Γk
ij =

¯{kij}+ (ψi − σi)δ
k
j + (ψj + ϕj − σj)δ

k
i + ḡij(σ

k − ϕk),

where ¯{kij} is the Christoffel symbol for metric ḡij . The relation between ¯{kij} and

{kij} is

(2.7) ¯{kij} = {kij}+ σiδ
k
j + σjδ

k
i − gijσ

k.

If σ = 0 in (2.6), then the connection ∇ is a semi-symmetric projective connection
that is projective equivalent to ∇̂ and if ψi = 0 in (2.6), then the connection ∇ is
a semi-symmetric conformal connection that is conformal equivalent to ∇̂.

If ψk = ασk, α ∈ R in (2.3) and (2.6), then the semi-symmetric projective
conformal connection ∇ is called an α-type semi-symmetric projective conformal
connection. The α-type semi-symmetric projective conformal connection satisfies

(2.8) ∇kḡij = −2(α− 1)σkḡij − ασiḡjk − ασj ḡik, T
k
ij = ϕjδ

k
i − ϕiδ

k
j ,

from Equation (2.3), one obtains the coefficients

(2.9) Γk
ij =

¯{kij}+ (α− 1)σiδ
k
j + [(α− 1)σj + ϕj ]δ

k
i + ḡij(σ

k − ϕk),

If α = 0 (namely, ψk = 0), then an α-type semi-symmetric projective conformal
connection is a semi-symmetric conformal connection. In this case, (2.8) and (2.9)
are respectively given as

{

∇kḡij = 2σkḡij , T
k
ij = ϕjδ

k
i − ϕiδ

k
j ,

Γk
ij =

¯{kij} − (σiδ
k
j + σjδ

k
i − ḡijσ

k) + ϕjδ
k
i − ḡijϕ

k,
(2.10)
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Remark 2.2. A manifold M associated with (2.10) is said to be the first semi-
symmetric Weyl manifold.

In [9], this connection is used as a geometrical model for scalar-tensor theory of
gravitation. If α = 1, then (2.8) and (2.9) are respectively

{

∇kḡij = −σiḡjk − σj ḡik, T
k
ij = ϕjδ

k
i − ϕiδ

k
j ,

Γk
ij =

¯{kij}+ ϕjδ
k
i + ḡij(σ

k − ϕk),
(2.11)

Remark 2.3. A manifold M associated with (2.11) is said to be the second semi-
symmetric Weyl manifold.

If α = 2, then (2.8) and (2.9) are
{

∇kḡij = −2σkḡij − 2σj ḡik − 2σiḡjk, T
k
ij = ϕjδ

k
i − ϕiδ

k
j ,

Γk
ij =

¯{kij}+ σiδ
k
j + σjδ

k
i + ḡijσ

k + ϕjδ
k
i − ḡijϕ

k,
(2.12)

Remark 2.4. A manifold M associated with (2.12) is said to be the third semi-
symmetric Weyl manifold.

These semi-symmetric Weyl manifolds are defined by the special type of the semi-
symmetric projective conformal connections and a 1-form with component σi being
a closed form. Next we will consider for 1-form ω and ϕ the α-type (ϕ, ω) semi-
symmetric non-metric connection corresponding to the α-type semi-symmetric pro-
jective conformal connection.

Definition 2.2. A connection ∇ is called the α-type (ϕ, ω) semi-symmetric non-
metric connection if it satisfies

(2.13) ∇kgij = −2(α− 1)ωkgij − αωigjk − αωjgik, T
k
ij = ϕjδ

k
i − ϕiδ

k
j .

for 1-form ω and ϕ.

Remark 2.5. A manifold M associated with (2.13) is said to be an α-type (ϕ, ω)
semi-symmetric Weyl manifold.

When α = 0, then it is the first (ϕ, ω) semi-symmetric non-metric connection, if
α = 1, then it is the second semi-symmetric non-metric connection and if α = 2,
then it is the third semi-symmetric non-metric connection. The coefficient of α-type
(ϕ, ω) semi-symmetric non-metric connection is

(2.14) Γk
ij = {kij}+ (α− 1)ωiδ

k
j + (α− 1)ωjδ

k
i + gijω

k + ϕjδ
k
i − gijϕ

k,

As you see, α-type (ϕ, ω) semi-symmetric non-metric connection is a connection
family according to α. By Definition 2.2, the first (ϕ, ω) semi-symmetric non-metric
connection ∇ satisfies

(2.15) ∇kgij = 2ωkgij , T
k
ij = ϕjδ

k
i − ϕiδ

k
j .
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and its the coefficient is

(2.16) Γk
ij = {kij} − (ωiδ

k
j + ωjδ

k
i − gijω

k) + ϕjδ
k
i − gijϕ

k,

This connection was studied as a semi-symmetric recurrent connection in [28]. The
second (ϕ, ω) semi-symmetric non-metric connection satisfies

(2.17) ∇kgij = −ωigjk − ωjgik, T
k
ij = ϕjδ

k
i − ϕiδ

k
j .

and its coefficient is

(2.18) Γk
ij = {kij}+ ϕjδ

k
i + gij(ω

k − ϕk),

This connection was studied in [1] under the condition ϕ = ω. The third (ϕ, ω)
semi-symmetric non-metric connection satisfies

(2.19) ∇kgij = −2ωkgij − 2ωigjk − 2ωjgik, T
k
ij = ϕjδ

k
i − ϕiδ

k
j ,

and its coefficient is

(2.20) Γk
ij = {kij}+ ωiδ

k
j + ωjδ

k
i + gijω

k + ϕjδ
k
i − gijϕ

k,

This connection is a type of the Amari-Chentsov connection in the case ϕ = 0.
By Definition 2.1 and Definition 2.2, the semi-symmetric projective conformal con-
nection and α-type (ϕ, ω) semi-symmetric non-metric connection are different, but
they have the same geometrical properties. In this paper this fact is discovered.

3. A Projective Conformal Weyl Connection

We studied the geometrical properties of the semi-symmetric projective confor-
mal connection. By (2.6), the connection coefficient Γ∗k

ij of dual connection ∇∗ of
a semi-symmetric projective conformal connection ∇ is

(3.1) Γ∗k
ij = ¯{kij} − (ψi − σi)δ

k
j + (ϕj − σj)δ

k
i − ḡij(ψ

k + ϕk − σk),

Using (2.6) and (3.1), the curvature tensor Rl
ijk of connection ∇ and curvature

tensor R∗l
ijk of the dual connection ∇∗ are respectively

{

Rl
ijk = K̄ l

ijk + αikδ
l
j − αjkδ

l
i + ḡjkβ

l
i − ḡikβ

l
j + δlkψij ,

R∗l
ijk = K̄ l

ijk − βikδ
l
j + βjkδ

l
i − ḡjkα

l
i + ḡikα

l
j − δlkψij ,

(3.2)

where ∇̄◦ is Levi-Civita connection for ḡij and K̄ l
ijk is a curvature tensor field for

∇̄◦ and










αik = ∇̄◦

i (ψk + ϕk − σk)− (ψi + ϕi − σi)(ψk + ϕk − σk) + ḡik(ψp + ϕp − σp)(ϕ
p − σp),

βik = ∇̄◦

i (σk − ϕk) + (ϕi − σi)(ϕk − σk),

ψik = ∇̄◦

iψk − ∇̄◦

kψi.

(3.3)
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From Equation (3.2), one gets











Rjk = K̄jk − (n− 1)αjk − βjk + ḡjkβ
h
h + ψkj ,

Pij = P ◦

ij + (n+ 1)ψij ,

R = K̄ − (n− 1)(αh
h − βh

h)

(3.4)

and










R∗

jk = K̄jk + (n− 1)βjk + αjk − ḡjkα
h
h − ψkj ,

P ∗

ij = P ◦

ij − (n+ 1)ψij ,

R∗ = K̄ − (n− 1)(αh
h − βh

h)

(3.5)

The curvature tensors with respect to the semi-symmetric projective conformal
connection ∇ and dual connection ∇∗ are related to the following relation: P ∗

ij =
−Pij and R∗ = R because of P ◦

ij = 0.

Theorem 3.1. The expression Cl
ijk + C∗l

ijk = 2C̄◦l
ijk is an invariant under the

transformation of the connection ∇̄◦ → ∇ and ∇̄◦ → ∇∗, where Cl
ijk , C

∗l
ijk and C̄l

ijk

are Weyl conformal curvature tensors with respect to connections ∇,∇∗ and ∇̄◦,
namely,











Cl
ijk = Rl

ijk − 1
n−2 (δ

l
iRjk − δljRik + gjkR

l
i − gikR

l
j)−

R
(n−1)(n−2) (δ

l
jgik − δligjk),

C∗l
ijk = R∗l

ijk − 1
n−2 (δ

l
iR

∗

jk − δljR
∗

ik + gjkR
∗l
i − gikR

∗l
j )− R∗

(n−1)(n−2) (δ
l
jgik − δligjk),

C̄◦l
ijk = K̄ l

ijk − 1
n−2 (δ

l
iKjk − δljKik + gjkK

l
i − gikK

l
j)−

K
(n−1)(n−2)(δ

l
jgik − δligjk).

Proof. Let γik = αik − βik,

(3.6) Rl
ijk +R∗l

ijk = 2K̄ l
ijk + δljγik − δliγjk + ḡikγ

l
i − ḡjkγ

l
j ,

Contracting the indices i and l of (3.6), then we find

(3.7) Rjk + R∗

jk = 2K̄jk − (n− 2)γjk − ḡjkγ
h
h ,

Multiplying both sides of (3.7) by ḡjk,

R+R∗ = 2K̄ − 2(n− 1)γhh ,

From this expression,

γhh =
2K − (R+R∗)

2(n− 1)
,

From expression (3.7) we find

γjk =
1

n− 1
[2K̄jk − (Rjk +R∗

jk)−
ḡjk

2(n− 1)
(2K̄ − (R+R∗))],

Substituting this expression into (3.6), by a direct computation and using (3.6),
finishes the proof.
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Theorem 3.2. A semi-symmetric Weyl manifold with a constant sectional curva-
ture is conformal flat (n ≥ 3).

Proof. In fact, by Rl
ijk = K(δlj ḡik − δliḡjk) and (3.6), one has Cl

ijk = C∗l
ijk = 0,

then C̄◦l
ijk = 0 based on Theorem 3.1. Considering C̄◦l

ijk keeping unchanged under

a conformal transformation, one obtains C◦l
ijk = 0, where C◦l

ijk is a Weyl conformal
curvature tensor of a Riemannian metric gij . Hence if n ≥ 3 ,then the Riemannian
metric is conformal flat.

Theorem 3.3. In the Riemannian manifold (M, g), the tensor

V ∗l
ijk = R∗l

ijk +
1

n
(δljR

∗

ik − δliR
∗

jk + ḡjkR
∗l
i − ḡikR

∗l
j )

+
2

n(n+ 4)
[δli(R

∗

jk −R∗

kj)− δlj(R
∗

ik −R∗

ki)

+ ḡik(R
∗l
j −R∗l

·j )− ḡjk(R
∗l
i −R∗l

·i ) + nδlk(R
∗

ij −R∗

ji)].

is an invariant under the connection transformation ∇ → ∇∗.

Proof. From (3.2), we find

(3.8) R∗l
ijk = Rl

ijk + δliρjk − δljρik + ḡikρ
l
j − ḡjkρ

l
i − 2δlkψij ,

where ρik = αik +βik. By using a contraction of the indices i and l of (3.8), we find

(3.9) R∗

jk = Rjk + nρjk − ḡjkρ
h
h − 2ψkj ,

Alternating the indices j and k of (3.9), using ρjk − ρkj = ϕjk, we have

R∗

jk −R∗

kj = Rjk −Rkj + (n+ 4)ψjk,

From this relation we have

ψjk =
1

n+ 4
[(R∗

jk −R∗

kj)− (Rjk −Rkj)],

From this equation and (3.9), we obtain

ρjk =
1

n
{R∗

jk −Rjk + ḡjkρ
h
h −

2

n+ 4
[(R∗

jk −R∗

kj)− (Rjk −Rkj)]},

Substituting the above results into (3.8), then we have V ∗l
ijk = V l

ijk , where V
l
ijk is

the tensor of ∇, namely, we get

V l
ijk = Rl

ijk +
1

n
(δljRik − δliRjk + ḡjkR

l
i − ḡikR

l
j)

+
2

n(n+ 4)
[δli(Rjk −Rkj)− δlj(Rik −Rki)

+ ḡik(R
l
j −Rl

·j)− ḡjk(R
l
i −Rl

·i) + nδlk(Rij −Rji)].
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From Theorem 3.3 the following theorem is proved.

Theorem 3.4. A semi-symmetric projective conformal connection is conjugate
symmetry, so it is necessary and sufficient that the corresponding Ricci tensors
be equal.

4. An α-type (ϕ, ω) non-metric Weyl Connection

From (2.4) we find that the coefficient of dual connection ∇∗ of α-type (ϕ, ω) semi-
symmetric non-metric ∇ is given by

(4.1) Γ∗k
ij = {kij} − (α − 1)ωiδ

k
j − (ωj − ϕj)δ

k
i + gij [(α− 1)ωk + ϕk],

Using (2.4) and (4.1), we find that the curvature tensor of (M, g) with respect to
∇ and ∇∗ is given by

(4.2) Rl
ijk = K l

ijk + δljλik − δliλjk + gjkν
l
i − gikν

l
j + δlkωij ,

and

(4.3) R∗l
ijk = K l

ijk − δljνik + δliνjk − gjkλ
l
i + gikλ

l
j − δlkωij ,

where K l
ijk is a curvature tensor with respect to Levi-Civita connection ∇◦ of a

Riemannian metric gij and

λik = ∇◦

i [(α− 1)ωk + ϕk]− [(α− 1)ωi + ϕi][(α− 1)ωk + ϕk]

−gik[(α− 1)ωp + ϕp](ω
p − ϕp),

νik = ∇◦

i (ωk − ϕk) + (ωi − ϕi)(ωk − ϕk),(4.4)

ωik = (α− 1)(∇◦

iωk −∇◦

kωi).

From (4.2) and (4.3), we have the Ricci tensor, the volume curvature tensor and
scalar curvature, respectively











Rjk = Kjk − (n− 1)λjk − νjk + gjkν
h
h + ωkj ,

Pij = P ◦

ij + (n+ α
α−1 )ωij ,

R = K − (n− 1)(λhh − νhh),

(4.5)

and










R∗

jk = Kjk + (n− 1)νjk + λjk − gjkλ
h
h − ψkj ,

P ∗

ij = P ◦

ij − (n+ α
α−1 )ωij ,

R∗ = K − (n− 1)(λhh − νhh),

(4.6)

where Rij , Pij , R,R
∗

ij , P
∗

ij , R
∗ andKij ,Kij ,K are the Ricci tensor, volume curvature

tensor, scalar curvature with respect to ∇,∇∗ and ∇◦.

Expressions (3.4) and (4.6) are different, but their types are equal. Expressions
(3.3),(3.4),(3.5) and expressions (4.4),(4.5),(4.6) are formally equal. Hence the ge-
ometrical properties of the α-type (ϕ, ω) semi-symmetric non-metric connection
and the semi-symmetric projective conformal connection are equal. From (4.5) and
(4.6), we obtain P ∗

ij = Pij , R
∗ = R.
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Theorem 4.1. In a Riemannian manifold (M, g), if n ≥ 3, then the expression

Cl
ijk + C∗l

ijk = 2C◦l
ijk

is an invariant under the transformation of the connection ∇◦ → ∇ and ∇◦ → ∇∗,
where Cl

ijk, C
∗l
ijk and C◦l

ijk are Weyl conformal curvature tensors with respect to
connections ∇,∇∗ and ∇◦, namely,










Cl
ijk = Rl

ijk − 1
n−2 (δ

l
iRjk − δljRik + gjkR

l
i − gikR

l
j)−

R
(n−1)(n−2) (δ

l
jgik − δligjk),

C∗l
ijk = R∗l

ijk − 1
n−2 (δ

l
iR

∗

jk − δljR
∗

ik + gjkR
∗l
i − gikR

∗l
j )− R∗

(n−1)(n−2) (δ
l
jgik − δligjk),

C◦l
ijk = K l

ijk − 1
n−2 (δ

l
iKjk − δljKik + gjkK

l
i − gikK

l
j)−

K
(n−1)(n−2)(δ

l
jgik − δligjk).

Proof. Let µik = λik − νik,

(4.7) Rl
ijk +R∗l

ijk = 2K l
ijk + δljµik − δliµjk + gikµ

l
i − gjkµ

l
j ,

Contracting the indices i and l of (4.7), then we find

(4.8) Rjk +R∗

jk = 2Kjk − (n− 2)γjk − gjkµ
h
h,

Multiplying both sides of (4.8) by gjk,

R+R∗ = 2K − 2(n− 1)µh
h,

From this expression,

µh
h =

2K − (R +R∗)

2(n− 1)
,

From expression (4.8) we find

µjk =
1

n− 1
[2Kjk − (Rjk +R∗

jk)−
gjk

2(n− 1)
(2K − (R +R∗))],

Substituting this expression into (4.7), by a direct computation and using (3.6),
finishes the proof.

Theorem 4.2. An α-type (ϕ, ω) semi-symmetric Weyl manifold with a constant
sectional curvature is conformal flat (n ≥ 3).

Proof. By using the same argument as the proof of Theorem 3.2, one can prove
Theorem 4.2.

Theorem 4.3. In the Riemannian manifold (M, g), the tensor

V ∗l
ijk = R∗l

ijk +
1

n
(δljR

∗

ik − δliR
∗

jk + gjkR
∗l
i − gikR

∗l
j )

+
2(α− 1)

n[nα+ 4(α− 1)]
[δlj(R

∗

ik −R∗

ki)

−δli(R
∗

jk −R∗

kj) + gjk(R
∗l
i −R∗l

·i )− gik(R
∗l
j −R∗l

·j ) + nδlk(R
∗

ij −R∗

ji)].

is an invariant under the connection transformation of the α-type (ϕ, ω) semi-
symmetric non-metric ∇ → ∇∗ .
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Proof. From (4.2) and (4.3) we find

(4.9) R∗l
ijk = Rl

ijk + δliτjk − δljτik + gikτ
l
j − gjkτ

l
i − 2δlkωij ,

where τik = νik +λik. By using a contraction of the indices i and l of (4.9), we find

(4.10) R∗

jk = Rjk + nτjk − gjkτ
h
h − 2ωkj ,

Alternating the indices j and k of (4.10), we have

(4.11) R∗

jk −R∗

kj = Rjk −Rkj + n(τjk − τkj) + 4ωjk,

From this relation we have

(4.12) τjk − τkj = (νjk − νkj) + (λjk − λkj) =
α

α− 1
ωjk,

Using (4.12), we have

(4.13) ωjk =
α− 1

nα+ 4(α− 1)
[(R∗

jk −R∗

kj)− (Rjk −Rkj)],

if α = 1, then ωjk = 0. Using (4.13), from (4.10) we find

(4.14) τjk =
1

n
{R∗

jk −Rjk + gjkτ
h
h −

2(α− 1)

nα+ 4(α− 1)
[(R∗

jk −R∗

kj)− (Rjk −Rkj)]},

Substituting (4.13) and (4.14) into (4.9), then we have V ∗l
ijk = V l

ijk, where V
l
ijk

is the tensor of ∇, namely

V l
ijk = Rl

ijk +
1

n
(δljRik − δliRjk + gjkR

l
i − gikR

l
j)

+
2(α− 1)

n[nα+ 4(α− 1)]
[δlj(Rik −Rki)

−δli(Rjk −Rkj) + gjk(R
l
i −Rl

·i)− gik(R
l
j −Rl

·j) + nδlk(Rij −Rji)].

Remark 4.1. If α = 0, then

V ∗l
ijk = R∗l

ijk +
1

n
(δljR

∗

ik − δliR
∗

jk + gjkR
∗l
i − gikR

∗l
j ) +

1

2n
[δlj(R

∗

ik −R∗

ki)

−δli(R
∗

jk −R∗

kj) + gjk(R
∗l
i −R∗l

·i )− gik(R
∗l
j −R∗l

·j ) + nδlk(R
∗

ij −R∗

ji)],

If α = 1, then

V ∗l
ijk = R∗l

ijk +
1

n
(δljR

∗

ik − δliR
∗

jk + gjkR
∗l
i − gikR

∗l
j ),

If α = 2, then

V ∗l
ijk = R∗l

ijk +
1

n
(δljR

∗

ik − δliR
∗

jk + gjkR
∗l
i − gikR

∗l
j ) +

1

n(n+ 2)
[δlj(R

∗

ik −R∗

ki)

−δli(R
∗

jk −R∗

kj) + gjk(R
∗l
i −R∗l

·i )− gik(R
∗l
j −R∗l

·j ) + nδlk(R
∗

ij −R∗

ji)].
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Using Theorem 4.3 the following theorem is proved without difficulty.

Theorem 4.4. In order that a α-type (ϕ, ω) semi-symmetric non-metric connec-
tion is conjugate symmetry, it is necessary and sufficient that corresponding Ricci
tensor is equal.

5. A Mutual Weyl Connection of An α-type (ϕ, ω) non-metric Weyl

Connection

We studied geometrical properties and conjugate symmetry condition of the mu-
tual connection of an α-type (ϕ, ω) semi-symmetric non-metric connection. From
(2.13) and (2.14), the mutual connection ∇̄ of an α-type semi-symmetric non-metric
connection satisfies the relations
(5.1)
∇̄kgij = −2[(α− 1)ωk + ϕk]gij − (αωi − ϕi)gjk − (αωj − ϕj)gik, T̄

k
ij = ϕjδ

k
i − ϕiδ

k
j ,

The coefficient of the mutual connection is

(5.2) Γ̄k
ij = {kij} − [(α− 1)ωi + ϕi]δ

k
j + (α− 1)ωjδ

k
i + gij(ω

k − ϕk),

The dual connection ∇̄∗ of the mutual connection ∇̄ satisfies the relations
{

∇̄∗

kgij = 2[(α− 1)ωk + ϕk]gij + (αωi − ϕi)gjk + (αωj − ϕj)gik,

T̄ ∗k
ij = (ωi − ϕi)δ

k
j − (ωj − ϕj)δ

k
i + α(ωjδ

k
i − ωiδ

k
j ),

(5.3)

The coefficient of the dual connection of the mutual connection is

(5.4) Γ̄∗k
ij = {kij} − [(α− 1)ωi + ϕi]δ

k
j − (ωj − ϕj)δ

k
i − (α− 1)gijω

k,

Using (5.2) and (5.4), we find the curvature tensor with respect to ∇̄ and ∇̄∗ is
given respectively by

(5.5) R̄l
ijk = K l

ijk + δljωik − δliωjk + gjkα
l
i − gikα

l
j + δlkβij ,

and

(5.6) R̄∗l
ijk = K l

ijk − δljαik + δliαjk − gjkω
l
i + gikω

l
j − δlkβij ,

where










ωik = (α− 1)(∇◦

iωk − (α− 1)ωiωk),

αik = ∇◦

i (ωk − ϕk) + (ωi − ϕi)(ωk − ϕk) + (α− 1)gikωp(ω
p − ϕp),

βik = ∇◦

i [(α− 1)ωk + ϕk]−∇◦

k[(α− 1)ωi + ϕi],

(5.7)

Theorem 5.1. In a Riemannian manifold (M, g), if n ≥ 3, then the expression
C̄l

ijk + C̄∗l
ijk = 2C◦l

ijk is an invariant under the transformation of the connection
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∇◦ → ∇̄ and ∇◦ → ∇̄∗, where C̄l
ijk and C̄∗l

ijk are Weyl conformal curvature tensors

with respect to connections ∇̄and∇̄∗, namely,
{

C̄l
ijk = R̄l

ijk − 1
n−2 (δ

l
iR̄jk − δljR̄ik + gjkR̄

l
i − gikR̄

l
j)−

R̄
(n−1)(n−2) (δ

l
jgik − δligjk),

C̄∗l
ijk = R̄∗l

ijk − 1
n−2 (δ

l
iR̄

∗

jk − δljR̄
∗

ik + gjkR̄
∗l
i − gikR̄

∗l
j )− R̄∗

(n−1)(n−2) (δ
l
jgik − δligjk),

(5.8)

Proof. Adding (5.5) and (5.6), we have

(5.9) R̄l
ijk + R̄∗l

ijk = 2K l
ijk + δljγik − δliγjk + gjkγ

l
i − gikγ

l
j ,

where γik = αik − ωik, Contracting the indices i and l of (5.9), then we find

(5.10) R̄jk + R̄∗

jk = 2Kjk + (n− 2)γjk + gjkγ
h
h ,

Multiplying both sides of (5.10) by gjk,

R̄+ R̄∗ = 2K + 2(n− 1)γhh ,

From this expression,

γhh =
(R̄+ R̄∗)− 2K

2(n− 1)
,

Substituting this expression into (5.10) we find

γjk =
1

n− 2
[(R̄jk + R̄∗jk)− 2Kjk −

gjk

2(n− 1)
((R̄ + R̄∗)− 2K)],

Substituting this expression into (5.9), by a direct computation and using (5.8),
then this finishes the proof.

Theorem 5.2. If a Riemannian metric admits the mutual connection of an α-type
(ϕ, ω) semi-symmetric non-metric connection with a constant curvature, then the
Riemannian metric is conformal flat (n ≥ 3).

Proof. By using the same method as in the proof of Theorem 3.2, one can prove
Theorem 5.2.

Theorem 5.3. In the Riemannian manifold (M, g), the tensor

V̄ ∗l
ijk = R̄∗l

ijk +
1

n
(δljR̄

∗

ik − δliR̄
∗

jk + gjkR̄
∗l
i − gikR̄

∗l
j )

+
1

n2 − 4
(δliP̄

∗

jk − δljP̄
∗

ik + gikP̄
∗l
j − gjkP̄

∗l
i − nδlkP̄

∗

ij)

+
1

n(n2 − 4)
[δli(R̄

∗

jk − R̄∗

kj)− δlj(R̄
∗

ik − R̄∗

ki) + gik(R̄
∗l
j − R̄∗l

·j )

−gjk(R̄
∗l
i − R̄∗l

·i )− nδlk(R̄
∗

ij − R̄∗

ji)].

is an invariant under the connection transformation of the mutual connection ∇̄ →
∇̄∗, where P̄ ∗

ij = R̄∗k
ijk .
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Proof. From (5.5) and (5.6) we have

(5.11) R̄∗l
ijk = R̄l

ijk + δliτ̄jk − δlj τ̄ik + gikτ̄
l
j − gjk τ̄

l
i − 2δlkβij ,

where τ̄ik = αik + ωik. By using contraction of the indices i and l of (4.9), we find

(5.12) R̄∗

jk = R̄jk + nτ̄jk − gjkτ
h
h − 2βkj ,

Alternating the indices j and k of (5.12), we have

R̄∗

jk − R̄∗

kj = R̄jk − R̄kj + n(τ̄jk − τ̄kj) + 4βjk,

By using contraction of the indices k and l of (5.11), we obtained

P̄ ∗

ij = Pij − 2(τ̄ij − τ̄ji)− 2nβij ,

From the above two expressions, we obtained

n(τ̄jk − τ̄kj) + 4βjk = (R̄∗

jk − R̄∗

kj)− (R̄jk − R̄kj),

2(τ̄jk − τ̄kj) + 2nβjk = P̄jk − P̄ ∗

jk,

From these two expressions we find

(5.13) βjk =
1

2(n2 − 4)
{2[(R̄jk − R̄kj)− (R̄∗

jk − R̄∗

kj)] + n(P̄jk − P̄ ∗

jk)},

Substituting (5.13) into (5.12),
(5.14)

τ̄jk =
1

n
(R̄∗

jk − R̄jk+ gjk τ̄
h
h +

1

n2 − 4
{2[(R̄jk − R̄kj)− (R̄∗

jk− R̄
∗

kj)]+n(P̄jk − P̄
∗

jk)}),

Substituting (5.13) into (5.14) into (5.11), by a direct computation, we have V ∗l
ijk =

V l
ijk , where the tensor V l

ijk is

V̄ l
ijk = R̄l

ijk +
1

n
(δljR̄ik − δliR̄jk + gjkR̄

l
i − gikR̄

l
j)

+
1

n2 − 4
(δliP̄jk − δljP̄ik + gikP̄

l
j − gjkP̄

l
i − nδlkP̄ij)

+
1

n(n2 − 4)
[δli(R̄jk − R̄kj)− δlj(R̄ik − R̄ki) + gik(R̄

l
j − R̄l

·j)

−gjk(R̄
l
i − R̄l

·i)− nδlk(R̄ij − R̄ji)].

Using Theorem 5.3, the following theorem is proved without difficulty.

Theorem 5.4. In order for the mutual connection of an α-type (ϕ, ω) semi-symmetric
non-metric connection to be conjugate symmetry, it is necessary and sufficient that
corresponding Ricci tensor and volume curvature tensor be equal.
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