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RICCI SOLITONS AND GRADIENT RICCI SOLITONS IN AN
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Abul Kalam Mondal

Abstract. The objective of the present paper is to study an LP-Sasakian manifold
admitting Ricci solitons and gradient Ricci solitons.

1. Introduction

An n−dimensional Lorentzian manifold M is a smooth connected para-contact
Hausdorff manifold with a Lorentzian metric g, that is, M admits a smooth sym-
metric second order tensor field g such that for each point p ∈ M, the tensor
gp : TpM×TpM → R is a non-degenerate inner product of signature (−,+,+, ...,+),
where TpM denotes the tangent vector space of M at p. The study of Lorentzian
almost paracontact manifold was initiated by Matsumoto [16]. Later on several au-
thors studied Lorentzian almost paracontact manifolds and their different classes,
viz. LP -Sasakian and LSP -Sasakian manifolds(cf. [10], [11], [17], [18], [21]).

Ricci solitons are natural generalization of Einstein metrics and have been a
branch of study in mathematics, as they correspond to special solutions of Ricci
flow[2]. In a Riemannian manifold (M, g), g is called a Ricci soliton if [14]

(1.1) (£V g + 2S + 2λg)(X,Y ) = 0,

where £ is the Lie derivative, S is the Ricci tensor, V is a vector field on M and
λ is a constant. Metrics satisfying (1.1) are interesting and useful in physics and
are often referred as quasi-Einstein (e.g. [3],[4],[12]). Compact Ricci solitons are
the fixed points of the Ricci flow ∂

∂tg = −2S projected from the space of metrics
onto its quotient modulo diffeomorphisms and scalings, and often arise as blow-up
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limits for the Ricci flow on compact manifolds. Theoretical physicists have also
been looking into the equation of Ricci soliton in relation with string theory. The
initial contribution in this direction is due to Friedan who discusses some aspects
of it [12].

The Ricci soliton is said to be shrinking, steady and expanding according as λ
is negative, zero and positive respectively. If the vector field V is the gradient of a
potential function −f , then g is called a gradient Ricci soliton and equation (1.1)
assumes the form

(1.2) ∇∇f = S + λg.

The obvious examples of Ricci solitons are Einstein solitons, where g is an Ein-
stein metric and X is a Killing vector field. A Ricci soliton on a compact manifold
has constant curvature in dimension 2 [14] and also in dimension three [15]. For
details we refer to Chow and Knopf [5] and Derdzinski [6]. We also recall the fol-
lowing significant result of Perelman [19]: A Ricci soliton on a compact manifold is
a gradient Ricci soliton.

In [20], Sharma has started the study of Ricci solitons in K-contact manifolds.
Also, in a subsequent paper [13] Ghosh, Sharma and Cho studied gradient Ricci
soliton of a non-Sasakian (k, μ)-contact manifold. In a K-contact manifold the
structure vector field ξ is Killing, that is, £ξg = 0, which is not in general, in a
P−Sasakian manifold. In [7], U. C. De have studied Ricci solitons in P−Sasakian
manifolds. Recently in [1], B. Barua and U. C. De have studied Ricci solitons in
Riemannian manifolds.

Motivated by these circumstances, in this paper we study Ricci solitons and
gradient Ricci solitons in an LP−Sasakian manifold.

The paper is organized as follows. After preliminaries in section 2 among others
we prove that in an LSP -Sasakian manifold if g admits a Ricci soliton (g, V, λ) and
V is point-wise colinear with ξ, then the manifold is an η−Einstein manifold and
also we show that if an LSP -Sasakian manifold admits a compact Ricci soliton,
then the manifold is Einstein. Finally we prove that if an η−Einstein LP -Sasakian
manifold admits a gradient Ricci soliton, then the manifold reduces to an Einstein
manifold under certain condition.

2. LP−Sasakian Manifold

Let M be an n-dimensional Lorentzian para Sasakian (LP -Sasakian ) manifold
with structure

∑
= (φ, ξ, η, g), where φ is a (1,1)-tensor field, ξ is a contravariant

vector field, η is a 1-form and g is a Lorentzian metric, then by definition, they
satisfies [22]

(2.1) η(ξ) = −1, φ2 = I + η ⊗ ξ,

(2.2) φξ = 0, η.φ = 0, ∇Xξ = φX, rank(φ) = n− 1,
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(2.3) η(X) = g(ξ,X), g(φX, φY ) = g(X,Y ) + η(X)η(Y ),

(2.4) (∇Xη)(Y ) = Ω(Y,X), Ω(X,Y ) = Ω(Y,X) (Ω(Y,X) = g(φY,X)),

(∇ZΩ)(X,Y ) = {g(X,Z) + η(X)η(Z)}η(Y )

+{g(Y, Z) + η(Y )η(Z)}η(X)(2.5)

for any vector fields X , Y and Z on M , where I denotes the identity map on TpM
(the tangent vector space at p of M) and the symbol ⊗ is the tensor product.

An n-dimensional Lorentzian manifold (M, g) is said to be Lorentzian special
para Sasakian (LSP -Sasakian) if M admits a timelike unit vector field ξ with its
associated 1-form η satisfies

(2.6) Ω(X,Y ) = (∇Xη)(Y ) = ε{g(X,Y ) + η(X)η(Y )}, ε2 = 1.

Of course, an LSP -Sasakian manifold is LP -Sasakian.

On the other hand, the eigenvalues of φ are -1, 0 and 1. And the multiplicity
of 0 is 1 by (2.2). Let K and l be the multiplicities of -1 and 1 respectively. Then
trφ = l−K. So, if (trφ)2 = (n− 1)2, then l = 0 or K = 0. In this case, we call our
structure is a trivial LP -Sasakian structure.

In an n-dimensional LP -Sasakian manifold with structure
∑

, we know the fol-
lowing relations

(2.7) η(R(X,Y )Z) = g(Y, Z)η(X)− g(X,Z)η(Y ), S(X, ξ) = (n− 1)η(X),

(2.8) R(ξ, Y )X = g(Y,X)ξ − η(X)Y, R(Y,X)ξ = η(X)Y − η(Y )X,

φ(R(X,φY )Z) = R(X,Y )Z + 2{η(Y )X − η(X)Y }η(Z)

+2{g(X,Z)η(Y )− g(Y, Z)η(X)}ξ
+Ω(X,Z)φY − Ω(Y, Z)φX

+g(Y, Z)X − g(X,Z)Y,(2.9)

where R and S are respectively the curvature tensor and the Ricci tensor with
respect to g.

An n-dimensional LP -Sasakian manifold is said to be η-Einstein if the Ricci
tensor S satisfies

(2.10) S = ag + bη ⊗ η,
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where a and b are smooth functions on the manifold. In[9] an η−einstein LP -
Sasakian manifold the Ricci tensor S is of the form

(2.11) S(X,Y ) = [
r

n− 1
− 1]g(X,Y ) + [

r

n− 1
− n]η(X)η(Y )

and the Ricci operator is of the form

(2.12) QX = [
r

n− 1
− 1]X + [

r

n− 1
− n]η(X)ξ.

3. Ricci Solitons

Suppose an LP -Sasakian manifold admits a Ricci soliton defined by (1.1). It is
well known that ∇g = 0. Since λ in the Ricci soliton equation (1.1) is a constant, so
∇λg = 0. Thus £V g+2S is parallel. In [8] the author prove that if an LP-Sasakian
manifold admits a symmetric parallel (0, 2) tensor, then the tensor is a constant
multiple of the metric tensor. Hence £V g + 2S is a constant multiple of metric
tensors g, i.e., £V g+2S = ag, where a is constant. Hence £V g+2S+2λg reduces
to (a+ 2λ)g. Using (1.1) we get λ = −a/2. So we have the following:

Proposition 3.1. In an LP-Sasakian manifold the Ricci soliton (g, λ, V ) is shrink-
ing or expanding according as a is positive or negative.

In particular, let V be point-wise collinear with ξ i.e. V = bξ, where b is a
function on the LP− manifold. Then

(3.1) (£V g + 2S + 2λg)(X,Y ) = 0,

which implies that

g(∇Xbξ, Y ) + g(∇Y bξ,X) + 2S(X,Y ) + 2λg(X,Y ) = 0,

or,

bg((∇Xξ, Y ) + (Xb)η(Y ) + bg(∇Y ξ,X)

+ (Y b)η(X) + 2S(X,Y ) + 2λg(X,Y ) = 0.

Using (2.2), we obtain

2bg(φX, Y ) + (Xb)η(Y ) + (Y b)η(X)

+ 2S(X,Y ) + 2λg(X,Y ) = 0.(3.2)

Putting Y = ξ in (3.2) we get

(Xb) + η(X)ξb+ 2(n− 1)η(X) + 2λη(X)
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or,

(3.3) (Xb) = (1− λ− n)η(X).

Since dη = 0 in LP−Sasakian manifold, from (3.3) we obtain

Xb = 0

provided λ = 1− n.

Theorem 3.1. If in an LP−Sasakian manifold the metric g is a Ricci soliton
and V is point-wise collinear with ξ, then V is a constant multiple of ξ provided
λ = 1− n.

In particular, let V = ξ. Then

(£V g + 2S + 2λg)(X,Y ) = 0,

implies that

(3.4) 2g(φX, Y ) + 2S(X,Y ) + 2λg(X,Y ) = 0.

Substituting X = ξ we get λ = −(n− 1). Thus the Ricci soliton is shrinking.

If, in particular, the manifold is an LSP−Sasakian manifold, then

(3.5) (∇Xη)(Y ) = g(φX, Y ) = ε{g(X,Y ) + η(X)η(Y )} ε2 = 1.

Hence using (3.3),(3.5) equation (3.2)takes the form

(3.6) S(X,Y ) = (bε− λ)g(X,Y ) + (λ+ n− 1− bε)η(X)η(Y ),

that is, an η−Einstein manifold.

So we have the following:

Theorem 3.2. If in an LSP -Sasakian manifold the metric g is a Ricci soliton
and V is point-wise colinear with ξ, then the manifold is an η−Einstein manifold.

Conversely, let M be an LSP -Sasakian η−Einstein manifold of the form

(3.7) S(X,Y ) = δg(X,Y ) + γη(X)η(Y ),

where γ and δ are constants.

Now taking V = ξ in (3.1)and using (3.7) we obtain

(£ξg)(X,Y ) + 2S(X,Y ) + 2λg(X,Y ) = 2(ε+ λ+ δ)g(X,Y )

−2(ε+ γ)η(X)η(Y ).(3.8)

From equation (3.8) it follows thatM admits a Ricci soliton (g, ξ, λ) if ε+λ+δ =
0 and ε+ γ = 0. these implies that γ = −ε = constant.

Also from (3.7) we have δ = n− 1 + γ = constant. Therefore λ = −δ − ε which
is a constant. So we have the following:
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Theorem 3.3. If an LSP-Sasakian manifold is η−Einstein of the form S = δg +
γη⊗η with γ, δ = constant, then the manifold admits a Ricci soliton (g, ξ,−(δ+ε)).

Again on contraction we get from (3.6)

r = (n− 1)(bε− λ− 1) = constant.

Therefore the scalar curvature is constant.

In [20] Sharma proved that a compact Ricci soliton of constant scalar curvature
is Einstein. Hence from Theorem 3.1. we state the following:

Corollary 3.1. If an LSP -Sasakian manifold admits a compact Ricci soliton, then
the manifold is Einstein.

4. Gradient Ricci Solitons

If the vector field V is the gradient of a potential function −f, then g is called
a gradient Ricci soliton and (1.1) assume the form

(4.1) ∇∇f = S + λg.

This reduces to

(4.2) ∇Y Df = QY + λY,

where D denotes the gradient operator of g. From (4.2) it is clear that

(4.3) R(X,Y )Df = (∇XQ)Y − (∇Y Q)X.

This implies

(4.4) g(R(ξ, Y )Df, ξ) = g((∇ξQ)Y, ξ)− g((∇Y Q)ξ, ξ).

Now using (2.12) and (2.2) we have

(4.5) (∇Y Q)(X) =
1

n− 1
(X + η(X)ξ) + [

r

n− 1
− n](g(Y, φX)ξ + η(X)φY ).

Then clearly

(4.6) g((∇XQ)ξ − (∇ξQ)X, ξ) = 0.

Then we have from (4.4)

(4.7) g(R(ξ,X)Df, ξ) = 0.
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From (2.8) and (4.7)we get

g(R(ξ, Y )Df, ξ) = −g(Y,Df)− η(Df)η(Y ) = 0.

Hence

(4.8) Df = −η(Df)ξ = −g(Df, ξ)ξ = −(ξf)ξ.

Using (4.8) in (4.2) we get

S(X,Y ) + λg(X,Y ) = −g(∇Y ((ξf)ξ), X)

= −Y (ξf)η(X)− ξfg(X,φY ).(4.9)

Putting X = ξ in (4.9) and using (3.3) we get

(4.10) Y (ξf) = (n+ λ− 1)η(Y ).

From this it is clear that if λ = 1−n, then ξf = constant. Therefore from (4.8)
we have

Df = −(ξf)ξ = cξ.

In particular taking a frame field ξf = 0 we get from (4.8) f = constant.

Therefore equation (4.1) reduces to

S(X,Y ) = (n− 1)g(X,Y ),

that is, M is an Einstein manifold.

Theorem 4.1. If an η−Einstein LP-Sasakian manifold admits a gradient Ricci
soliton then the manifold reduces to an Einstein manifold provided λ = 1−n within
the frame field ξf = 0.
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