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RICCI SOLITONS ON HOPH HYPERSURFACES IN A SASAKIAN

SPACE FORM

Zahra Nazari and Esmail Abedi

Abstract. We are studying Ricci solitons on Hoph hypersurfaces in a Sasakian space
form M̃2n+1(c). First, we prove that Hoph hypersurfaces of a Sasakian space form

M̃2n+1(c < 1) with two distinct principal curvatures are shrinking, and for c ≥ 1 Hoph

hypersurfaces with two distinct principal curvatures of a Sasakian space form M̃2n+1(c)
do not admit the Ricci soliton. We show that there are no Hoph hypersurfaces with
two distinct principal curvatures in a Sasakian space form M̃2n+1(c) with an η-Ricci
soliton (and a Ricci soliton) such that a potential vector field is the Reeb vector field.

Then we prove that Hoph hypersurfaces in a Sasakian space form M̃2n+1(c) with c = 1
do not admit an η- Ricci soliton with a potential vector field U and we show that the
Ricci soliton on Hoph hypersurfaces M in a Sasakian space form M̃2n+1(c < −3) with a
potential vector field U is shrinking the Ricci soliton. Finally, we study the Ricci soliton
on locally symmetric hypersurfaces in a Sasakian space form M̃2n+1(c) and prove that
the Ricci soliton shrins for c < 1. Also, there are no locally symmetric hypersurfaces
(M, g) of a Sasakian space form M̃2n+1(c ≥ 1) with a Ricci soliton.

Keywords: Ricci soliton, η-Ricci soliton, Sasakian space form, locally symmetric hy-
persurfaces

1. Introduction

A smooth vector field V on a Riemannian manifold (M, g) is said to be a Ricci
soliton if it satisfies

1

2
LV g +Ric− λg = 0(1.1)

where LV g denotes the Lie-derivative of the metric g with respect to V , Ric is
the Ricci tensor of (M, g), and λ is a constant. We shall show a Ricci soliton by
(M, g, V, λ) the vector field V of which is a potential vector field of the Ricci soliton.
A Ricci soliton (M, g, V, λ) is called expanding, steady and shrinking according to
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λ < 0, λ = 0 and λ > 0, respectively.
Compact Ricci solitons are fixed points of the Ricci flow:

∂

∂t
g(t) = −2Ric(g(t))(1.2)

projected from the space of metric tensors onto its quotient modulo diffeomorphisms
and scalings, and mostly arise as blow-up limits for the Ricci flow on compact Rie-
mannian manifolds. Furthermore, Ricci solitons model the formation of singulari-
ties in the Ricci flow and they correspond to self-similar solutions[11]. Naturally,
a trivial Ricci soliton is an Einstein metric with V Killing or zero. A Ricci soli-
ton (M, g, V ;λ) is called a gradient Ricci soliton if its potential vector field V is
the gradient of the smooth function f on M . We denote gradient Ricci soliton
by (M, g, V ;λ) and call the smooth function f a potential function. Ivey [8] and
Hamilton [6] proved that a Ricci soliton on a compact Riemannian manifold in di-
mension 2 and 3 has a constant curvature. Perelman [12] proved that the potential
vector field in a compact Ricci soltion is the sum of a gradient and a Killing vector
field. Thus compact Ricci solitons are gradient Ricci solitons. In particular, since
Perelman used Ricci solitons it has become more important to solve the long stand-
ing Poincaré conjecture discussed in 1904. In [5], Chow and Knopf studied details
about gradient Ricci solitons or Ricci solitons.

In [9], Ki proved that there are no real hypersurfaces with a parallel Ricci tensor

in a complex space form M̃n(c) with c 6= 0 when n ≥ 3. Kim [10] proved that when
n = 2, this is also true. In particular, these results show that there are no Einstein
real hypersurfaces in a non-flat complex space form.

In [2], Chen studied the important results on Ricci solitons which obviously
occur on some Riemannian submanifolds. He presented several recent new criteria
for trivial compact shrinking Ricci solitons.

Cho and Kimura [3] studied Ricci solitons of real hypersurfaces in a non-flat
complex space form and showed that a real hypersurface M in a non-flat complex
space form M̃n(c 6= 0) does not admit a Ricci soliton such that the Reeb vector
field ξ is a potential vector field. They defined the so-called η-Ricci soliton, such
that it satisfies

1

2
LV g +Ric− λg − µη ⊗ η = 0(1.3)

where λ, µ are constants. They first proved that a real hypersurface M of a non-flat
complex space form M̃n(c) which accepts an η-Ricci soliton is a Hopf-hypersurface
and classified the η-Ricci soliton real hypersurfaces in a non-flat complex space form.

Since Ricci solitons are generalization of Einstein manifolds, one may look for
new examples in the class where there are Einstein manifolds. A wealthy class
of Einstein manifolds has been found in the class of Sasakian manifolds. In [1],
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we can see interesting examples of Sasakian-Einstein manifolds consistuting exotic
spheres. Note that all examples of shrinking Ricci solitons are Kähler so far and of
even dimensions, whereas Sasakian manifolds are of odd dimension. In addition, a
class of examples of Sasakian-Einstein metric is created on S1- bundles over Kähler-
Einstein manifolds. He and Zhu [7], showed that a Sasakian metric which so satisfies
the gradient Ricci soliton equation is presently Einstein.

Our paper is structured as follows. The first section is a very brief review of
Sasakian space forms and Hoph hypersurfaces, CR hypersurfaces and locally sym-
metric hypersurfaces in Sasakian space forms and Ricci solitons. In what follows,
we study Ricci solitons on Hoph hypersurfaces in Sasakian a space form M̃2n+1(c).

Firstly, we prove that Hoph hypersurfaces of a Sasakian space form M̃2n+1(c < 1)
with two distinct principal curvatures are shrinking and for c ≥ 1 Hoph hypersur-
faces with two distinct principal curvatures of a Sasakian space form M̃2n+1(c) do
not admit a Ricci soliton. We show that there are no Hoph hypersurfaces with two
distinct principal curvatures in a Sasakian space form M̃2n+1(c) with an η-Ricci
soliton (and a Ricci soliton) such that the potential vector field is the Reeb vector
field.
Then we prove that Hoph hypersurfaces in a Sasakian space form M̃2n+1(c) with
c = 1 do not admit an η- Ricci soliton with a potential vector field U and we
show that the Ricci soliton on Hoph hypersurfaces M in a Sasakian space form
M̃2n+1(c < −3) with a potential vector field U is a shrinking Ricci soliton. Fi-
nally, we study the Ricci soliton on locally symmetric hypersurfaces in a Sasakian
space form M̃2n+1(c) and prove that the Ricci soliton is shrinking for c < 1. Also,
there are not any locally symmetric hypersurfaces (M, g) of a Sasakian space form

M̃2n+1(c ≥ 1) with a Ricci soliton.

1.1. PRELIMINARIES

Definition 1.1. Let M2n+1 be an odd-dimensional manifold. An almost contact
structure (ϕ, η, ξ) on a differentiable manifold M2n+1 is a vector field ξ, a one-form
η and a (1,1)-tensor field ϕ which satisfy

ϕ2 = −Id+ η ⊗ ξ, η(ξ) = 1, ϕξ = 0, ηoϕ = 0.(1.4)

Then (M2n+1, ϕ, η, ξ) is an almost contact manifold.

Definition 1.2. If an almost contact manifold M2n+1 admits a Riemannian met-
ric compatible g such that

g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ), η(X) = g(X, ξ),

then (M2n+1, g, ϕ, η, ξ) is an almost contact metric manifold.
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Definition 1.3. A manifold M2n+1 is said to be a contact manifold if it carries a
global one-form η such that

η ∧ (dη)n 6= 0

everywhere on M2n+1 and one-form η is called the contact form.

Definition 1.4. An almost contact metric manifoldM2n+1 is said to be a Sasakian
manifold with an almost contact metric structure (ϕ, ξ, η, g) if

(∇Xϕ)Y = g(X,Y )ξ − η(Y )X ∀X,Y ∈ TM

∇Xξ = −ϕX(1.5)

such that, ∇ denotes its Levi-Civita connection of the Riemannian metric g.

Definition 1.5. A plane section σ ⊂ Tp(M) of a Sasakian manifold M2n+1 is
called a ϕ-section if σ⊥ξ and ϕ(σ) = σ. The restriction sectional curvature k to ϕ-
section of the Riemannian sectional curvature (of (M, g)) is the ϕ-section curvature.
A Sasakian space form is a Sasakian manifold with a constant ϕ -sectional curvature.

In this case, the Riemannian curvature tensor field R of a Sasakian space form
M2n+1(c) is given by

R(X,Y )Z =
c+ 3

4
{g(Y, Z)X − g(X,Z)Y }

−
c− 1

4
{η(Z)[η(Y )X − η(X)Y ] + [g(Y, Z)η(X)− g(X,Z)η(Y )]ξ

− g(ϕY,Z)ϕX + g(ϕX,Z)ϕY + 2g(ϕX, Y )ϕZ}.(1.6)

Definition 1.6. A smooth vector field V on a Riemannian manifold (M, g) is said
to be a Ricci soliton if it satisfies

1

2
LV g +Ric− λg = 0(1.7)

where LV g denotes the Lie-derivative of the metric g with respect to V , Ric is
the Ricci tensor of (M, g) and λ is a constant. We shall show a Ricci soliton by
(M, g, V, λ) the vector field V of which is the potential vector field of the Ricci
soliton.

Definition 1.7. A Hoph hypersurface M in a Sasakian space form M̃2n+1(c) is
said to be a locally symmetric hypersurface if it satisfies

(∇WR)(X,Y )Z = 0(1.8)

for X,Y, Z ∈ TM , where R and ∇ denote the curvature tensor and Riemannian
connection of M , respectively.
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Definition 1.8. Let A be the shape operator of the hypersurfaceM in M̃2n+1 and
the plane spanned by {ξ, U} be invariant subspace of A. Then the hypersurface M

is called a Hopf hypersurface of M̃2n+1.

Let M̃2n+1 be a Sasakian manifold and let Mn be a real submanifold of M̃2n+1.

Definition 1.9. A CR-submanifold is a submanifold Mn tangent to ξ that admits
an invariant distribution D whose orthogonal complementary distribution D⊥ is
anti-invariant, that is, TM = D ⊕ D⊥ with condition ϕ(Dp) ⊂ Dp for all p ∈ M

and ϕ(D⊥
p ) ⊂ T⊥

p M for all p ∈ M .

1.2. Hopf Hypersurfaces in Sasakian space form

Let M be a Hoph hypersurface of a Sasakian space form M̃2n+1(c) . We define
a metric g on M by

g(X,Y ) = g̃(ιX, ιY ),

for anyX,Y ∈ TM , where the Riemannian metric g is said to be the induced metric
from g̃ and the ι is called an isometric immersion.
We shall need the Gauss and Weingarten formulas

∇̃XY = ∇XY + h(X,Y ), ∇̃XN = −AX

where ∇̃ and ∇ are the Riemannian connection of M̃2n+1(c) and M , respectively,
and h is the second fundamental form, N is a locally unit normal vector field on M ,
and A is the shape operator with respect to N . The Gauss and Codazzi equations:

R(X,Y )Z =
c+ 3

4
{g(Y, Z)X − g(X,Z)Y }

−
c− 1

4
{η(Z)[η(Y )X − η(X)Y ] + [g(Y, Z)η(X)− g(X,Z)η(Y )]ξ

− g(ϕY,Z)ϕX + g(ϕX,Z)ϕY + 2g(ϕX, Y )ϕZ}

+ g(AY,Z)AX − g(AX,Z)AY,

(∇XA)Y − (∇Y A)X =
c− 1

4
{u(X)ϕY − u(Y )ϕX − 2g(ϕX, Y )U}.

Hence Ricci tensor is written as

Ric(X,Y ) = {
(2n+ 1)c+ 6n− 5

4
}g(X,Y )−

(2n+ 1)c− 2n− 1

4
η(X)η(Y )

+ (traceA)g(AX, Y )− g(AX,AY ).(1.9)

for X,Y, Z ∈ TM and u(X) := g(U,X), where R and Ric are the curvature and
Ricci tensors of M , respectively.
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Lemma 1.1. Let M be a hypersurface of a Sasakian manifold M̃2n+1. Then Aξ =
−U such that U is a vector field on M with ϕU = N .

Proof. By using the second relation (1.5) and the Gauss formula, we obtain

0 = −ϕξ = ∇̃ξξ = ∇ξξ + g(Aξ, ξ)N.

Thus, by separating the normal and tangential parts, we conclude

∇ξξ = 0, g(Aξ, ξ) = 0.(1.10)

Again, the second relation (1.5) and the Gauss formula imply

−ϕX = ∇̃Xξ = ∇Xξ + g(AX, ξ)N

and comparing the tangential part and the normal part, we get

∇Xξ = −ϕX, g(AX, ξ) = 0.(1.11)

Thus, from (1.10) and (1.11), it follows Aξ = δU and the Gauss formula implies

∇Uξ + g(AU, ξ)N = ∇̃Uξ = −ϕU = −N

then, ∇Uξ = 0 and g(AU, ξ) = −1. Hence

−1 = g(AU, ξ) = g(U,Aξ) = δg(U,U) = δ.

therefore δ = −1, Aξ = −U , which completes the proof.

Lemma 1.2. Let M be a hypersurface of a Sasakian manifold M̃2n+1. Then AU =
−ξ + βU

Proof. From the Gauss and Weingarten formula, it follows

ϕAX = −∇̃XϕN = ∇̃XU = ∇XU + g(AX,U)N

Comparing the vertical part and the horizontal part, we conclude

∇XU = ϕAX, g(AU,X) = 0,(1.12)

then for any X ∈ D we have g(AU,X) = 0. So AU = αξ + βU .
Moreover, the Weingarten formula can be written as follows

−N = ϕAξ = ∇̃ξU = ∇ξU + g(Aξ, U)N

then, we obtain

∇ξU = 0 − 1 = g(AU, ξ) = αg(ξ, ξ) + βg(U, ξ) = α(1.13)

This shows that α = −1, AU = −ξ + βU .

thus, by the lemmas (2.1) and (2.2), distribution D⊥ is A- invariant so distribution
D is A- invariant, too, and M is a Hoph hypersurface in the Sasakian manifold
M̃2n+1.
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2. Ricci soliton on hypersurfaces with two distinct principal

curvatures k1, k2

We assume that (M, g) is a Hoph hypersurface of a Sasakian space form M̃2n+1(c)
with two distinct principal curvatures k1, k2. Also, let {e1, ..., en−1, en = ϕe1, ..., e2n−2 =
ϕen−1, U, ξ} be a local orthonormal frame field.

First, we consider a Hoph hypersurface (M, g) of a Sasakian space form M̃2n+1(c)
with AX = k2X , for any vector field X ∈ D, and AX = k1X , for any vector field
X ∈ D⊥.
Now, using the lemmas (1.1) and (1.2) it follows that {U, ξ} are not principal di-
rections. To obtain the other principal curvatures, we consider eigenvectors W1,W2

with corresponding principal curvatures γ1, γ2, such that there must be linear com-
binations of {U, ξ}, and we put

W1 = (cos θ)U + (sin θ)ξ

W2 = (cos θ)ξ − (sin θ)U

Then, the relations Aξ = −U,AU = −ξ + βU imply

(γ1 cos θ)U + (γ1 sin θ)ξ = −(cos θ)ξ + (β cos θ − sin θ)U

(γ2 cos θ)ξ − (γ2 sin θ)U = (sin θ)ξ − (cos θ + β sin θ)U.

As vector fields {U, ξ} are linear independent, we get

γ1 sin θ = − cos θ, γ2 cos θ = sin θ(2.1)

and

− sin θ + β cos θ = γ1 cos θ(2.2)

cos θ + β sin θ = γ2 sin θ.(2.3)

From (2.2) and (2.3), it follows

γ1 = β − tan θ γ2 = cot θ + β.(2.4)

Relation(2.1) implies

γ1 = − cot θ, γ2 = tan θ(2.5)

Thus, from (2.4) and (2.5), we conclude

γ1γ2 = −1, γ1 + γ2 = β.(2.6)

On the other hand, by assumption for any vector field X ∈ D⊥, AX = k1X . That
by the first relation (2.6), k21 = −1, and this is a contradiction.
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Theorem 2.1. There is not a Hoph hypersurface in a Sasakian space form M̃2n+1(c)
with AX = k2X, for any vector field X ∈ D and AX = k1X, for any vector field

X ∈ D⊥.

Then, we continue our study of Hohp hypersurfaces in a Sasakian space form and
consider a Hoph hypersurface (M, g) of a Sasakian space form M̃2n+1(c) such that
for any vector field X ∈ D, AX = k2X and vector fields {W1,W2} ∈ D⊥ are
principal curvature vectors with the corresponding principal curvatures k1, k2 such
that

W1 = (cos θ)U + (sin θ)ξ

W2 = (cos θ)ξ − (sin θ)U

We compute

k1k2 = −1 k1 + k2 = β(2.7)

Hence, by Relation (1.9), the Ricci tensor related to a Hoph hypersurface (M, g) is
written as

Ric(ei, ej) = {(2n− 2)k22 +
(2n+ 1)c+ 6n− 9

4
}δij , (i, j = 1, ..., 2n− 2),(2.8)

Ric(ξ, ξ) = 2n− 2,(2.9)

Ric(U,U) = {(2n− 2)k22 +
(2n+ 1)c− 2n− 1

4
},(2.10)

Ric(U, ξ) = −(2n− 2)k2,(2.11)

Ric(ei, ξ) = 0, (i = 1, ..., 2n− 2),(2.12)

Ric(ei, U) = 0, (i = 1, ..., 2n− 2).(2.13)

We consider a Hoph hypersurface M (n > 1) of a Sasakian space form M̃2n+1(c)
satisfying the Ricci soliton equation

1

2
LV g +Ric− λg = 0(2.14)

with respect to the potential vector field V on M for constant λ. We suppose M

has two distinct principal curvatures k1, k2, with m(k1) = 1,m(k2) = 2n− 1 .
We put

V := fU, (f : M → R, f 6= 0)(2.15)
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The definition of the Lie derivative and the first relation (1.12) imply

(LfUg)(X,Y ) = df(X)u(Y ) + df(Y )u(X) + f{g((ϕA−Aϕ)X,Y )}.

We obtain

(LfUg)(ξ, ξ) = 0,(2.16)

(LfUg)(U,U) = 2df(U),(2.17)

(LfUg)(U, ξ) = df(ξ),(2.18)

(LfUg)(ξ, ei) = 0, (i = 1, ..., 2n− 2),(2.19)

(LfUg)(U, ei) = df(ei), (i = 1, ..., 2n− 2),(2.20)

(LfUg)(ei, ej) = 0, (i, j = 1, ..., 2n− 2).(2.21)

From (2.8)-(2.13) and (2.16)-(2.21), the Ricci soliton equation (2.14) follows

λ = 2n− 2,(2.22)

df(U) = (2− 2n)k22 −
(2n+ 1)c− 10n+ 7

4
,(2.23)

df(ξ) = (4n− 4)k2,(2.24)

df(ei) = 0, (i = 1, ..., 2n− 2),(2.25)

(
(2n+ 1)c+ 6n− 5

4
+ (2n− 2)k22 + k1k2 − λ)δij = 0,(2.26)

(i, j = 1, ..., 2n− 2).

By relations (2.22), (2.26) and the first relation (2.6), we have

k22 =
(2n+ 1)(1− c)

4(2n− 2)
,(2.27)

Therefore, k2 is constant. Thus, by the first relation (2.6) , k1 is constant.

Lemma 2.1. Let M be a Hoph hypersurface with Ricci solitons (M, g, fU, λ) of a

Sasakian space form M̃2n+1(c). Then the principal curvatures k1, k2 on D,D⊥ are

constant.
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Also, by the second relation (2.6), β is constant.

Theorem 2.2. A Ricci soliton (M, g, V, λ) on a Hoph hypersurface (M, g) with

AX = k2X for any vector field X ∈ D and AWi = kiWi for vector fields {Wi} ∈

D⊥, i = {1, 2} of a Sasakian space form M̃2n+1(c < 1) with the potential vector

field V := fU is a shrinking Ricci soliton with λ = 2n− 2

Theorem 2.3. There is not a Hoph hypersurface with AX = k2X for any vector

field X ∈ D and AWi = kiWi for vector fields {Wi} ∈ D⊥, i = {1, 2} of a Sasakian

space form M̃2n+1(c ≥ 1) such that (M, g, V, λ) be a Ricci soliton with the potential

vector field V := fU .

Proof. If c = 1, then by using (2.27), k2 = 0 and this is a contradiction with
k1k2 = −1.
If c > 1, then by (2.27), k22 < 0 and this is a contradiction. Thus the proof is
complete.

Finally, we consider a Hoph hypersurface M (n > 1) of a Sasakian space form

M̃2n+1(c) satisfying the Ricci soliton equation with the potential vector field V :=
fξ.

Using the definition of the Lie derivative and the second relation (1.5), it follows

(Lfξg)(X,Y ) = df(X)η(Y ) + df(Y )η(X).

We compute

(Lfξg)(ξ, ξ) = 2df(ξ),(2.28)

(Lfξg)(U,U) = 0,(2.29)

(Lfξg)(U, ξ) = df(U),(2.30)

(Lfξg)(ξ, ei) = df(ei), (i = 1, ..., 2n− 2),(2.31)

(Lfξg)(U, ei) = 0, (i = 1, ..., 2n− 2),(2.32)

(Lfξg)(ei, ej) = 0, (i, j = 1, ..., 2n− 2).(2.33)

By relations (2.8)-(2.13) and (2.28)-(2.33), the Ricci soliton equation (2.14) is equiv-
alent to

df(ξ) = λ− 2n+ 2,(2.34)
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λ = (2n− 2)k22 +
(2n+ 1)c− 2n− 1

4
,(2.35)

df(U) = (4n− 4)k2,(2.36)

df(ei) = 0 (i = 1, ..., 2n− 2),(2.37)

(
(2n+ 1)c+ 6n− 9

4
+ (2n− 2)k22 − λ)δij = 0, (i, j = 1, ..., 2n− 2).(2.38)

In the relation (2.38), if i = j, then

λ = (2n− 2)k22 +
(2n+ 1)c+ 6n− 9

4
(2.39)

Theorem 2.4. There is not any Hoph hypersurface M with AX = k2X for any

vector field X ∈ D and AWi = kiWi for vector fields {Wi} ∈ D⊥, i = {1, 2} of a

Sasakian space form M̃2n+1(c) such that (M, g, V, λ) be a Ricci soliton with potential

vector field V := fξ.

Proof. by comparing (2.35) and (2.39), we obtain n = 1 that this is a contradiction,
which completes the proof.

3. η- Ricci solitons on Hoph hypersurfaces in Sasakian space form

Let M be a Hoph hypersurface of a Sasakian space form M̃2n+1(c). Differentiating
AU = −ξ + βU covariantly, we obtain

(∇XA)U = ϕX −AϕAX + βϕAX + (Xβ)U

From the Codazzi equation, it follows

(∇UA)X =
c+ 3

4
{ϕX} −AϕAX + βϕAX + (Xβ)U

−
c− 1

4
u(X)N

By comparing the tangential part and the normal part in the relation above, we
conclude

(∇UA)X =
c+ 3

4
{ϕX} −AϕAX + βϕAX + (Xβ)U(3.1)

and

U⊥X or c = 1(3.2)
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While c = 1, then the ambient Sasakian space form is a sphere S2n+1.
since ∇UA is self-adjoint and therefore

0 = −2g(AϕAX, Y ) +
c+ 3

2
g(ϕX, Y ) + βg((Aϕ+ ϕA)X,Y )

+ (Xβ)u(Y )− (Y β)u(X)(3.3)

Substituting Y for U in (3.3), we obtain (Xβ) = g(U,X)Uβ. Similarly by substi-
tuting X for U in (3.3), we obtain (Y β) = g(U, Y )Uβ.
It follows

2AϕAX −
c+ 3

2
ϕX = β(Aϕ + ϕA)X(3.4)

We assume that AX = kX for any vector field X ∈ D, ‖X‖ = 1. Then it follows
that

(2k − β)AϕX = (kβ +
c+ 3

2
)ϕX.(3.5)

The case 2k 6= β yields

AϕX =
(kβ + c+3

2
)

(2k − β)
ϕX.(3.6)

We consider an η-Ricci soliton

1

2
LUg +Ric− λg − µη ⊗ η = 0(3.7)

on a Hoph hypersurface M (n > 1) in a Sasakian space form M̃2n+1(c) where U

is the potential vector field on M and λ, µ are constants. The first relation (1.12)
implies

(LUg)(X,Y ) = g((ϕA−Aϕ)X,Y ).(3.8)

By substituting (1.9) and (3.8) in the relation (3.7), it follows

(traceA)g(AX, Y ) − g(A2X,Y ) +
1

2
g((ϕA−Aϕ)X,Y )

+ {
(2n+ 1)c+ 6n− 5

4
− λ}g(X,Y )

= {µ+
(2n+ 1)c− 2n− 1

4
}η(X)η(Y ).(3.9)

Putting X = U , we may write

{(2n− 2) + β(traceA) − β2 − λ}U + {β − traceA}ξ = 0

Since vector fields {U, ξ} are linearly independent, we have

β = traceA, λ = 2n− 2.(3.10)
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using the relation (3.6) and the first relation (3.10), we derive

k2 = −1.(3.11)

Thus we prove the following lemma and theorem.

Lemma 3.1. Let M be a Hoph hypersurface of a Sasakian space form M̃2n+1(c).
If X ∈ D is a principal direction then ϕX is a principal direction.

Theorem 3.1. If M is a Hoph hypersurface of a Sasakian space form M̃2n+1(c)
with c = 1 then a Hoph hypersurface M does not admit a η- Ricci soliton with a

potential vector field U .

Now, putting X = ξ in the relation (3.9) we obtain

{2n− 2− µ− λ}ξ + {β − traceA}U = 0.

Since vector fields {U, ξ} are linearly independent, we have

β = traceA, λ+ µ = 2n− 2.(3.12)

If µ = 0, then λ = 2n− 2. Therefore, using the relation (3.6) and the first relation
(3.12), it follows

k2 = −
c+ 3

4
,(3.13)

which leads to

Lemma 3.2. Let M be a Hoph hypersurface of a Sasakian space form M̃2n+1(c)
with c = −3. Then A = 0 on D.

Proof. By the relations (3.13) and (3.6), the proof is trivial.

Theorem 3.2. A Ricci soliton (M, g, U, λ) on a Hoph hypersurface (M, g) of a

Sasakian space form M̃2n+1(c < −3) with a potential vector field U is a shrinking

Ricci soliton with λ = 2n− 2

Theorem 3.3. There is not a Hoph hypersurface of a Sasakian space form M̃2n+1(c >
−3) such that (M, g, U, λ) is a Ricci soliton.

Proof. By the relations (3.13), the proof is trivial.
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4. Ricci soliton on Locally symmetric hypersurfaces

A Hoph hypersurface M in a Sasakian space form M̃2n+1(c) is said to be a locally
symmetric hypersurface if it satisfies

(∇WR)(X,Y )Z = 0(4.1)

for any X,Y, Z ∈ TM .
We begin with several results on locally symmetric hypersurfaces of a Sasakian
space form.

Lemma 4.1. Let M be a locally symmetric hypersurface of a Sasakian space form

M̃2n+1(c). Then Aϕ = ϕA, for all W ∈ D

Proof. Putting Y, Z = ξ in (4.1) and for any X,W ∈ D, we get

0 = (∇WR)(X, ξ)ξ

= −g((∇WA)X, ξ)Aξ = g((∇WA)X, ξ)U

= g(∇WAX −A∇WX, ξ)U

= {−g(AX,∇W ξ) + g(∇WX,U)}U

= {−g(X,A∇̃W ξ)− g(X,∇WU)}U

= {g(X,AϕW )− g(X,ϕAW )}U

therefore Aϕ = ϕA.

Thus, if X ∈ D is an eigenvector field corresponding to the principal curvature k,
then ϕX is an eigenvector field corresponding to the principal curvature k. Thus
D is A invariant.
Now, we denote the eigenvalue of all vector field on D as equal, that is, if X,Y are
two eigenvector fields with eigenvalues ν, ω, respectively, then ν = ω.

Lemma 4.2. Let M be a locally symmetric hypersurface of a Sasakian manifold

M̃2n+1(c). If X,Y are two eigenvectors field with eigenvalues ν, ω on D, respec-

tively, then ν = ω.

Proof. Let X,Y ∈ D are principal curvature vectors with corresponding principal
curvatures ν, ω. The first relation (1.12), Aϕ = ϕA and

g((∇ξA)ξ, Y ) = g(∇ξAξ, Y )− g((∇ξξ, AY )

= −g(∇ξU, Y ) = −g(ϕAξ, Y ) = g(ϕU, Y ) = 0(4.2)

(∇ξA)ξ = ∇ξAξ −A∇ξξ

= −∇ξU = 0.
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imply

(∇ξR)(X, ξ)Y = g((∇ξA)ξ, Y )AX

− g((∇ξA)X,Y )Aξ − g(AX, Y )(∇ξA)ξ

= (ν − ω)g(ϕX, Y )U.

Therefore, we conclude ν = ω.

Thus, for all vector fields X ∈ D, we have AX = kX . Let (M, g) be a locally
symmetric hypersurface and let {e1, ..., en−1, en = ϕe1, ..., e2n−2 = ϕen−1, U, ξ} be
a local orthonormal frame field. Hence Ricci tensor is written as

Ric(ei, ej) =

{
(2n+ 1)c+ 6n− 5

4
+ kβ + (2n− 3)k2

}
δij ,(4.3)

Ric(ξ, ξ) = 2n− 2,(4.4)

Ric(U,U) =
(2n+ 1)c+ 6n− 9

4
+ (2n− 2)kβ,(4.5)

Ric(ξ, U) = (2− 2n)k,(4.6)

Ric(ei, ξ) = 0,(4.7)

Ric(ei, U) = 0(4.8)

Suppose that a locally symmetric hypersurface M (n > 1) of a Sasakian space form

M̃2n+1(c) admits a Ricci soliton.
We put

V := fU, (f : M → R, f 6= 0).

The definition of the Lie derivative and the first relation (1.12) imply

(LfUg)(X,Y ) = df(X)u(Y ) + df(Y )u(X) + f{g((ϕA−Aϕ)X,Y )}.(4.9)

By (4.9), we obtain

(LfUg)(ξ, ξ) = 0,(4.10)

(LfUg)(U,U) = 2df(U),(4.11)

(LfUg)(U, ξ) = df(ξ),(4.12)
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(LfUg)(ξ, ei) = 0, (i = 1, ..., 2n− 2),(4.13)

(LfUg)(U, ei) = df(ei), (i = 1, ..., 2n− 2),(4.14)

(LfUg)(ei, ej) = 0, (i, j = 1, ..., 2n− 2).(4.15)

From the Codazzi equation, it follows

c− 1

2
g(ei, ϕej) = g((∇eiA)ej − (∇ejA)ei, U).

By the relation above and Lemma (2.2), we obtain

(k2 − kβ −
c+ 3

4
)g(ei, ϕej) = 0,

if i = n+ j − 1, then g(ei, ϕej) = 1 and therefore

kβ = k2 −
c+ 3

4
.(4.16)

By relations (4.3)-(4.8) and (4.10)-(4.15), the Ricci soliton equation(2.14) is equiv-
alent to

λ = 2n− 2,(4.17)

df(U) = (2− 2n)k2 −
3c− 8n+ 5

4
,(4.18)

df(ξ) = (4n− 4)k,(4.19)

df(ei) = 0, (i = 1, ..., 2n− 2),(4.20)

(
(2n+ 1)c+ 6n− 5

4
+ (2n− 3)k2 + kβ − λ)δij = 0, (i, j = 1, ..., 2n− 2).(4.21)

By the relations (4.17) and (4.22) and the relation (4.16), we conclude

k2 =
n(1− c)

2(2n− 2)
.(4.22)

Lemma 4.3. Let M be a locally symmetric hypersurface with the Ricci soliton

(M, g, fU, λ) in a Sasakian space form M̃2n+1(c). Then the eigenvalue k on D is

constant.

Proof. By the relation (4.22), the proof is trivial.
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Also, from the above lemma and the relation (4.16), β is constant.

Theorem 4.1. A Ricci soliton (M, g, V, λ) on a locally symmetric hypersurface

(M, g) of a Sasakian space form M̃2n+1(c < 1) with a potential vector field V := fU

is a shrinking Ricci soliton with λ = 2n− 2

Theorem 4.2. There is not a locally symmetric hypersurface (M, g) of a Sasakian

space form M̃2n+1(c ≥ 1) such that (M, g, V, λ) is a Ricci soliton with a potential

vector field V := fU .

Proof. By the relation (4.22), the proof is trivial.
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