FACTA UNIVERSITATIS (NIŠ) SER. MATH. INFORM. Vol. 31, No 5 (2016), 947–967 DOI:10.22190/FUMI1605947A

SOFT CONNECTED PROPERTIES AND IRRESOLUTE SOFT FUNCTIONS BASED ON B-OPEN SOFT SETS

Alaa Mohamed Abd El-latif

Abstract. In this paper, we introduce another application on the b-open soft sets [10], by studying the notion of connectedness based on it. We give basic definitions and theorems about it. Further, we introduce the notion of b-irresolute soft functions as a generalization of the b-continuous soft functions and study their properties in detail. Finally, we show that the surjective b-irresolute soft image of soft b-connected space is also soft b-connected.

Keywords: Soft b-connected; Soft b-component; Soft b-hyperconnected; Soft b-separated; Soft b-connected; b-irresolute soft functions

1. Introduction

Theories such as theory of vague sets and theory of rough sets are considered as mathematical tools for dealing with uncertainties. But these theories have their own difficulties. The concept of soft sets was first introduced by Molodtsov [25] in 1999 as a general mathematical tool for dealing with uncertain objects in order to solve complicated problems in economics, engineering and other disciplines.

After presentation of the operations of soft sets [24], the properties and applications of soft set theory have been studied increasingly [7, 26, 27]. To develop soft set theory, the operations of the soft sets are redefined and a uni-int decision making method was constructed by using these new operations [9].

Recently, in 2011, Shabir and Naz [29] initiated the study of soft topological spaces. They defined soft topology on the collection τ of soft sets over X. Consequently, they defined basic notions of soft topological spaces such as open soft and closed soft sets, soft subspace, soft closure, soft nbd of a point, soft separation axioms, soft regular spaces and soft normal spaces and established their several properties. Hussain and Ahmad [13] investigated the properties of open (closed) soft, soft nbd and soft closure. They also defined and discussed the properties of soft interior,

Received April 14, 2016; accepted July 22, 2016

²⁰¹⁰ Mathematics Subject Classification. Primary 54A05, 54A40; Secondary 54C08, 54D20

soft exterior and soft boundary which are fundamental for further research on soft topology and will strengthen the foundations of the theory of soft topological spaces.

It got some stability only after the introduction of soft topology [29] in 2011. In [14], Kandil et al. introduced some soft operations such as semi-open soft, pre-open soft and β -open soft and investigated their properties in detail. Kandil et al. [21] introduced the notion of soft semi-separation axioms. The notion of soft ideal was initiated for the first time by Kandil et al. [17]. They also introduced the concept of soft local function. These concepts are discussed with a view to find new soft topologies from the original one, called soft topological spaces with soft ideal (X, τ, E, \tilde{I}). Applications to various fields were further investigated by Kandil et al.[15, 16, 18, 19, 20, 22]. The notion of supra soft topological spaces was initiated for the first time by El-sheikh and Abd El-latif [11], which is extended in [3]. The notion of b-open soft sets was initiated in [6, 10] and extended in [28]. An applications on b-open soft sets were introduced in [1, 12].

In this paper, we introduce and study the notion of connectedness based on the notion of b-open soft sets and give basic definitions and theorems about it. Further, we introduce the notion of b-irresolute soft functions as a generalization to the b-continuous soft function and study their properties in detail. Finally, we show that the surjective b-irresolute soft image of soft b-connected space is also soft b-connected.

2. Preliminaries

Definition 2.1. [25] Let X be an initial universe and E be a set of parameters. Let P(X) denote the power set of X and A be a non-empty subset of E. A pair (F, A) denoted by F_A is called a soft set over X, where F is a mapping given by $F: A \to P(X)$. In other words, a soft set over X is a parameterized family of subsets of the universe X. For a particular $e \in A$, F(e) may be considered the set of e-approximate elements of the soft set (F, A) and if $e \notin A$, then $F(e) = \phi$ i.e $F_A = \{(e, F(e)) : e \in A \subseteq E, F : A \to P(X)\}$. The family of all these soft sets denoted by $SS(X)_A$.

Definition 2.2. [29] Let F_E be a soft set over X and $x \in X$. We say that $x \in F_E$ read as x belongs to the soft set F_E whenever $x \in F(e)$ for all $e \in E$.

Definition 2.3. [29] Let τ be a collection of soft sets over a universe X with a fixed set of parameters E, then $\tau \subseteq SS(X)_E$ is called a soft topology on X if

(1) $\tilde{X}, \tilde{\phi} \in \tau$, where $\tilde{\phi}(e) = \phi$ and $\tilde{X}(e) = X, \forall e \in E$,

(2) the union of any number of soft sets in τ belongs to τ ,

(3) the intersection of any two soft sets in τ belongs to τ .

The triplet (X, τ, E) is called a soft topological space over X.

Definition 2.4. [7, 13] The complement of a soft set F_A , denoted by F_A^c , F^c : $A \to P(X)$ is mapping given by $F^c(e) = X - F(e)$, $\forall e \in A$ and F^c is called the soft complement function of F. Also, F_A is said to be closed soft set in X, if its relative complement F_A^c is open soft set.

Definition 2.5. [13] Let (X, τ, E) be a soft topological space. The members of τ are said to be open soft sets in X. We denote the set of all open soft sets over X by $OS(X, \tau, E)$, or when there can be no confusion by OS(X) and the set of all closed soft sets by $CS(X, \tau, E)$, or CS(X).

Definition 2.6. [29] Let (X, τ, E) be a soft topological space and $F_A \in SS(X)_E$. The soft closure of F_A , denoted by $cl(F_A)$ is the intersection of all closed soft super sets of F_A . Clearly $cl(F_A)$ is the smallest closed soft set over X which contains F_A i.e

 $cl(F_A) = \tilde{\cap} \{ H_C : H_C \text{ is closed soft set and } F_A \tilde{\subseteq} H_C \}).$

Definition 2.7. [30] Let (X, τ, E) be a soft topological space and $F_A \in SS(X)_E$. The soft interior of G_B , denoted by $int(G_B)$ is the union of all open soft subsets of G_B . Clearly $int(G_B)$ is the largest open soft set over X which contained in G_B i.e $int(G_B) = \tilde{\cup}\{H_C : H_C \text{ is an open soft set and } H_C \subseteq G_B\}).$

Definition 2.8. [30] The soft set $F_E \in SS(X)_E$ is called a soft point in \tilde{X} if there exist $x \in X$ and $\alpha \in E$ such that $F(\alpha) = \{x\}$ and $F(\alpha^c) = \phi$ for each $\alpha^c \in E - \{\alpha\}$, and the soft point F_E is denoted by x_{α} .

Definition 2.9. [30] The soft point x_{α} is said to be belonging to the soft set G_A , denoted by $x_{\alpha} \in G_A$, if for the element $\alpha \in A$, $F(\alpha) \subseteq G(\alpha)$.

Definition 2.10. [29] Let (X, τ, E) be a soft topological space, $F_E \in SS(X)_E$ and Y be a non-null subset of X. Then the sub-soft set of F_E over Y denoted by (F_Y, E) , is defined as follows:

$$F_Y(e) = Y \cap F(e) \ \forall e \in E.$$

In other words $(F_Y, E) = \tilde{Y} \cap F_E$.

Definition 2.11. [29] Let (X, τ, E) be a soft topological space and Y be a non-null subset of X. Then,

$$\tau_Y = \{ (F_Y, E) : F_E \in \tau \}$$

is said to be the soft relative topology on Y and (Y, τ_Y, E) is called a soft subspace of (X, τ, E) . **Theorem 2.1.** [29] Let (Y, τ_Y, E) be a soft subspace of a soft topological space (X, τ, E) and $F_E \in SS(X)_E$. Then,

- (1) If F_E is open soft set in Y and $\tilde{Y} \in \tau$, then $F_E \in \tau$.
- (2) F_E is open soft set in Y if and only if $F_E = \tilde{Y} \cap G_E$ for some $G_E \in \tau$.
- (3) F_E is closed soft set in Y if and only if $F_E = \tilde{Y} \cap H_E$ for some H_E is τ -closed soft set.

Definition 2.12. [6, 10] Let (X, τ, E) be a soft topological space and $F_E \in SS(X)_E$. Then, F_E is called a b-open soft set if $F_E \subseteq cl(int(F_E)) \cup int(cl(F_E))$. The set of all b-open soft sets is denoted by $BOS(X, \tau, E)$, or BOS(X) and the set of all b-closed soft sets is denoted by $BCS(X, \tau, E)$, or BCS(X).

Definition 2.13. [6, 10] Let (X, τ, E) be a soft topological space and $F_E \in SS(X)_E$. Then, the b-soft interior of F_E is denoted by $bSint(F_E)$, where $bSint(F_E)$ = $\bigcup \{G_E : G_E \subseteq F_E, G_E \in BOS(X)\}.$

Also, the b-soft closure of F_E is denoted by $bScl(F_E)$, where $bScl(F_E) = \bigcap \{H_E : H_E \in BCS(X), F_E \subseteq H_E \}$.

Definition 2.14. [28] The soft b-boundary of a soft set F_E , denoted by $b-Sbd(F_E)$, and is defined as $b-Sbd(F_E) = bScl(F_E) \cap bScl(F_E) = bScl(F_E) - bSint(F_E)$.

Definition 2.15. [5] Let $SS(X)_E$ and $SS(Y)_K$ be two soft classes, $u: X \to Y$ and $p: E \to K$ be mappings. Then, the mapping $f_{pu}: SS(X)_E \to SS(Y)_K$ is defined as: for a soft set (F, A) in $SS(X)_E$, $(f_{pu}(F, A), B)$, $B = p(A) \subseteq K$, is a soft set in $SS(Y)_K$ given by

$$f_{pu}(F,A)(b) = u(\bigcup_{a \in p^{-1}(b) \cap A} F(a))$$

for $b \in B \subseteq K$. $(f_{pu}(F, A), B)$ is called a soft image of a soft set (F, A). If B = K, then we shall write $(f_{pu}(F, A), K)$ as $f_{pu}(F, A)$. The soft function f_{pu} is called surjective (resp. injective) if p and u are surjective (resp. injective).

Definition 2.16. [5] Let $f_{pu} : SS(X)_E \to SS(Y)_K$ be a mapping from a soft class $SS(X)_E$ to another soft class $SS(Y)_K$, and (G,C) be a soft set in the soft class $SS(Y)_K$, where $C \subseteq K$. Let $u : X \to Y$ and $p : E \to K$ be mappings. Then, $(f_{pu}^{-1}(G,C),D), D = p^{-1}(C) \subseteq K$, is a soft set in the soft class $SS(X)_E$, defined as:

$$f_{pu}^{-1}(G,C)(b) = u^{-1}(G(p(a)))$$

for $a \in D \subseteq E$. $(f_{pu}^{-1}(G, C), D)$ is called a soft inverse image of (G, C). Hereafter we shall write $(f_{pu}^{-1}(G, C), E) = f_{pu}^{-1}(G, C)$.

Definition 2.17. [10, 30] Let (X, τ_1, E) and (Y, τ_2, K) be soft topological spaces and $f_{pu} : SS(X)_E \to SS(Y)_K$ be a function. Then, the function f_{pu} is called

- (1) Continuous soft if $f_{pu}^{-1}(G_K) \in \tau_1 \ \forall \ G_K \in \tau_2$.
- (2) Open soft if $f_{pu}(G_E) \in \tau_2 \forall G_E \in \tau_1$.
- (3) Closed soft if $f_{pu}(G_E) \in \tau_2^c \forall G_E \in \tau_1^c$.
- (4) b-Continuous soft if $f_{pu}^{-1}(G_K) \in BOS(X) \forall G_K \in \tau_2$.

Definition 2.18. [23] A non-null soft subsets F_E , G_E of a soft topological space (X, τ, E) are said to be soft separated sets if $cl(F_E) \cap G_E = F_E \cap cl(G_E) = \tilde{\phi}$. A soft topological space (X, τ, E) is said to be soft connected if and only if \tilde{X} can not expressed as the soft union of two soft separated sets in (X, τ, E) , which equivalent to, \tilde{X} can not expressed as the soft union of two open soft sets in (X, τ, E) . Otherwise, (X, τ, E) is said to be soft disconnected.

Definition 2.19. [16] A soft topological space (X, τ, E) is said to be soft hyperconnected if and only if every pair of non null proper open soft sets F_E, G_E , has a non null soft intersection, i.e. (X, τ, E) is said to be soft hyperconnected iff $\forall F_E, G_E \in \tau$ we have $F_E \cap G_E \neq \phi$.

Definition 2.20. [8] Let (X, τ, E) be a soft topological space. A soft semi separation on \tilde{X} is a pair of non-null proper semi open soft sets F_E, G_E such that $F_E \cap G_E = \tilde{\phi}$ and $\tilde{X} = F_E \cup G_E$. A soft topological space (X, τ, E) is said to be soft semi connected if and only if there is no soft semi separations on \tilde{X} . Otherwise, (X, τ, E) is said to be soft semi disconnected.

Definition 2.21. [2] Let (X, τ, E) be a soft topological space. A soft β - (resp. pre-) separation on \tilde{X} is a pair of non-null proper β - (resp. pre-) open soft sets F_E, G_E such that $F_E \cap G_E = \tilde{\phi}$ and $\tilde{X} = F_E \cup G_E$. A soft topological space (X, τ, E) is said to be soft β - (resp. pre-) connected if and only if there is no soft β - (resp. pre-) separations on \tilde{X} . Otherwise, (X, τ, E) is said to be soft β - (resp. pre-) disconnected.

3. Soft b-separateness

In this section, we will research the notion of soft b-separated sets in soft topological spaces and study its basic properties in detail.

Definition 3.1. Two non-null soft sets G_E and H_E of a soft topological space (X, τ, E) are said to be soft b-separated sets if $G_E \cap bScl(H_E) = \tilde{\phi}$ and $bScl(G_E) \cap H_E = \tilde{\phi}$. Obviously, from the fact that $bcl(F_E) \subseteq cl(F_E)$ for each soft set $F_E \in SS(X)_E$, every soft separated set is soft b-separated. But, the converse may not be true as shown in the following example.

Example 3.1. Let $X = \{h_1, h_2, h_3, h_4\}, E = \{e_1, e_2\}, \tau = \{\tilde{X}, \tilde{\phi}, F_{1E}, F_{2E}, F_{3E}\}$, where F_{1E}, F_{2E}, F_{3E} are soft sets over X defined by: $F_1(e_1) = \{h_1\}, \quad F_1(e_2) = \{h_1\},$ $F_2(e_1) = \{h_2\}, \quad F_2(e_2) = \{h_2\},$ $F_3(e_1) = \{h_1, h_2\}, \quad F_3(e_2) = \{h_1, h_2\}.$ The soft sets H_E and G_E , which defined by: $H(e_1) = \{h_1\}, \quad H(e_2) = \{h_1\},$ $G(e_1) = \{h_3, h_4\}, \quad G(e_2) = \{h_3, h_4\},$ are soft b-separated but not soft separated.

Definition 3.2. A soft set F_E of a soft topological space (X, τ, E) is said to be b-clopen soft set if it is both b-open soft set and b-closed soft set.

Proposition 3.1. (1) Each two soft b-separated sets are always disjoint

(2) Each two disjoint soft sets, in which both of them either b-open soft sets or b-closed soft sets, are soft b-separated.

Proof. Clear from Definition 3.1.

Theorem 3.1. Let G_E and H_E be non-null soft sets of a soft topological space (X, τ, E) . Then, the following statements hold:

- If G_E and H_E are soft b-separated, G_{1E}⊆G_E and H_{1E}⊆H_E, then G_{1E} and H_{1E} are soft b-separated sets.
- (2) If G_E and H_E are b-open soft sets, $U_E = G_E \cap (X H_E)$ and $V_E = H_E \cap (X G_E)$, then U_E and V_E are soft b-separated sets.

Proof.

(1) Since $G_{1E} \subseteq G_E$. Then, $bScl(G_{1E}) \subseteq bScl(G_E)$. Hence,

 $H_{1E} \tilde{\cap} bScl(G_{1E}) \tilde{\subseteq} H_E \tilde{\cap} bScl(G_E) = \tilde{\phi}.$

Similarly, $G_{1E} \cap bScl(H_{1E}) = \tilde{\phi}$. Thus, G_{1E} and H_{1E} are soft b-separated sets.

(2) Let G_E and H_E be b-open soft sets. Then, $(\tilde{X} - G_E)$ and $(\tilde{X} - H_E)$ are b-closed soft sets. Assume that, $U_E = G_E \cap (\tilde{X} - H_E)$ and $V_E = H_E \cap (\tilde{X} - G_E)$. Then, $U_E \subseteq (\tilde{X} - H_E)$ and $V_E \subseteq (\tilde{X} - G_E)$. Hence, $bScl(U_E) \subseteq (\tilde{X} - H_E) \subseteq (\tilde{X} - V_E)$ and $bScl(V_E) \subseteq \tilde{X} - G_E \subseteq (\tilde{X} - U_E)$. Consequently, $bScl(U_E) \cap V_E = \tilde{\phi}$ and $bScl(V_E) \cap U_E = \tilde{\phi}$. Therefore, U_E and V_E are soft b-separated sets.

Theorem 3.2. Any two soft sets G_E and H_E of a soft topological space (X, τ, E) are soft b-separated sets if and only if there exist b-open soft sets U_E and V_E such that $G_E \subseteq U_E$, $H_E \subseteq V_E$ and $G_E \cap V_E = \tilde{\phi}$, $H_E \cap U_E = \tilde{\phi}$.

Proof. Let G_E and H_E be soft b-separated sets. Then, $G_E \cap bScl(H_E) = \phi$ and $bScl(G_E) \cap H_E = \tilde{\phi}$. Let $V_E = \tilde{X} - bScl(G_E)$ and $U_E = \tilde{X} - bScl(H_E)$. Thus, U_E and V_E are b-open soft sets such that $G_E \subseteq U_E$, $H_E \subseteq V_E$, $G_E \cap V_E = \tilde{\phi}$ and $H_E \cap U_E = \tilde{\phi}$.

On the other hand, let U_E , V_E be b-open soft sets such that $G_E \subseteq U_E$, $H_E \subseteq V_E$ and $G_E \cap V_E = \tilde{\phi}$, $H_E \cap U_E = \tilde{\phi}$. Since $(\tilde{X} - V_E)$ and $(\tilde{X} - U_E)$ are b-closed soft sets. Then, $bScl(G_E) \subseteq (X_E - V_E) \subseteq (X_E - H_E)$ and $bScl(H_E) \subseteq (X_E - U_E) \subseteq (X_E - G_E)$. Thus, $bScl(G_E) \cap H_E = \tilde{\phi}$ and $bScl(H_E) \cap G_E = \tilde{\phi}$. This means that, G_E and H_E are soft b-separated sets.

4. Soft b-connectedness

In this section, we will research the notion of soft b-connectedness in soft topological spaces be means of b-open soft sets, b-closed soft sets, soft -separated sets and study its basic properties.

Definition 4.1. Let (X, τ, E) be a soft topological space. A soft b-separation of \tilde{X} is a pair of non-null proper b-open soft sets in τ such that $F_E \cap G_E = \tilde{\phi}$ and $\tilde{X} = F_E \cup G_E$.

Definition 4.2. A soft topological space (X, τ, E) is said to be b-soft connected if and only if there is no soft b-separations of \tilde{X} . If (X, τ, E) has such soft b-separations, then (X, τ, E) is said to be soft b-disconnected.

Theorem 4.1. Let (X, τ, E) be a soft topological space, then the following statements are equivalent:

- (1) \tilde{X} is soft b-connected.
- (2) \tilde{X} cannot be expressed as a soft union of two non-null disjoint b-open soft sets.
- (3) X cannot be expressed as a soft union of two non-null disjoint b-closed soft sets.
- (4) There is no proper b-clopen soft set in (X, τ, E) .
- (5) X cannot be expressed as a soft union of two non-null b-separated soft sets.
 Proof.
- (1) \Leftrightarrow (2) It is obvious from Definition 4.2.
- (2) \Rightarrow (3) Suppose that $\tilde{X} = F_E \tilde{\cup} G_E$ for some b-closed soft sets F_E and G_E such that $F_E \tilde{\cap} G_E = \tilde{\phi}$. Then, $F_E = (G_E)^c$ which is b-open soft set, $\tilde{X} = G_E \tilde{\cup} G_E^c$ and $G_E \tilde{\cap} G_E^c = \tilde{\phi}$, which is a contradiction with (2).
- (3) \Rightarrow (4) Suppose that there is a proper b-clopen soft subset F_E of X. Then, F_E^c is b-clopen soft set, where $\tilde{X} = F_E \tilde{\cup} F_E^c$ and $F_E \tilde{\cap} F_E^c = \tilde{\phi}$, which is a contradiction with (3).

A.M. Abd El-latif

- (4) \Rightarrow (3) Suppose that $\tilde{X} = F_E \tilde{\cup} G_E$ for some b-closed soft sets F_E and G_E such that $F_E \tilde{\cap} G_E = \tilde{\phi}$. Then, $F_E = G_E^c$ and $G_E = F_E^c$. Thus, F_E and G_E are proper b-clopen soft sets, which is a contradiction with (4).
- (3) \Rightarrow (5) Suppose that $\tilde{X} = H_E \tilde{\cup} G_E$ for some b-separated soft sets H_E and G_E . Then, $G_E \tilde{\cap} bScl(H_E) = \tilde{\phi}$ and $bScl(G_E) \tilde{\cap} H_E = \tilde{\phi}$. It follows that, $H_E \tilde{\cap} G_E = \tilde{\phi}$. Hence, $H_E = G_E^c$ and $G_E = H_E^c$. Therefore, $bScl(H_E) \tilde{\subseteq} G_E^c = H_E$ and $bScl(G_E) \tilde{\subseteq} H_E^c = G_E$. But, $H_E \tilde{\subseteq} bScl(H_E)$ and $G_E \tilde{\subseteq} bScl(G_E)$. Thus, H_E and G_E are b-closed soft sets, which is a contradiction with (3).
- (5) \Rightarrow (1) Suppose that $X = F_E \tilde{\cup} G_E$ for some b-open soft sets F_E and G_E such that $F_E \tilde{\cap} G_E = \tilde{\phi}$. Then, $F_E = G_E^c$ and $G_E = F_E^c$. Thus, F_E and G_E are b-clopen soft sets. Hence, F_E and G_E are b-separated soft sets, which is a contradiction with (5).

Corollary 4.1. Let (X, τ, E) be a soft topological space, then the following statements are equivalent:

- (1) \tilde{X} is soft b-connected.
- (2) If $\tilde{X} = F_E \tilde{\cup} G_E$ for some b-open soft sets F_E and G_E such that $F_E \tilde{\cap} G_E = \tilde{\phi}$. Then, either $F_E = \tilde{\phi}$ or $G_E = \tilde{\phi}$.
- (3) If $\tilde{X} = F_E \tilde{\cup} G_E$ for some b-closed soft sets F_E and G_E such that $F_E \tilde{\cap} G_E = \tilde{\phi}$. Then, either $F_E = \tilde{\phi}$ or $G_E = \tilde{\phi}$.

Proof. Obvious from Theorem 4.1.

Definition 4.3. A soft subset F_E of a soft topological space (X, τ, E) is soft bconnected, if it is soft b-connected as a soft subspace. In other words, a soft subset F_E of a soft topological space (X, τ, E) is said to be soft b-connected relative to \tilde{X} if there is not exist two soft b-separated subsets H_E and G_E relative to \tilde{X} and $F_E = H_E \tilde{\cup} G_E$. Otherwise, F_E is said to be soft b-disconnected.

Remark 4.1. Each soft disconnected set is soft b-disconnected, but not conversely as shown in the following examples.

- **Example 4.1.** (1) In Example 3.1, the soft set G_E , where $G(e_1) = \{h_1, h_3, h_4\}, \quad G(e_2) = \{h_1, h_3, h_4\}$, is soft connected set, but not soft b-connected.
- (2) Any soft space with the indiscrete soft topology is soft connected, but not soft bconnected, because the family of b-open soft sets establish a discrete soft topology.

Corollary 4.2. Let (X, τ_1, E) and (X, τ_2, E) be soft topological spaces and $\tau_2 \subseteq \tau_1$. If (X, τ_1, E) is soft b-connected, then (X, τ_2, E) is soft b-connected.

Proof. It is Obvious.

Definition 4.4. Let (X, τ, E) be a soft topological space and $Z_E \subseteq \tilde{X}$ with $x \in Z_E$. Then, the soft b-component of Z_E w.r.t. x_{α} is the maximal of all soft b-connected subspaces of (Z, τ_Z, E) containing x_{α} and denoted by $\tilde{SC}_b[Z_E, x_{\alpha}]$ or $\tilde{SC}_b(Z_E, x_{\alpha})$ for short, i.e

 $\tilde{SC}_b(Z_E, x_\alpha) = \tilde{\cup} \{ Y_E \tilde{\subseteq} Z_E : x_\alpha \in Y_E, Y_E \text{ is soft b-connected} \}.$

Theorem 4.2. Every soft b-component of a soft topological space (X, τ, E) is a maximal soft b-connected subset of \tilde{X} .

Proof. It is obvious from Definition 4.4.

Corollary 4.3. The soft topological space (X, τ, E) is soft b-connected if and only if it is a soft b-component on \tilde{X} .

Proof. It is clear.

Theorem 4.3. If the non-null soft sets G_E and H_E of a soft topological space (X, τ, E) are soft b-separated, then $(G_E \tilde{\cup} H_E)$ is soft b-disconnected.

Proof. Let G_E and H_E be non-null soft b-separated sets, then there exist b-open soft sets U_E and V_E such that $G_E \subseteq U_E$, $H_E \subseteq V_E$ and $G_E \cap V_E = \tilde{\phi}$, $H_E \cap U_E = \tilde{\phi}$ follows immediately from Theorem 3.2. Hence, $(G_E \cup H_E) \cap U_E = G_E$ and $(G_E \cup H_E) \cap V_E = H_E$. Consequently, $G_E \cup H_E$ is soft b-disconnected.

Next, we characterized soft b-connectedness in terms of soft boundaries as follows:

Theorem 4.4. A soft topological space (X, τ, E) is soft b-connected if and only if every non-null proper subset has a non-null soft b-boundary.

Proof. Let (X, τ, E) be soft b-disconnected, then (X, τ, E) has a proper bclopen soft set F_E . Then, $bScl(F_E) = F_E = bSint(F_E) = \tilde{X} - bScl(\tilde{X} - F_E)$. Therefore, $b-Sbd(F_E) = bScl(F_E) \cap bScl(\tilde{X} - F_E) = \tilde{\phi}$. Therefore, F_E has an empty soft b-boundary.

Conversely, suppose that a non-null proper soft subset F_E has an empty soft bboundary. Then, b- $Sbd(F_E) = bScl(F_E) \cap bScl(\tilde{X} - F_E) = \tilde{\phi}$. Consequently, $bScl(F_E) \subseteq [\tilde{X} - bScl(\tilde{X} - F_E)] = bSint(F_E)$, and thus $F_E \subseteq bScl(F_E) \subseteq bSint(F_E) \subseteq F_E$. Thus, F_E is a proper b-clopen soft set and consequently, (X, τ, E) is soft b-disconnected.

Theorem 4.5. Let (Z, τ_Z, E) be a soft subspace of a soft topological space (X, τ, E) and $F_{1E}, F_{2E} \subseteq Z_E \subseteq \tilde{Z} \tilde{X}$. Then, F_{1E}, F_{2E} are soft b-separated on τ_Z if and only if F_{1E}, F_{2E} are soft b-separated on τ .

 $\begin{array}{l} Proof. \quad \text{Suppose that } F_{1E}, F_{2E} \text{ are soft b-separated on } \tau_Z \Leftrightarrow bScl_{\tau_Z}F_{1E} \cap F_{2E} = \\ \tilde{\phi} \text{ and } F_{1E} \cap bScl_{\tau_Z}F_{2E} = \tilde{\phi} \Leftrightarrow \quad [bScl_{\tau}F_{1E} \cap Z_E] \cap F_{2E} = bScl_{\tau}F_{1E} \cap F_{2E} = \tilde{\phi} \text{ and } \\ [bScl_{\tau}F_{2E} \cap Z_E] \cap F_{1E} = bScl_{\tau}F_{2E} \cap F_{1E} = \tilde{\phi} \Leftrightarrow \quad F_{1E}, F_{2E} \text{ are soft b-separated on } \tau. \end{array}$

Theorem 4.6. Let Z_E be a soft subset of a soft topological space (X, τ, E) . Then, Z_E is soft b-connected relative to (X, τ, E) if and only if it is soft b-connected relative to (Z, τ_Z, E) .

Proof. Suppose that Z_E is soft b-disconnected relative to $(Z, \tau_Z, E) \Leftrightarrow Z_E = F_{1E} \tilde{\cup} F_{2E}$, where F_{1E} and F_{2E} are soft b-separated on $\tau_Z \Leftrightarrow Z_E = F_{1E} \tilde{\cup} F_{2E}$, where F_{1E} and F_{2E} are soft b-separated on τ_Z from Theorem 4.5 $\Leftrightarrow Z_E$ is soft b-disconnected relative to (X, τ, E) .

Theorem 4.7. Let (Z, τ_Z, E) be a soft b-connected subspace of a soft topological space (X, τ, E) and F_E , G_E are soft b-separated sets of \tilde{X} with $Z_E \subseteq F_E \cup G_E$, then either $Z_E \subseteq F_E$ or $Z_E \subseteq G_E$.

Proof. Let $Z_E \subseteq F_E \cup G_E$ for some soft b-separated sets F_E , G_E on τ . Since $Z_E = (Z_E \cap F_E) \cup (Z_E \cap G_E)$. Then, $(Z_E \cap F_E) \cup bScl_{\tau}(Z_E \cap G_E) \subseteq F_E \cap bScl_{\tau}(G_E) = \tilde{\phi}$. Also, $bScl_{\tau}(Z_E \cap F_E) \cup (Z_E \cap G_E) \subseteq cl_{\tau}(F_E) \cap G_E = \tilde{\phi}$. If $Z_E \cap F_E$ and $Z_E \cap G_E$ are non-null soft sets. Then, Z_E is soft b-disconnected, which is a contradiction with the hypothesis. Thus, either $Z_E \cap F_E = \tilde{\phi}$ or $Z_E \cap G_E = \tilde{\phi}$. It follows that, $Z_E = Z_E \cap F_E$ or $Z_E = Z_E \cap G_E$. Therefore, $Z_E \subseteq F_E$ or $Z_E \subseteq G_E$.

Theorem 4.8. The soft b-closure of a soft b-connected set is soft b-connected.

Proof. Assume that, $bScl(F_E)$ is soft b-disconnected. Then, there are two nonnull soft b-separated sets G_E and H_E such that $bScl(F_E) = G_E \tilde{\cup} H_E$. Since F_E is soft b-connected. By using Theorem 4.7, either $F_E \tilde{\subseteq} G_E$ or $F_E \tilde{\subseteq} H_E$. If $F_E \tilde{\subseteq} G_E$, then $bScl(F_E \tilde{\subseteq} bScl(G_E)$ and so $bScl(F_E \tilde{\cap} H_E = \tilde{\phi}$. But, $H_E \tilde{\subseteq} bScl(F_E)$. Therefore, $H_E = \tilde{\phi}$ which is a contradiction. Similarly, if $F_E \tilde{\subseteq} H_E$, we can get $G_E = \tilde{\phi}$, which is also a contradiction. Consequently, $bScl(F_E)$ is soft b-connected.

Theorem 4.9. Every soft b-component of a soft topological space (X, τ, E) is bclosed soft set.

Proof. It is obvious from Definition 4.4 and from the fact that the soft b-closure of a soft b-connected set is a soft b-connected.

Theorem 4.10. Let (X, τ, E) be a soft topological space. Then:

- (1) Each soft point $x_{\alpha} \in X$ is contained in exactly one soft b-component of X.
- (2) Any two soft b-components w.r.t. two different soft points are either disjoint or identical.

Proof.

- (1) Let $x_{\alpha} \in \tilde{X}$ and consider the collection $\tilde{SC}_b = \{Z_E \subseteq \tilde{X} : x_{\alpha} \in Z_E, Z_E \text{ is soft b-connected}\}$. Then, we have:
 - (a) $\tilde{SC}_b \neq \tilde{\phi}$, for the soft point x_{α} is a soft b-connected subset of \tilde{X} containing x_{α} . Then, $x_{\alpha} \in \tilde{SC}_b$.

- (b) $\tilde{\cap} \{ Z_E \subseteq \tilde{X} : x_\alpha \in Z_E : Z_E \text{ is soft b-connected} \} \neq \tilde{\phi}$. Since $x_\alpha \in Z_E \quad \forall Z_E \in SC_b$.
- (c) The soft set $\tilde{\cup} \{ Z_E \tilde{\subseteq} \tilde{X} : x_{\alpha} \tilde{\in} Z_E, Z_E \text{ is soft b-connected} \}$, having a nonnull soft intersection, is soft b-connected subset of \tilde{X} containing x_{α} .
- (d) $\tilde{\cup}\{Z_E \subseteq \tilde{X} : x_\alpha \in Z_E, Z_E \text{ is soft b-connected}\}$ is the largest soft b-connected subset of \tilde{X} containing x_α , which is the soft b-component $\tilde{SC}_b(\tilde{X}, x_\alpha)$ of \tilde{X} w.r.t x_α and containing x_α from Definition 4.4.

Now, suppose $\tilde{SC}_{b}^{*}(\tilde{X}, x_{\alpha})$ be another soft b-component containing x_{α} , then $\tilde{SC}_{b}^{*}(\tilde{X}, x_{\alpha})$ is a soft b-connected subset of \tilde{X} containing x_{α} , but $\tilde{SC}_{b}(\tilde{X}, x_{\alpha})$ is a soft b-connected subset of \tilde{X} containing x_{α} , but $\tilde{SC}_{b}(\tilde{X}, x_{\alpha})$ is the largest soft b-connected subset of \tilde{X} containing x_{α} , consequently, $\tilde{SC}_{b}^{*}(\tilde{X}, x_{\alpha}) \subseteq \tilde{SC}_{b}(\tilde{X}, x_{\alpha})$. Similarly, $\tilde{SC}_{b}(\tilde{X}, x_{\alpha}) \subseteq \tilde{SC}_{b}^{*}(\tilde{X}, x_{\alpha})$, and hence x_{α} is contained in exactly one soft b-component of \tilde{X} .

(2) Let S̃C_b(X̃, x_{1α}), S̃C_b(X̃, x_{2α}) be the soft b-components of x_α w.r.t two different soft points x_{1α}, x_{2α} of X̃ with x_{1α} ≠ x_{2α} respectively. If S̃C_b(X̃, x_{1α})∩S̃C_b(X̃, x_{2α}) = φ̃, then we get the proof. So, let S̃C_b(X̃, x_{1α})∩S̃C_b(X̃, x_{2α}) ≠ φ. We may choose a x_β ∈ S̃C_b(X̃, x_{1α})∩S̃C_b(X̃, x_{2α}). Clearly, x_β ∈ S̃C_b(X̃, x_{1α}) and x_β ∈ S̃C_b(X̃, x_{2α}), which mean that S̃C_b(X̃, x_{1α}) is the largest soft b-connected subset of X̃ containing x_β, S̃C_b(X̃, x_{2α}) is the largest soft b-connected subset of X̃ containing x_β. Therefore, S̃C_b(X̃, x_{1α}) = S̃C_b(X̃, x_{2α}), and hence S̃C_b(X̃, x_{1α}) and S̃C_b(X̃, x_{2α}) are identical. This completes the proof.

Theorem 4.11. Let F_E be soft b-connected subsets of a soft topological space (X, τ, E) and G_E be a soft set such that $F_E \subseteq G_E \subseteq bScl(F_E)$, then G_E is soft b-connected.

Proof. Let G_E be a soft b-disconnected, then there exist two non-null b-open soft sets U_E and V_E such that $G_E = U_E \tilde{\cup} V_E$. Since $F_E \tilde{\subseteq} G_E$ and F_E be soft b-connected, then by using Lemma 4.10 either $F_E \tilde{\subseteq} U_E$ or $F_E \tilde{\subseteq} V_E$. If $F_E \tilde{\subseteq} U_E$, then $bScl(F_E)\tilde{\subseteq}bScl(U_E)$ and so $bScl(F_E)\tilde{\cap} V_E = \tilde{\phi}$ i.e., $V_E \tilde{\subseteq} \tilde{X} - bScl(F_E)$, but $V_E \tilde{\subseteq} G_E \tilde{\subseteq} bScl(F_E)$. Thus, $V_E = \tilde{\phi}$, which is a contradiction, and so G_E is soft b-connected. Similarly, if $F_E \tilde{\subseteq} V_E$, thus $U_E = \tilde{\phi}$ this is a contradiction. Consequently, G_E is soft b-connected.

Theorem 4.12. Let (Z, τ_Z, E) be a soft b-connected subspace of a soft b-connected topological space (X, τ, E) such that Z_E^c is the soft union of two soft b-separated sets F_E , G_E of \tilde{X} , then $Z_E \cup F_E$ and $Z_E \cup G_E$ are soft b-connected.

Proof. Suppose that $Z_E \tilde{\cup} F_E$ is soft b-disconnected relative to (X, τ, E) . Then, there exist two non-null soft b-separated sets K_E and H_E of \tilde{X} such that $Z_E \tilde{\cup} F_E = K_E \tilde{\cup} H_E$. Since Z_E is soft b-connected and $Z_E \tilde{\subseteq} Z_E \tilde{\cup} F_E = K_E \tilde{\cup} H_E$. It follows that, either $Z_E \tilde{\subseteq} K_E$ or $Z_E \tilde{\subseteq} H_E$ from Theorem 4.7. Suppose $Z_E \tilde{\subseteq} K_E$. Since $Z_E \tilde{\cup} F_E = K_E \tilde{\cup} H_E$ and $Z_E \tilde{\subseteq} K_E$, implies that $Z_E \cup F_E \tilde{\subseteq} K_E \cup F_E$. So, $K_E \tilde{\cup} H_E \tilde{\subseteq} K_E \tilde{\cup} F_E$. Hence,

A.M. Abd El-latif

 $H_E \tilde{\subseteq} F_E, \, G_E \tilde{\subseteq} K_E.$ By Theorem 3.1 (1), H_E, G_E are soft b-separated. Now,

$$bScl_{\tau}H_{E}\tilde{\cap}[K_{E}\tilde{\cup}G_{E}] = [bScl_{\tau}H_{E}\tilde{\cap}K_{E}]\tilde{\cup}[bScl_{\tau}H_{E}\tilde{\cap}G_{E}] = \tilde{\phi}$$

and $H_E \cap cl_\tau [K_E \cup G_E] = H_E \cap [cl_\tau K_E \cup cl_\tau G_E] = [H_E \cap cl_\tau K_E] \cup [H_E \cap cl_\tau G_E] = \tilde{\phi}$. It follows that, H_E and $[K_E \cup G_E]$ are soft b-separated on τ . Since $Z_E^c = F_E \cup G_E$. Then,

$$\tilde{X} = Z_E \tilde{\cup} Z_E^c = Z_E \tilde{\cup} [F_E \tilde{\cup} G_E] = [Z_E \tilde{\cup} F_E] \tilde{\cup} G_E = [K_E \tilde{\cup} H_E] \tilde{\cup} G_E = H_E \tilde{\cup} [K_E \tilde{\cup} G_E].$$

Thus, X is the soft union of two non null soft b-separated sets H_E and $K_E \cup G_E$, which is a contradiction. A similar contradiction will arise if $Z_E \subseteq H_E$. Hence, $Z_E \cup F_E$ is soft b-connected. Similarly, we can prove that $Z_E \cup G_E$ is soft b-connected.

Theorem 4.13. If Z_E , Y_E are soft b-connected sets such that none of them is soft b-separated sets, then $Z_E \cup Y_E$ is soft b-connected set.

Proof. Let (Z, τ_Z, E) and (Y, τ_Y, E) be soft b-connected subspaces of X such that $Z_E \tilde{\cup} Y_E$ is not soft b-connected relative to (X, τ, E) . Then, there exist two non-null soft b-separated sets K_E and H_E of \tilde{X} such that $Z_E \tilde{\cup} Y_E = K_E \tilde{\cup} H_E$. Since Z_E, Y_E are soft b-connected and $Z_E, Y_E \tilde{\subseteq} Z_E \tilde{\cup} Y_E = K_E \tilde{\cup} H_E$. Then, either $Z_E \tilde{\subseteq} K_E$ or $Z_E \tilde{\subseteq} H_E$, also, either $Y_E \tilde{\subseteq} K_E$ or $Y_E \tilde{\subseteq} H_E$ from Theorem 4.7. If $Z_E \tilde{\subseteq} K_E$ or $Z_E \tilde{\subseteq} H_E$. Then, $Z_E \tilde{\cap} H_E \tilde{\subseteq} K_E \tilde{\cap} H_E = \tilde{\phi} \tilde{\circ} T_E \tilde{\cap} K_E \tilde{\subseteq} H_E \tilde{\circ} K_E = \tilde{\phi}$. Therefore, $[Z_E \tilde{\cup} Y_E] \tilde{\cap} K_E = [Z_E \tilde{\cap} K_E] \tilde{\cup} [Y_E \tilde{\cap} K_E] = \tilde{\phi} \tilde{\cup} [Y_E \tilde{\cap} K_E] = Y_E \tilde{\cap} K_E = Y_E$, since $Y_E \tilde{\subseteq} K_E$. Similarly, if $Y_E \tilde{\subseteq} K_E$ or $Y_E \tilde{\subseteq} H_E$. We can get, $[Z_E \tilde{\cup} Y_E] \tilde{\cap} H_E = Z_E$. Now,

$$\begin{split} \tilde{\cap} bScl_{\tau}[(Z_{E}\tilde{\cup}Y_{E})\tilde{\cap}K_{E}]\tilde{\subseteq}[(Z_{E}\tilde{\cup}Y_{E})\tilde{\cap}H_{E}]\tilde{\cap}[bScl_{\tau}(Z_{E}\tilde{\cup}Y_{E})\tilde{\cap}bScl_{\tau}K_{E}] \\ &= [(Z_{E}\tilde{\cup}Y_{E})]\tilde{\cap}[bScl_{\tau}K_{E}\tilde{\cap}H_{E}] = \tilde{\phi} \end{split}$$

and

$$bScl_{\tau}[(Z_{E}\tilde{\cup}Y_{E})\tilde{\cap}H_{E}]\tilde{\cap}[(Z_{E}\tilde{\cup}Y_{E})\tilde{\cap}K_{E}]\tilde{\subseteq}[bScl_{\tau}(Z_{E}\tilde{\cup}Y_{E})\tilde{\cap}bScl_{\tau}H_{E}]\tilde{\cap}[(Z_{E}\tilde{\cup}Y_{E})\tilde{\cap}K_{E}]$$
$$=[(Z_{E}\tilde{\cup}Y_{E})]\tilde{\cap}[bScl_{\tau}H_{E}\tilde{\cap}K_{E}]=\tilde{\phi}.$$

It follows that $[Z_E \tilde{\cup} Y_E] \tilde{\cap} K_E = Z_E$ and $[Z_E \tilde{\cup} Y_E] \tilde{\cap} H_E = Y_E$ are soft b-separated, which is a contradiction. Hence, $Z_E \tilde{\cup} Y_E$ is soft b-connected relative to (X, τ, E) .

Theorem 4.14. If for all pair of soft points x_{α} , $y_{\beta} \in \tilde{X}$ with $x_{\alpha} \neq y_{\beta}$ there exists a soft b-connected set $Z_E \subseteq \tilde{X}$ with x_{α} , $y_{\beta} \in Z_E$, then \tilde{X} is soft b-connected.

Proof. Suppose that \tilde{X} is soft b-disconnected. Then, $\tilde{X} = F_E \tilde{\cup} G_E$, for some F_E, G_E soft b-separated sets. It follows that, $F_E \tilde{\cap} G_E = \tilde{\phi}$. So, $\exists x_\alpha \tilde{\in} F_E$ and $y_\beta \tilde{\in} G_E$. Since $F_E \tilde{\cap} G_E = \tilde{\phi}$. Then, x_α , $y_\beta \tilde{\in} \tilde{X}$ with $x_\alpha \neq y_\beta$. By hypothesis, there exists a soft b-connected set $Z_E \subseteq \tilde{X}$ with x_α , $y_\beta \tilde{\in} Z_E$. Moreover, we have Z_E is soft b-connected subset of a soft b-disconnected space. By Theorem 4.7, either $Z_E \tilde{\subseteq} F_E$ or $Z_E \tilde{\subseteq} G_E$, and both cases is a contradiction with the hypothesis. This implies that, \tilde{X} is soft b-connected.

Definition 4.5. A soft set N_E is said to be a soft b-neighborhood (briefly, soft b-nbd.) of a soft point $x_e \tilde{\in} (X, E)$ if there exists a b-open soft set $U_E \tilde{\subseteq} N_E$ such that $x_e \tilde{\in} U_E \tilde{\subseteq} N_E$.

Definition 4.6. A soft point $x_e \in \tilde{X}$ is called a soft b-limit point of a soft set F_E if every soft b-nbd U_E of x_e contains a point of F_E other than x_e .

Theorem 4.15. Let F_E and G_E be non-null disjoint soft sets of a soft topological space (X, τ, E) and $Y_E = F_E \tilde{\cup} G_E$. Then, F_E and G_E are soft b-separated if and only if each of F_E and G_E is b-closed soft (b-open soft) with respect to Y_E .

Proof. Let F_E and G_E be soft b-separated sets. By Definition 3.1, F_E contains no soft b-limit points of G_E . Then, G_E contains all soft b-limit points of G_E . It follows that, $F_E \tilde{\cup} G_E$ also contains all soft b-limit points of G_E and G_E is b-closed soft in Y_E . Therefore, G_E is b-closed soft with respect to Y_E . Similarly, F_E is b-closed soft with respect to Y_E . The converse is clear from Theorem 4.14.

Theorem 4.16. The soft union of any family of soft b-connected sets having a non-null soft intersection is soft b-connected set.

Proof. Assume that $(Z, \tau_Z, E) = (\tilde{\cup}_{j \in J} Z_j, \tau_{\tilde{\cup}_{j \in J} Z_j}, E)$ is soft b-disconnected. Then, $Z_E = F_E \tilde{\cup} G_E$, where F_E, G_E are soft b-separated sets on τ_Z . Since $\tilde{\cap}_{j \in J} Z_{jE} \neq \tilde{\phi}$. Then, $\exists x_\alpha \tilde{\in} \tilde{\cap}_{j \in J} Z_{jE}$. It follows that, $x_\alpha \tilde{\in} Z_E$. So, either $x_\alpha \tilde{\in} F_E$ or $x_\alpha \tilde{\in} G_E$. Suppose that $x_\alpha \tilde{\in} F_E$. Since $x_\alpha \tilde{\in} Z_{jE} \ \forall j \in J$ and $Z_{jE} \tilde{\subseteq} Z_E$. Thus, we have Z_{jE} is soft b-connected subset of a soft b-disconnected space. By Theorem 4.7, either $Z_{jE} \tilde{\subseteq} F_E$ or $Z_{jE} \tilde{\subseteq} G_E \ \forall j \in J$. If $Z_{jE} \tilde{\subseteq} F_E \ \forall j \in J$. Then, $Z_E \tilde{\subseteq} F_E$. This implies that, $G_E = \tilde{\phi}$, which is a contradiction. Also, if $Z_{jE} \tilde{\subseteq} G_E \ \forall j \in J$. By a similar way, we can get $F_E = \tilde{\phi}$, which is a contradiction. Thus, $(Z, \tau_Z, E) = (\tilde{\cup}_{j \in J} Z_j, \tau_{\tilde{\cup}_{j \in J} Z_j}, E)$ is soft b-connected soft subspace of (X, τ, E) .

Proposition 4.1. Let $\{(Z_j, \tau_{Z_j}, E) \text{ be a family of soft b-connected subspaces of soft topological space <math>(X, \tau, E)$ such that one of the members of the family intersects every other members, then $(\tilde{\cup}_{j \in J} Z_j, \tau_{\tilde{\cup}_{j \in J} Z_j}, E)$ is soft b-connected.

Proof. Let $(Z, \tau_Z, E) = (\tilde{\cup}_{j \in J} Z_j, \tau_{\tilde{\cup}_{j \in J} Z_j}, E)$ and $Z_{j_o E} \in \{Z_{jE} : j \in J\}$ such that $Z_{j_o E} \tilde{\cap} Z_{jE} \neq \tilde{\phi} \quad \forall j \in J$. Then, $Z_{j_o E} \tilde{\cup} Z_{jE}$ is soft b-connected $\forall j \in J$ from Theorem 4.16. Therefore, the collection $\{Z_{j_o E} \tilde{\cup} Z_{jE} : j \in J\}$ is a collection of a soft b-connected subsets of \tilde{X} , which having a non-null soft intersection. Thus, $(\tilde{\cup}_{j \in J} Z_j, \tau_{\tilde{\cup}_{j \in J} Z_j}, E)$ is soft b-connected from Theorem 4.16.

Remark 4.2. For a soft topological space (X, τ, E) , the following statements hold:

- (1) Every soft β -connected set is soft b-connected.
- (2) Every soft b-connected is soft pre-connected.
- (3) Every b-connected is soft semi-connected.

A.M. Abd El-latif

Definition 4.7. A soft topological space (X, τ, E) is said to be soft locally bconnected at a soft point x_{α} if every soft b-nbd of the soft point x_{α} contains a soft b-connected open nbd of x_{α} . \tilde{X} is said to be soft locally b-connected if it is soft locally b-connected at each of its soft points.

Theorem 4.17. Every soft b-connected space is a soft locally b-connected space, but the converse is not true in general.

Proof. Suppose that (X, τ, E) be a soft b-connected. Then, There is no proper b-clopen soft set in (X, τ, E) from Theorem 4.1. Hence, $\forall x_{\alpha} \in \tilde{X} \exists \tilde{X} \in \tau$ which is soft b-connected set such that $x_{\alpha} \in \tilde{X} \subseteq \tilde{X}$. Therefore, \tilde{X} is soft locally b-connected. On the other hand, the indiscrete soft topological space, is soft locally b-connected but not soft b-connected.

Theorem 4.18. The soft b-component of a soft locally b-connected soft topological space is b-open soft set.

Proof. Let (X, τ, E) be a soft locally b-connected, $x_{\alpha} \in \tilde{X}$ and \tilde{SC}_b be a soft b-component of \tilde{X} w.r.t x_{α} . Since (X, τ, E) is a soft locally b-connected space. Therefore, every b-open soft set containing x_{α} contains a soft b-connected open set G_E containing x_{α} . But, \tilde{SC}_b is the largest soft b-connected set containing x_{α} . Hence, $x_{\alpha} \in G_E \subseteq \tilde{SC}_b$, i.e \tilde{SC}_b is a soft b-nbd of x_{α} . Thus, \tilde{SC}_b is a soft b-nbd of each of its points. This means that, \tilde{SC}_b is a b-open soft set.

Theorem 4.19. The property of soft locally b-connectedness is hereditary on bopen soft subspaces.

Proof. Suppose that (Z, τ_Z, E) be a b-open soft subspace of a soft locally b-connected topological space (X, τ, E) and let $x_{\alpha} \in \tilde{Z}$. Since \tilde{X} is soft locally bconnected. Then, $\exists \ G_E \in \tau$ such that G_E is τ -soft b-connected subset of \tilde{X} and $x_{\alpha} \in G_E \subseteq \tilde{Z}$. Since $G_E \in \tau$ and G_E is τ -soft b-connected set. Then, $G_E = G_E \cap \tilde{Z} \in \tau_Z$ and $G_E \cap \tilde{Z}$ is τ_Z -soft b-connected subset of \tilde{Z} by Theorem 4.6. So, \tilde{Z} is soft locally b-connected for each $x_{\alpha} \in \tilde{X}$. Hence, \tilde{Z} is soft locally b-connected.

Theorem 4.20. The soft b-components of every b-open soft subspace of a soft locally b-connected soft topological space are b-open soft.

Proof. Suppose that (Y, τ_Y, E) be a b-open soft subspace of a soft locally bconnected soft topological space (X, τ, E) , let \tilde{SC}_b be a soft b-component of \tilde{Y} . Since \tilde{X} is soft locally b-connected, then \tilde{Y} is soft locally b-connected by Theorem 4.19. By Theorem 4.18 we get the proof.

Definition 4.8. A soft topological space (X, τ, E) is said to be soft b-hyperconnected if and only if every pair of non-null proper b-open soft sets F_E, G_E , has a non-null soft intersection, i.e. (X, τ, E) is said to be soft b-hyperconnected if and only if for each $F_E, G_E \in BOS(X)$, we have $F_E \cap G_E \neq \phi$.

Theorem 4.21. Every soft b-hyperconnected soft topological space is soft b-connected.

Proof. Suppose that (X, τ, E) be a soft b-disconnected soft topological space. Then, there exists a proper b-clopen soft set F_E . Then, $F_E, F_E^c \in BOS(X)$ such that $F_E \cap F_E^c = \tilde{\phi}$. Hence, \tilde{X} is not soft b-hyperconnected, which is a contradiction. Thus, (X, τ, E) is soft b-connected.

Remark 4.3. The converse of Theorem 4.21 is not true in general, as shown in the following example.

Example 4.2. Let $X = \{h_1, h_2, h_3, h_4\}$, $E = \{e_1, e_2\}$ and $\tau = \{\tilde{X}, \tilde{\phi}, F_{1E}, F_{2E}, F_{3E}\}$ where F_{1E}, F_{2E}, F_{3E} are soft sets over X defined as follows: $F_1(e_1) = \{h_1\}, \quad F_1(e_2) = \{h_2\},$ $F_2(e_1) = \{h_2, h_3\}, \quad F_2(e_2) = \{h_1, h_3\},$ $F_3(e_1) = \{h_1, h_2, h_3\}, \quad F_3(e_2) = \{h_1, h_2, h_3\}.$ Then, τ defines a soft topology on X. Hence, the space (X, τ, E) is soft b-connected but not soft b-hyperconnected.

Definition 4.9. A soft subset F_E of a soft topological space (X, τ, E) is said to be soft b-dense if $bScl(F_E) = \tilde{X}$.

Corollary 4.4. A soft topological space (X, τ, E) is said to be a soft b-hyperconnected if every non-null open soft set F_E is soft b-dense.

Theorem 4.22. If (X, τ, E) is soft b-hyperconnected soft topological space, then (X, τ, E) is soft hyperconnected.

Proof. Immediate.

Remark 4.4. The converse of Theorem 4.22 is not true in general, as shown in the following example.

Example 4.3. Let $X = \{a, b\}$, $E = \{e_1, e_2\}$ and $\tau = \{\tilde{X}, \tilde{\phi}, F_{1E}, F_{2E}, F_{3E}, F_{4E}, F_{5E}\}$ where $F_{1E}, F_{2E}, F_{3E}, F_{4E}, F_{5E}$ are soft sets over X defined as follows: $F_1(e_1) = X$, $F_1(e_2) = \{b\}$,

 $F_2(e_1) = \{a\}, \quad F_2(e_2) = X,$

 $F_3(e_1) = \{a\}, \quad F_3(e_2) = \{b\},\$

 $F_4(e_1) = \{a\}, \quad F_4(e_2) = \{a\},$

 $F_5(e_1) = \{a\}, \quad F_5(e_2) = \phi.$

Then, τ defines a soft topology on X. Hence, the space (X, τ, E) is soft hyperconnected, but not soft b-hyperconnected.

Theorem 4.23. If (X, τ, E) is soft b-hyperconnected soft topological space, then (X, τ, E) is connected.

Proof. Immediate by Remark 4.1 and Theorem 4.21.

Corollary 4.5. The following implications hold from Theorems 4.21, 4.22, 4.23 and [Corollary 3.3, [16]] for a soft topological space (X, τ, E) .

5. Irresolute soft functions via b-open soft sets

In this section, we introduce a new type of soft functions called b-irresolute soft function as a generalization to the b-continuous soft functions and obtain some of their properties and characterizations.

Definition 5.1. Let (X, τ_1, A) and (Y, τ_2, B) be soft topological spaces and f_{pu} : $SS(X)_A \rightarrow SS(Y)_B$ be a function. Then, The function f_{pu} is called b-irresolute soft if $f_{pu}^{-1}(G_B) \in BOS(X) \forall G_B \in BOS(Y)$.

Theorem 5.1. Every b-irresolute soft function is b-continuous soft.

Proof. Straightforward.

Remark 5.1. The converse of Theorem 5.1 is not true in general, as shown in the following example.

Example 5.1. Let $X = \{a, b, c\}, Y = \{x, y, z\}, A = \{e_1, e_2\}$ and $B = \{k_1, k_2\}$. Define $u: X \to Y$ and $p: A \to B$ as follows: u(a) = x, u(b) = z, u(c) = y, $p(e_1) = k_2, p(e_2) = k_1$. Let (X, τ_1, A) be a soft topological space over X where, $\tau_1 = \{\tilde{X}, \tilde{\phi}, F_A\}$, where F_A is a soft set over X defined as follows: $F(e_1) = \{b\}, \quad F(e_2) = \{a\}.$ Let (Y, τ_2, B) be a soft topological space over Y where, $\tau_2 = \{\tilde{Y}, \tilde{\phi}, G_B\}$, where G_B is a soft set over Y defined by: $G(k_1) = \{x\}, \quad G(k_2) = \{x, z\}.$ Let $f_{pu}: (X, \tau_1, A) \to (Y, \tau_2, B)$ be a soft function. Then, $f_{pu}^{-1}(G_B) = \{(e_1, \{a, b\}), (e_2, \{a\})\}$ is a b-open soft set over X. Hence, f_{pu} is a b-continuous soft function. On the other hand, the soft set H_B , where H_B is a soft set over Y defined by: $H(k_1) = \{y, z\}, \quad G(k_2) = \{x, y\}.$ Then, H_B is b-open soft set in Y. Also, $f_{pu}^{-1}(H_B) = \{(e_1, \{a, c\}), (e_2, \{b, c\})\}$ is not b-open

I nen, H_B is b-open sort set in Y. Also, $f_{pu}(H_B) = \{(e_1, \{a, c\}), (e_2, \{o, c\})\}$ is not b-open soft set over X. Therefore, f_{pu} is not b-irresolute soft function.

Theorem 5.2. Let (X, τ_1, A) and (Y, τ_2, B) be soft topological spaces. Let $u : X \to Y$ and $p : A \to B$ be a mappings. Let $f_{pu} : SS(X)_A \to SS(Y)_B$ be a function. Then, the following are equivalent:

(1) f_{pu} is b-irresolute soft function.

- (2) $f_{pu}^{-1}(H_B) \in BCS(X) \ \forall \ H_B \in \tau_2^c.$
- (3) $f_{pu}(bScl_{\tau_1}(G_A)) \subseteq bScl_{\tau_2}(f_{pu}(G_A)) \forall (G_A) \in SS(X)_A.$
- (4) $bScl_{\tau_1}(f_{pu}^{-1}(H_B)) \subseteq f_{pu}^{-1}(bScl_{\tau_2}(H_B)) \forall H_B \in SS(Y)_B.$
- (5) $f_{pu}^{-1}(bSint_{\tau_2}(H_B)) \subseteq bSint_{\tau_1}(f_{pu}^{-1}(H_B)) \forall H_B \in SS(Y)_B.$ Proof.
- (1) \Rightarrow (2) Let $H_B \in \tau_2^c$. Then, $H_B^c \in \tau_2$ and $f_{pu}^{-1}(H_B^c) \in BOS(X)$ from Definition 5.1. Since $f_{pu}^{-1}(H_B^c) = (f_{pu}^{-1}(H_B))^c$ from [[30], Theorem 3.14]. Thus, $f_{pu}^{-1}(H_B) \in BCS(X)$.
- (2) \Rightarrow (3) Let $G_A \in SS(X)_A$. Since $G_A \subseteq f_{pu}^{-1}(f_{pu}(G_A)) \subseteq f_{pu}^{-1}(bScl_{\tau_2}(f_{pu}(G_A))) \in BCS(Y)$ from (2) and [[30], Theorem 3.14]. Then, $G_A \subseteq bScl_{\tau_1}(G_A) \subseteq f_{pu}^{-1}(bScl_{\tau_2}(f_{pu}(G_A)))$. Hence,

$$f_{pu}(bScl(G_A)) \subseteq f_{pu}(f_{pu}^{-1}(bScl_{\tau_2}(f_{pu}(G_A)))) \subseteq bScl_{\tau_2}(f_{pu}(G_A)))$$

from [[30], Theorem 3.14]. Thus, $f_{pu}(bScl_{\tau_1}(G_A)) \subseteq bScl_{\tau_2}(f_{pu}(G_A))$.

(3) \Rightarrow (4) Let $H_B \in SS(Y)_B$ and $G_A = f_{pu}^{-1}(H_B)$. Then, $f_{pu}(bScl_{\tau_1}(f_{pu}^{-1}(H_B))) \subseteq bScl_{\tau_2}(f_{pu}(f_{pu}^{-1}(H_B)))$ From (3). Hence,

$$bScl_{\tau_1}(f_{pu}^{-1}(H_B)) \tilde{\subseteq} f_{pu}^{-1}(f_{pu}(bScl_{\tau_1}(f_{pu}^{-1}(H_B)))) \\ \tilde{\subseteq} f_{pu}^{-1}(bScl_{\tau_2}(f_{pu}(f_{pu}^{-1}(H_B)))) \tilde{\subseteq} f_{pu}^{-1}(bScl_{\tau_2}(H_B))$$

from [[30], Theorem 3.14]. Thus, $bScl_{\tau_1}(f_{pu}^{-1}(H_B)) \subseteq f_{pu}^{-1}(bScl_{\tau_2}(H_B))$.

(4) \Rightarrow (2) Let H_B be a closed soft set over Y. Then,

$$bScl_{\tau_1}(f_{pu}^{-1}(H_B)) \tilde{\subseteq} f_{pu}^{-1}(bScl_{\tau_2}(H_B)) = f_{pu}^{-1}(H_B) = f_{pu}^{-1}(H_B) \ \forall \ H_B \in SS(Y)_B$$

from (4), but clearly

 $f_{pu}^{-1}(H_B) \subseteq bScl_{\tau_1}(f_{pu}^{-1}(H_B))$. This means that

$$f_{pu}^{-1}(H_B) = bScl_{\tau_1}(f_{pu}^{-1}(H_B)) \in BCS(X).$$

- $\begin{array}{ll} (1) \ \Rightarrow \ (5) \ {\rm Let} \ H_B \in BOS(Y). \ {\rm Then}, \ f_{pu}^{-1}(bSint_{\tau_2}(H_B)) \in BOS(X) \ {\rm from} \ (1). \\ {\rm Hence}, \ f_{pu}^{-1}(bSint_{\tau_2}(H_B)) = bSint_{\tau_1}(f_{pu}^{-1}bSint_{\tau_2}(H_B)) \tilde{\subseteq} bSint_{\tau_1} \ (f_{pu}^{-1}(H_B)). \\ {\rm Thus}, \ f_{pu}^{-1}(bSint_{\tau_2}(H_B)) \tilde{\subseteq} bSint_{\tau_1}(f_{pu}^{-1}(H_B)). \end{array}$
- (5) \Rightarrow (1) Let $H_B \in BOS(Y)$. Then, $bSint_{\tau_2}(H_B) = H_B$ and

$$f_{pu}^{-1}(bSint_{\tau_2}(H_B)) = f_{pu}^{-1}((H_B)) \subseteq bSint_{\tau_1}(f_{pu}^{-1}(H_B))$$

from (5). But, we have

 $bSint_{\tau_1}(f_{pu}^{-1}(H_B)) \subseteq f_{pu}^{-1}(H_B)$. This means that,

$$bSint_{\tau_1}(f_{nu}^{-1}(H_B)) = f_{nu}^{-1}(H_B) \in BOS(X).$$

Thus, f_{pu} is b-irresolute soft function.

Theorem 5.3. Let (X_1, τ_1, A) and (X_2, τ_1, B) be soft topological spaces, f_{pu} : $(X_1, \tau_1, A) \rightarrow (X_2, \tau_2, B,)$ be a surjective b-irresolute soft function and F_B, G_B are soft b-separated sets in X_2 , then $f_{pu}^{-1}(F_B), f_{pu}^{-1}(G_B)$ are soft b-separated sets in X_1 .

Proof. Let F_B, G_B be soft b-separated sets in X_2 . Then, $F_B \cap bScl(G_B) = \tilde{\phi}_B$ and $bScl(F_B) \cap G_B = \tilde{\phi}_B$. Since $bScl_{\tau_1}(f_{pu}^{-1}(H_B)) \subseteq f_{pu}^{-1}(bScl_{\tau_2}(H_B)) \forall H_B \in SS(X_2)_B$ from Theorem 5.2 (4). It follows that

$$f_{pu}^{-1}(G_B)\tilde{\cap}bScl_{\tau_1}(f_{pu}^{-1}(H_B))\tilde{\subseteq}f_{pu}^{-1}(G_B)\tilde{\cap}f_{pu}^{-1}(bScl_{\tau_2}(H_B)) = f_{pu}^{-1}[G_B\tilde{\cap}bScl_{\tau_2}(H_B)] = f_{pu}^{-1}(\tilde{\phi}_B) = \tilde{\phi}_A.$$

By a similar way, we have $f_{pu}^{-1}(H_B) \tilde{\cap} bScl_{\tau_1}(f_{pu}^{-1}(G_B)) = \tilde{\phi}_A$. Therefore, $f_{pu}^{-1}(F_B), f_{pu}^{-1}(G_B)$ are soft b-separated sets in X_1 .

Theorem 5.4. Let (X_1, τ_1, A) and (X_2, τ_1, B) be soft topological spaces and f_{pu} : $(X_1, \tau_1, A) \rightarrow (X_2, \tau_2, B)$ be a bijective b-irresolute soft function. If G_A is soft b-connected in X_1 , then $f_{pu}(G_A)$ is soft b-connected in X_2 .

Proof. Suppose that $f_{pu}(G_A)$ is not soft b-connected in X_2 . Then, $f_{pu}(G_A) = M_B \tilde{\cup} N_B$ for some soft b-separated sets M_B, N_B of $f_{pu}(G_A)$ in X_2 from Theorem 4.1. By Theorem 5.3, $f_{pu}^{-1}(M_B)$ and $f_{pu}^{-1}(N_B)$ are soft b-separated in X_1 . Since f_{pu} is bijective soft function. So, $G_A = f_{pu}^{-1}(f_{pu}(G_A)) = f_{pu}^{-1}(M_B)\tilde{\cup}f_{pu}^{-1}(N_B)$. It follows that, G_A is not soft b-connected in X_1 , which is a contradiction. Thus, $f_{pu}(G_A)$ is soft b-connected in X_2 .

Corollary 5.1. Let (X_1, τ_1, A) and (X_2, τ_1, B) be soft topological spaces and f_{pu} : $(X_1, \tau_1, A) \rightarrow (X_2, \tau_2, B)$ be a surjective b-irresolute soft function. If X_1 is soft b-connected space, then so X_2 .

Proof. Follows from Theorem 5.4.

Theorem 5.5. Let (X_1, τ_1, A) and (X_2, τ_1, B) be soft topological spaces and f_{pu} : $(X_1, \tau_1, A) \rightarrow (X_2, \tau_2, B,)$ be a surjective b-continuous soft function. If G_A is soft b-connected in X_1 , then $f_{pu}(G_A)$ is soft connected in X_2 .

Proof. The proof is similar to the proof of Theorem 5.4.

Corollary 5.2. Let (X_1, τ_1, A) and (X_2, τ_1, B) be soft topological spaces and f_{pu} : $(X_1, \tau_1, A) \rightarrow (X_2, \tau_2, B,)$ be a surjective b-continuous soft function. If X_1 is soft b-connected space, then X_2 is soft connected.

Proof. Follows from Theorem 5.5.

6. Conclusion

In the present paper, we introduce and study the notion of connectedness to soft topological spaces by using the notion of b-open soft sets. We study the notions of soft b-connected sets, soft b-separated sets in soft topological spaces and have established several interesting properties. Further, we introduce the notion of birresolute soft functions as a generalization to the b-continuous soft function and study their properties in detail. Finally, we show that the surjective b-irresolute soft image of soft b-connected space is also soft b-connected. Our next step is to generalize these notions by using the soft ideal notions [17].

7. Acknowledgements

The author expresses his sincere thanks to the reviewers for their valuable suggestions. The author is also thankful to the editors-in-chief and managing editors for their important comments which helped to improve the presentation of the paper.

REFERENCES

- A. M. ABD EL-LATIF and SERKAN KARATAS: Supra b-open soft sets and supra b-soft continuity on soft topological spaces. Journal of Mathematics and Computer Applications Research, 2 (1) (2015), 1-18.
- 2. A. M. ABD EL-LATIF: Soft connectedness and irresoluteness via β -open soft sets. Honam Mathematical Journal. Accepted.
- 3. A. M. ABD EL-LATI: Soft supra strongly generalized closed sets. Journal of Intelligent & Fuzzy Systems, vol. Preprint, no. Preprint (2016), pp. 1-7.
- B. AHMAD and A. KHARAL: Mappings on fuzzy soft classes. Adv. Fuzzy Syst. 2009, Art. ID 407890, 6 pp.
- B. AHMAD and A. KHARAL: Mappings on soft classes. New Math. Nat. Comput., 7 (3) (2011), 471-481.
- M. AKDAG and A. OZKAN: Soft b-open sets and soft b-continuous functions. Math. Sci. (2014) 8:124, DOI 10.1007/s40096-014-0124-7.
- M. I. ALI, F. FENG, X. LIU, W. K. MIN and M. SHABIR: On some new operations in soft set theory. Comput. Math. Appl., 57 (2009), 1547-1553.
- 8. BIN CHEN: Some Local Properties of Soft Semi-Open Sets. Hindawi Publishing Corporation, 2013 (1-6).
- 9. N. AGMAN and S. ENGINOGLU: Soft set theory and uni-Fint decision making. European Journal of Operational Research, 207 (2010), 848-855.
- 10. S. A. EL-SHEIKH and A. M. ABD EL-LATIF: Characterization of b-open soft sets in soft topological spaces. Journal of New Theory, 2 (2015), 8-18.
- S. A. EL-SHEIKH and A. M. ABD EL-LATIF: Decompositions of some types of supra soft sets and soft continuity. International Journal of Mathematics Trends and Technology, 9 (1) (2014), 37-56.

A.M. Abd El-latif

- S. A. EL-SHEIKH, RODYNA A. HOSNY and A. M. ABD EL-LATIF: Characterizations of b-soft separation axioms in soft topological spaces. Inf. Sci. Lett., 4 (3) (2015), 125-133.
- 13. S. HUSSAIN and B. AHMAD: Some properties of soft topological spaces. Comput. Math. Appl., 62 (2011), 4058-4067.
- 14. A. KANDIL, O. A. E. TANTAWY, S. A. EL-SHEIKH and A. M. ABD EL-LATIF: γ -operation and decompositions of some forms of soft continuity in soft topological spaces. Ann. Fuzzy Math. Inform., 7 (2) (2014), 181-196.
- 15. A. KANDIL, O. A. E. TANTAWY, S. A. EL-SHEIKH and A. M. ABD EL-LATIF: γ -operation and decompositions of some forms of soft continuity of soft topological spaces via soft ideal. Ann. Fuzzy Math. Inform., 9 (3) (2015), 385-402.
- A. KANDIL, O. A. E. TANTAWY, S. A. EL-SHEIKH and A. M. ABD EL-LATIF: Soft connectedness via soft ideals. Journal of New Results in Science, 4 (2014), 90-108.
- 17. A. KANDIL, O. A. E. TANTAWY, S. A. EL-SHEIKH and A. M. ABD EL-LATIF: Soft ideal theory, Soft local function and generated soft topological spaces. Appl. Math. Inf. Sci., 8 (4) (2014), 1595-1603.
- A. KANDIL, O. A. E. TANTAWY, S. A. EL-SHEIKH and A. M. ABD EL-LATIF: Soft regularity and normality based on semi open soft sets and soft ideals. Appl. Math. Inf. Sci. Lett., 3 (2) (2015), 47-55.
- A. KANDIL, O. A. E. TANTAWY, S. A. EL-SHEIKH and A. M. ABD EL-LATIF: Soft semi compactness via soft ideals .Appl. Math. Inf. Sci., 8 (5) (2014), 2297-2306.
- A. KANDIL, O. A. E. TANTAWY, S. A. EL-SHEIKH and A. M. ABD EL-LATIF: Soft semi (quasi) Hausdorff spaces via soft ideals. South Asian J. Math., 4 (6) (2014), 265-284.
- A. KANDIL, O. A. E. TANTAWY, S. A. EL-SHEIKH and A. M. ABD EL-LATIF: Soft semi separation axioms and irresolute soft functions. Ann. Fuzzy Math. Inform., 8 (2) (2014), 305-318.
- 22. A. KANDIL, O. A. E. TANTAWY, S. A. EL-SHEIKH and A. M. ABD EL-LATIF: Supra generalized closed soft sets with respect to an soft ideal in supra soft topological spaces. Appl. Math. Inf. Sci., 8 (4) (2014), 1731-1740.
- 23. F. LIN: Soft connected spaces and soft paracompact spaces. International Journal of Mathematical Science and Engineering, 7 (2) (2013), 1-7.
- P. K. MAJI, R. BISWAS and A. R. ROY: Soft set theory. Comput. Math. Appl., 45 (2003), 555-562.
- 25. D. MOLODTSOV: Soft set theory-firs tresults. Comput. Math. Appl., 37 (1999), 19-31.
- 26. D. MOLODTSOV, V. Y. LEONOV and D. V. KOVKOV: Soft sets technique and its application. Nechetkie Sistemy i Myagkie Vychisleniya, 1 (1) (2006), 8-39.
- 27. D. PEI and D. MIAO: From soft sets to information systems, in: X. Hu, Q. Liu, A. Skowron, T. Y. Lin, R. R. Yager, B. Zhang (Eds.). Proceedings of Granular Computing, in: IEEE, vol.2, 2005, pp. 617-621.
- RODYNA A. HOSNY: Properties of soft b-open sets. SYLWAN., 159 (4) (2014), 34-49.

- M. SHABIR and M. NAZ: On soft topological spaces. Comput. Math. Appl., 61 (2011), 1786-1799.
- I. ZORLUTUNA, M. AKDAG, W.K. MIN and S. ATMACA: Remarks on soft topological spaces. Ann. Fuzzy Math. Inform., 3 (2) (2012), 171-185.

Alaa Mohamed Abd El-latif Ain Shams University Faculty of Education Department of Mathematics Roxy, 11341, Cairo, Egypt alaa_8560@yahoo.com