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APPROXIMATE SPECTRAL LEARNING USING NYSTROM

METHOD ∗

Aleksandar Trokicić

Abstract. Constrained clustering algorithms as an input have a data set and con-
straints which inform it whether to put two items in the same cluster or not. Spectral
clustering algorithms compute cluster assignments from eigenvectors of a matrix that
is computed from the data set. In this paper, we study the class of constrained spectral
clustering algorithms that incorporate constraints by modifying the graph adjacency
matrix. The proposed algorithm combines Nystrom method with the existing spectral
learning algorithm to produce a linear (in the number of vertices) time algorithm. We
tested our algorithm on real world data sets and we demonstrated that it shows better
results on some data sets than the original algorithm. In the end, we propose an algo-
rithm for constrained multi view data clustering.
Keywords: spectral clustering, spectral learning, constrained clustering, Nystrom
method

1. Introduction

Clustering is one of the important and well-studied problems in machine learn-
ing, data mining and computer vision. The objective of a clustering problem is to
form groups of similar or related data. Since large data sets have become easily
available, a clustering solution can be used as a rough analysis of a data set or as
an input to a classification algorithm. Clustering algorithms can be divided into
several categories such as centroid based clustering (each cluster is represented with
a point called a centroid and a datum belongs to a cluster with a nearest centroid)
like k-means algorithm, distribution based clustering (each cluster represents a dis-
tribution) or hierarchical clustering. Clustering can be performed in an original
vector space or data can be modified and clustering performed in a different vector
space. We focus on spectral clustering algorithms where clustering is performed
in a modified vector space with fewer dimensions than the original space. Clus-
tering algorithms belong to a class of unsupervised learning algorithms, only data
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values are known at the input. However, in this paper we focus on incorporating
pairwise instance level constraints into the clustering algorithm in order to improve
performance. In this paper we consider two types of constraints:

• CL constraints : two instances cannot be in the same cluster.

• ML constraints : two instances must be in the same cluster.

The objective of a constrained clustering algorithm (clustering algorithm that in-
corporates pairwise instance level constraints) is to partition a data set into groups
of similar data while complying with the constraints as much as possible.

We assume that we are given a set of points RN , similarity measure S and a set
of pairwise constraints. From the set of points and similarity measure we form a
similarity graph and cluster its vertices while complying with the constraints.

In this paper we address the constrained spectral clustering problem, the ob-
jective of which is to incorporate constraints into the spectral clustering algorithm.
Spectral clustering algorithms [8], [11], [10] compute cluster assignments from eigen-
vectors of a matrix that is computed from the pairwise similarity between data. The
prior work on this problem can be divided into three categories. In the first category
are algorithms that incorporate constraints by modifying a matrix derived from a
graph as in Kamvar et al. [6], Xu et al. [16]. In the second category are algorithms
that change the feasible solution space of a spectral clustering algorithm so that it
complies with the constraints as in Coleman et al. [4]. In the third category are
algorithms that define constrained spectral clustering as a constrained optimization
problem as in Wang et al. [14].

Since the complexity of graph matrices construction is O(n2) and complexity of
eigendecomposition is O(n3) using spectral learning on a large data set is expensive.
We suggest the use of Nystrom method [3] [15] [7] to approximate graph matrices
and therefore speed up computation. We implemented approximate spectral learning

algorithm as a combination of spectral learning algorithm from [6] and Nystrom
method. For an arbitrary number l ≪ n we implemented algorithm such that
complexity for graph matrix construction is O(nl) and for eigendecomposition O(l3)
and for final approximation step is O(nl2). Of course after eigenvector computation
both approximate and original algorithm have to perform kmeans algorithms with
complexity O(nt) where t is the number of iterations.

We also address the problem of multi-view constrained spectral clustering. It
belongs to a class of multi-view learning [2] [5] where input data set consists of multi-
view items. In multi-view item we have access to different type of information
about an item. For example, one view of an item is image and another view is
textual information about that image. Another example of a multi-view item is
an image of an object taken with cameras on different locations. Multi-view data
set can be gathered using multiple sensors, an information collected by a single
sensor represents one view. We implemented an algorithm for constrained multi-
view clustering by applying combination of spectral learning algorithm from [6] and
Nystrom method on the sum of graph derived matrices for each view.
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This paper is organized as follows. In Chapter 2. we explain spectral clustering
algorithm. In Chapter 3. we implement approximate spectral learning algorithm as
a combination of spectral learning algorithm from [6] and Nystrom method .Appli-
cation of approximate spectral learning algorithm onmulti-view data set is imple-
mented at the end of chapter 3. In the final two chapters experimental results and
conclusion are presented.

2. Spectral Clustering

Spectral clustering forms a partition of graph vertices such that the sum of
the edges between the vertices of the same partition is high and the sum of the
edges between the vertices of different partitions is low based on eigenvectors of a
graph derived matrix. Let G = (V,E,W ) be an undirected weighted graph, where
V = {v1, v2, . . . , vn} is the set of vertices and E is the set of edges. Every edge in
the graph is associated with a weight which is a non-negative real number. The
adjacency matrix W of the graph is a symmetric matrix where Wij is the edge
weight if there is an edge between vertex vi and vj , or 0 otherwise. Since the set of
edges E can be computed from the adjacency matrix W , we will write G = (V,W ).
The degree of a vertex vi is the sum of weights of edges that start in that vertex.
The degree matrix D is a diagonal matrix such that Dii is the degree of vertex vi.

We are given a similarity graph and k as a number of clusters to partition a graph
into. The goal of a clustering algorithm is to partition the vertex set into k groups
of similar vertices. A natural way to define clustering on a graph is a solution of a
RatioCut problem [8]. RatioCut of a cluster (partition) set (A1, A2, . . . , Ak) is the

sum RatioCut(A1:k) =
∑i=k

i=1
cut(Ai,V \Ai)

|Ai|
, where cut(Ai, V \ Ai) measures a total

weight of edges from cluster Ai to other clusters. The solution to the RatioCut
problem is a set of clusters (A1, A2, . . . , Ak) so that RatioCut(A1:k) is minimal.
According to [8] relaxing this problem yields:

min
U∈Rn×k

Tr(UTLU) s. t. UTU = I(2.1)

where L is a graph Laplacian

L = D −W

and from a matrix U cluster assignments are derived as a solution of k-means
clustering on rows of U . Columns of a matrix U which minimizes the (2.1) are k
smallest eigenvectors of a Laplacian matrix L.

In literature there are different normalizations of graph Laplacian used by spec-
tral algorithms such as D− 1

2LD− 1

2 [12] and (W + dmaxI −D)/dmax [6] where dmax

is the maximal degree of a vertex and I is the identity matrix. We will use the
normalized additive Laplacian matrix LN = (W + dmaxI − D)/dmax used by the
authors in [6] for spectral clustering.
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Fig. 2.1: Spectral clustering. [6]

procedure SC(W,k)
Input: adjacency matrix W ;
Input: number of clusters k ;
Compute the degree matrix D;
Compute the normalized additive Laplacian matrix LN = (W + dmaxI −

D)/dmax;
Compute matrix U whose columns are k largest eigenvectors u1, . . . , uk of LN ;
Normalize rows of U ;
Cluster rows of U into k clusters using k-means algorithm;
Output: Clusters C1, . . . , Ck

end procedure

3. Constrained spectral clustering

We are given an input graph G = (V,W ) and a set of constraints. We consider
two types of constraints:

1. ML(i, j) Vertex vi and vertex vj must be in the same cluster.

2. CL(i, j) Vertex vi and vertex vj cannot be in the same cluster.

In [6] the problem is solved by changing the adjacency matrix

1. Vertex vi and vertex vj must be in the same cluster → edge weight is set to
1.

2. Vertex vi and vertex vj cannot be in the same cluster → edge weight is set to
0.

We will refer to the adjacency matrix with incorporated constraints as modified
adjacency matrix W . In the next step spectral clustering (2.1) is applied. The au-
thors of [6] named this algorithm spectral learning algorithm. Since the complexity
of forming graph matrices is O(n2) and the complexity of eigendecomposition is
O(n3) using spectral learning on large data sets is expensive. We suggest the use
of Nystrom method to speed up computation.

3.1. Nystrom method

We will use Nystrom method as explained in [15]. Nystrom method finds an
approximation of a symmetric positive semi-definite matrix X ∈ R

n×n. An arbi-
trary number l ≪ n is used for approximation. Let C be the matrix of dimensions
l × n whose columns are randomly sampled from X , and let L be the set of in-
dices of those columns in X . Matrix Q = X(L, :) is created by sampling rows from
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matrix C. Since matrix Q is symmetric we can compute its eigenvalue decomposi-
tion Q = UQΣQU

T
Q . Matrix X is approximated with matrix X̃ with the following

approximate eigenvalue decomposition

X̃ = (

√

l

n
CUQΣ

−1
Q )(

n

l
ΣQ)(

√

l

n
CUQΣ

−1
Q )T

The complexity of this method is O(nl2 + l3).

3.2. Spectral learning using Nystrom method

Fig. 3.1: Spectral learning via Nystrom method algorithm.

procedure SL-NYS(W,k, l)
Input: adjacency matrices W ;
Input: number of columns l ;
Input: number of clusters k ;
L is set of sampled column indices;
Ŵ = W (:,L);
Î = I(:,L);
D̂ = D(:,L);

d̂max = max(D̂);

C = (Ŵ + d̂maxÎ − D̂)/d̂max;
Q = C(L, :) = UQΣQU

T
Q ;

Σ̃ = n
l
ΣQ;

Ũ =
√

l
n
CUQΣ

−1
Q ;

Compute U as first k eigenvectors of Ũ ;
Normalize rows of U
Cluster rows of U into k clusters using k-means algorithm;
Output: Clusters C1, . . . , Ck

end procedure

We propose to use the algorithm (3.1) for fast approximate spectral learning.
Let L be the set of indices of l randomly sampled columns of modified adjacency
matrix W . We assume that adjacency matrix W is modified to include constraints:

• Wi,j = 1 if ML(i, j) is in the set of constraints,

• Wi,j = 0 if CL(i, j) is in the set of constraints.

Matrix Ŵ = W (:,L) is a modified adjacency matrix with sampled columns. In the
next step we form matrices Î = I(:,L) and D̂ = D(:,L). Because we do not have
access to the entire diagonal matrix, the maximal degree dmax of a vertex in graph
G, is approximated with d̂max = max(D̂).
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The following matrix is an approximation of the normalized additive graph
Laplacian C = (Ŵ + d̂maxÎ − D̂)/d̂max. In the next step eigenvalue decomposition
of matrix Q = C(L, :) is computed as Q = UQΣQU

T
Q . It follows that approxi-

mated normalized additive graph Laplacian is L̃ = ŨΣ̃ŨT where Σ̃ = n
l
ΣQ and

Ũ =
√

l
n
CUQΣ

−1
Q . We use columns of the matrix Ũ as approximated eigenvec-

tors of the normalized graph Laplacian LN and apply kmeans algorithm on rows of
matrix whose columns are largest k eigenvectors of Ũ .

3.3. Aproximate spectral learning on multi-view data

Multi-view constrained spectral clustering takes as an input {(x1
i , x

2
i ) ∈ (RN1 ×

R
N2) | i = 1, n} and a set of must link and cannot link constraints. Vectors x1

i and
x2
i represent two views of the same datum. For example, an image and its textual

explanation represent two different views of the same item. Dimensions of views x1
i

and x2
i are not necessarily equal. Let k1 and k2 be kernels defined on the first and

second view space, respectively. We use direct sum kernel k((x1
i , x

2
i ), (x

1
j , x

2
j )) =

k1(x
1
i , x

1
j )+k2(x

2
i , x

2
j ) to form a similarity graph of the multi-view data set in order

to apply the spectral learning algorithm [6].

We propose to implement multi-view approximate spectral clustering algorithm
by forming two similarity graphs and to apply Nystrom method on theirs normal-
ized additive Laplacian matrices. In the first step we propose to form two similarity
graphs G1 = (V1,W1) and G2 = (V2,W2) for each view induced by k1 and k2, re-
spectively, and to modify its adjacency matrices to include constraints. We propose
to form an approximate normalized additive graph Laplacians Ĉ1 and Ĉ2 from each
graph using a set of sampled column indices L. In the next step we form the sum
of approximate matrices Ĉ = Ĉ1 + Ĉ2 and follow the algorithm (3.1) from step (6)
to the end.

4. Experimental Results

In this section we evaluate the performance of approximate spectral learning
algorithms SL-NYS on single-view and multi-view data sets.

4.1. Aproximate spectral learning

We compare the algorithm (3.1) with the original (without approximation) spectral
learning algorithm (SL) [6] and (CSP) from [14]. We implemented the spectral
learning algorithm from [6] and our algorithm for approximate spectral learning
(3.1) in Matlab and downloaded Matlab code for CSP from one of the author’s
[13].

We use four real world data sets from [1]: Wine, Seeds, Glass and Ionosphere.
Constraints are derived from the exact labels:
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Table 4.1: The UCI data sets

Data Set Instances Attributes

Wine 130 13

Glass 214 9

Seeds 210 7

Ionosphere 351 34

• If item i and item j have the same label we add ML(i, j) to the set of con-
straints

• If item i and item j have different labels we add CL(i, j) to the set of con-
straints

For information about data sets see Table (4.1). The adjacency matrix is formed
using RBF kernel. The results were evaluated using Rand Index as defined in [9].
In Figure (4.1), x-coordinate represents the number of known instances and Y -axis
represents the rand index. We tested on a number of known labels between 24 and
the size of the data set. At each stop we performed 31 tests where we randomly
selected the known items and reported mean and variance of the results.

Let us look at the results form Figure (4.1). On three data sets Glass, Iono-
sphere and Wine, the approximate spectral learning algorithm produced mostly
better results than the original spectral learning algorithm and on Seeds data set
the original spectral learning algorithm mostly performed better. However, the
approximate spectral learning algorithm produced similar results to CSP only on
Glass data set and CSP produced better results on the rest of data sets. The
original spectral learning algorithm performed better than CSP on Seeds data set,
while CSP performed better on the rest of data sets.

4.2. Approximate multi-view spectral learning

Data sets Wine and Glass are used for testing the approximate multi-view spectral
learning algorithm. We will test algorithms on 2 view data sets. The elements
(feature vectors) of both Glass and Wine data sets are single view items. Therefore,
we need to convert them into 2-view items. We split each feature vector into two
feature vectors in a way that the first half of the features represents the first view
and the second half of the features represents the second view. Direct sum kernel
is used as an input to the CSP algorithm and the spectral learning algorithm [6].
Approximate spectral learning produced better results than the original spectral
learning algorithm on Glass data set. On Wine data set for a small number of
known labels the approximate algorithm produced better results than the original
algorithm and the situation was reverse when the number of known labels was large.
CSP produced mostly better results than other algorithms.
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Fig. 4.1: Performance comparison of different spectral clustering algorithms on real
world data sets with constraints.

number of known labels
0 50 100 150 200

ra
nd

 in
de

x

0.2

0.4

0.6

0.8

1

1.2
CSP
SL-NYS
SL

(a) Wine

number of known labels
0 50 100 150 200 250

ra
nd

 in
de

x

0.2

0.4

0.6

0.8

1

1.2 CSP
SL-NYS
SL

(b) Glass

Fig. 4.2: Performance comparison of different spectral clustering algorithms on real
world multi-view data sets with constraints.
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5. Conslusion

In this paper we implemented the approximate spectral learning algorithm (3.1). It
is an approximation of the spectral learning algorithm [6] using Nystrom method.
We compared the algorithm (3.1) with the original spectral learning algorithm and
on some data sets the approximated algorithm performed better. Even though the
algorithm (3.1) produced better results than the original one it did not perform
better than CSP [14]. We also showed how to apply our algorithm to a multi-view
data set. Empirically, it showed better results than the original spectral learning al-
gorithm [6] on a small number of known labels. However,CSP [14] mostly produced
the best results. The advantage of the approximate spectral learning algorithm over
the other two algorithms is its complexity. The complexity of the algorithm (3.1)
is linear in the number of vertices while on the other hand the spectral learning
algorithm [6] and CSP [14] have quadratic complexity.

REFERENCES

1. K. Bache and M. Lichman: UCI Machine Learning Repository.
[http://archive.ics.uci.edu/ml]. University of California, School of Informa-
tion and Computer Science, Irvine, CA, 2013.

2. A. Blum and T. Mitchell: Combining labeled and unlabeled data with co-

training. In: Proceedings of the Conference on Computational Learning Theory
(Morgan Kaufmann, eds.), 1998, pp. 92 - 100.

3. A. Choromanska, T. Jebara, H. Kim, M. Mohan and C. Monteleoni: Fast
Spectral Clustering via the Nystrm Method. Algorithmic Learning Theory, Lecture
Notes in Computer Science 8139 (2013), pp 367–381.

4. T. Coleman, J. Sanderson and A. Wirth: Spectral clustering with inconsistent

advice. In: Proceedings of the 25th International Conference on Machine Learning,
2008, pp. 152 - 159.

5. E. Eaton, M. desJardins and S. Jacob: Multi-view constrained clustering with

an incomplete mapping between views. Knowledge and Information Systems, 38
(2012), pp 231 – 257.

6. S. D. Kamvar, D. Klein and C. D. Manning: Spectral learning. In: Proceedings
of the 18th International Joint Conference on Artificial Intelligence, 2003, pp 561–
566.

7. S. Kumar, M. Mohri and A. Talwalkar: Sampling techniques for the Nystrom

method. Journal of Machine Learning Research, 5 (2013), pp 304–311.

8. U. von Luxburg: A tutorial on spectral clustering. Statistics and Computing,
17(4) (2013), pp 395–416.

9. C. D. Manning, P. Raghavan and H. Schutze: Introduction to Information

Retrieval. Cambridge University Press, 2008.

10. M. Meila, and J. Shi: Learning Segmentation by Random Walks. In: Advances
in Neural Information Processing Systems, 13 (2001), pp 873–879.



578 A. Trokicić
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