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FIXED POINT THEOREMS FOR TWO PAIRS OF MAPPINGS IN

PARTIAL METRIC SPACES

Valeriu Popa and Alina-Mihaela Patriciu

Abstract. In this paper, a general fixed point theorem for two pairs of weakly com-
patible mappings satisfying a φ - implicit relation different from the type from [16] is
proved. As applications, we obtain the sufficient conditions for the existence of fixed
points for a sequence of mappings in partial metric spaces.
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1. Introduction

In 1994, Matthews [12] introduced the concept of partial metric spaces as a part
of the study of denotational semantics of dataflow networks and proved the Banach
contraction principle in such spaces.

Many authors studied the fixed points for mappings satisfying contractive con-
ditions in complete partial metric spaces. Quite recently, in [2], [4], [5], [6], [10],
some fixed point theorems under various contractive conditions in complete partial
metric spaces are proved.

In [10] some fixed point theorems for particular pairs of mappings in partial
metric spaces are proved, which generalize some results by [4], [5] and other papers.
In [2], other results for pairs of mappings are obtained.

In 1994, Pant [13] introduced the notion of R - weakly commutativity, which is
equivalent to commutativity at coincidence points. Jungck [9] defined f and g to
be weakly compatible if fx = gx implies fgx = gfx. Thus, f and g are weakly
compatible if and only of f and g are R - weakly commuting.

In [10], some fixed point theorems for two weakly compatible self mappings in
partial metric spaces are proved.

Several classical fixed point theorems and common fixed point theorems have
been unified considering a general condition by an implicit relation in [14], [15] and
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in other papers. This method is used in the study of fixed points in metric spaces,
symmetric spaces, quasi - metric spaces, b - metric spaces, convex metric spaces, ul-
tra - metric spaces, compact metric spaces, in two and three metric spaces, for single
- valued mappings, hybrid pairs of mappings and set - valued mappings, and also, it
is used in the study of fixed points for mappings satisfying a contractive condition
of integral type, in fuzzy metric spaces, probabilistic metric spaces, intuitionistic
metric spaces, ordered metric spaces and G - metric spaces. With this method the
proofs of some fixed point theorems are more simple. As well, the method allows
the study of local and global properties of fixed point structures.

The study of fixed points of self mappings in partial metric spaces for mappings
satisfying an implicit relation is initiated in [16].

In [3], Altun and Turkoglu introduced a new type of implicit relation satisfying
a φ - map.

Recently, new results for coupled functions are published in [7] and [8].

The purpose of this paper is to prove a general fixed point for two pairs of weakly
compatible mappings satisfying a new type of φ - implicit relation. As application
we prove a fixed point theorem for a sequence of mappings in complete partial
metric spaces.

2. Preliminaries

Definition 2.1. ([12]) Let X be a nonempty set. A function p : X × X → R+

is said to be a partial metric on X if for any x, y, z ∈ X , the following conditions
hold:

(P1) : p(x, x) = p(y, y) = p(x, y) if and only if x = y,

(P2) : p(x, x) ≤ p(x, y),

(P3) : p(x, y) = p(y, x),

(P4) : p(x, z) ≤ p(x, y) + p(y, z)− p(y, y).

The pair (X, p) is called a partial metric space.

If p(x, y) = 0, then by (P1) and (P2), x = y, but the converse does not always
hold.

Each partial metric p on X generates a T0 - topology τp which has as base the
family of open p - balls {Bp(x, ε) : x ∈ X and ε > 0}, where Bp(x, y) = {y ∈ X :
p(x, y) < p(x, x) + ε} for all x ∈ X and ε > 0.

A sequence {xn} in a partial metric space (X, p) converges to a limit x ∈ X

with respect to τp if and only if p(x, x) = limn→∞ p(x, xn).

If p is a partial metric on X , then the function ps(x, y) = 2p(x, y) − p(x, x) −
p(y, y) defines a metric on X .
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Definition 2.2. ([12]) Let (X, p) be a partial metric space.

a) A sequence {xn} inX is said to be a Cauchy sequence if limn,m→∞ p(xn, xm)
exists and is finite.

b) (X, p) is said to be complete if every Cauchy sequence in (X, p) converges
with respect to τp to a point x ∈ X such that limn→∞ p(xn, x) = p(x, x).

Lemma 2.1. ([12], [5]) Let (X, p) be a complete partial metric space. Then:

(1) A sequence in X is a Cauchy sequence in (X, p) if and only if it is a
Cauchy sequence in (X, ps).

(2) A partial metric space (X, p) is complete if and only if the metric space
(X, ps) is complete. Further,

lim
n→∞

ps (xn, x) = 0 if and only if p (x, x) = lim
n→∞

p (xn, x) = lim
m,n→∞

p (xn, xm) ,(2.1)

where {xn} is a Cauchy sequence which converges to a point x.

Lemma 2.2. Let (X, p) be a partial metric space and {xn} a sequence in X. If
limn→∞ xn = x and p (x, x) = 0, then limn→∞ p (xn, y) = p (x, y), ∀y ∈ X.

Proof. By (P4),

p (x, y) ≤ p (x, xn) + p (xn, y) .

Hence

p (x, y)− p (x, xn) ≤ p (xn, y) ≤ p (xn, x) + p (x, y) .

Letting n tends to infinity we obtain

lim
n→∞

p (xn, y) = p (x, y) .

Definition 2.3. Let X be a nonempty set and f, g : X → X such that w = fx =
gx for some x ∈ X . Then x is said to be a coincidence point of f and g and w is a
point of coincidence of f and g.

3. Implicit relations

Definition 3.1. A function ϕ : [0,∞) → [0,∞) is a φ - function, ϕ ∈ φ, if ϕ is

nondecreasing function such that
∞∑
n=1

ϕn (t) < +∞ for all t > 0 and ϕ (0) = 0.
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Remark 3.1. Since
∞
∑

n=1

ϕn (t) < ∞, then limn→∞ ϕn (t) = 0. Then, as in [11], ϕ (t) < t

for t > 0 and ϕ (0) = 0.

Definition 3.2. Let Fφ be the set of all continuous functions F (t1, ..., t6) : R
6
+ →

R such that:

(F1) : F is nonincreasing in variables t2, ..., t6,

(F2) : There exists a function ϕ ∈ φ such that:

(F2a) : F (u, v, v, u, u+ v, v) ≤ 0 and

(F2b) : F (u, v, u, v, v, u+ v) ≤ 0,

implies u ≤ ϕ (v).

In the following examples, the proof of property (F1) is easy.

Example 3.1. F (t1, ..., t6) = t1 − kmax {t2, ..., t6}, where k ∈
[

0, 1

2

)

.

(F2) : Let u, v ≥ 0 be and F (u, v, v, u, u+ v, u) = u − k (u+ v) ≤ 0, which implies
u ≤ k

1−k
v and (F2a) is satisfied for ϕ (t) = k

1−k
t.

Similarly, F (u, v, u, v, v, u+ v) ≤ 0 implies u ≤ ϕ (v).

Example 3.2. F (t1, ..., t6) = t1 − kmax
{

t2, t3, t4,
t3+2t4

3
, t5+t6

3

}

, where k ∈ [0, 1).

(F2) : Let u, v ≥ 0 be and F (u, v, v, u, u+ v, u) = u− kmax
{

u, v, v+2u

3
, u+2v

3

}

≤ 0. If
u > v, then u (1− k) ≤ 0, a contradiction. Hence u ≤ v, which implies u ≤ kv and (F2a)
is satisfied for ϕ (t) = kt.

Similarly, F (u, v, u, v, v, u+ v) ≤ 0 implies u ≤ ϕ (v).

Example 3.3. F (t1, ..., t6) = t1 − kmax {at2, b (t3 + 2t4) , b (t4 + t5 + t6)}, where a ∈
(0, 1) and b ∈

(

0, 1

4

)

.

(F2) : Let u, v ≥ 0 be and F (u, v, v, u, u+ v, u) = u−max {av, b (v + 2u) , 2b (u+ v)} ≤
0. If u > v, then u (1−max{a, 4b}) ≤ 0, a contradiction. Hence u ≤ v, which implies
u ≤ max{a, 4b}v and (F2a) is satisfied for ϕ (t) = max{a, 4b}t.

Similarly, F (u, v, u, v, v, u+ v) ≤ 0 implies u ≤ ϕ (v).

Example 3.4. F (t1, ..., t6) = t1 − kmax {t2, t3 + t4, t5 + t6}, where k ∈
[

0, 1

3

)

.

(F2) : Let u, v ≥ 0 be and F (u, v, v, u, u+ v, u) = u − k (u+ 2v) ≤ 0, which implies
u ≤ 2k

1−k
v and (F2a) is satisfied for ϕ (t) = 2k

1−k
t.

Similarly, F (u, v, u, v, v, u+ v) ≤ 0 implies u ≤ ϕ (v) .

Example 3.5. F (t1, ..., t6) = t21−amax{t22, t23, t24}−bt5t6, where a, b ≥ 0 and a+2b < 1.

(F2) : Let u, v ≥ 0 be and F (u, v, v, u, u+ v, u) = u2−kmax
{

u2, v2
}

− bv (u+ v) ≤ 0.
If u > v, then u2 [1− (a+ 2b)] ≤ 0, a contradiction. Hence u ≤ v, which implies u ≤√
a+ 2bv and (F2a) is satisfied for ϕ (t) =

√
a+ 2bt.

Similarly, F (u, v, u, v, v, u+ v) ≤ 0 implies u ≤ ϕ (v).
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Example 3.6. F (t1, ..., t6) = t31 − at21t2 − bt1t
2
2 − ct2t3t4 − dt1t5t6, where a, b, c, d ≥ 0

and a+ b+ c+ 2d < 1.

(F2) : Let u, v ≥ 0 be and

F (u, v, v, u, u+ v, u) = u
3 − au

2
v − buv

2 − cuv
2 − du

2 (u+ v) ≤ 0.

If u > v, then u3 [1− (a+ b+ c+ 2d)] ≤ 0, a contradiction. Hence u ≤ v, which implies
u ≤ 3

√
a+ b+ c+ 2dv and (F2a) is satisfied for ϕ (t) = 3

√
a+ b+ c+ 2dt.

Similarly, F (u, v, u, v, v, u+ v) ≤ 0 implies u ≤ ϕ (v).

Example 3.7. F (t1, ..., t6) = t1 − ϕ (at2 + bt3 + ct4 + dt5 + et6), where a, b, c, d, e ≥ 0
and a+ b+ c+ 2d+ e < 1.

(F2) : Let u, v ≥ 0 be and

F (u, v, v, u, u+ v, u) = u− ϕ (av + bv + cu+ d (u+ v) + eu) ≤ 0.

If u > v, then u [1− ϕ ((a+ b+ c+ 2d+ e) v)] ≤ 0, which implies u ≤ ϕ((a+ b+ c+ 2d+
e)u) ≤ ϕ (u) < u, a contradiction. Hence u ≤ v, which implies u ≤ ϕ (v).

Similarly, F (u, v, u, v, v, u+ v) ≤ 0 implies u ≤ ϕ (v).

Example 3.8. F (t1, ..., t6) = t1−ϕ (at2 + bt3 + cmax{t4 + t5, t6}), where a, b, c ≥ 0 and
a+ b+ 3c < 1.

(F2) : Let u, v ≥ 0 be and

F (u, v, v, u, u+ v, u) = u− ϕ (av + bv + cmax{2u+ v, u}) ≤ 0.

If u > v, then u ≤ ϕ ((a+ b+ 3c)u) ≤ ϕ (u) < u, a contradiction. Hence u ≤ v, which
implies u ≤ ϕ (v).

Similarly, F (u, v, u, v, v, u+ v) ≤ 0 implies u ≤ ϕ (v).

Example 3.9. F (t1, ..., t6) = t1 − ϕ (at2 + bt3 + cmax{3t4, t5 + t6}), where a, b, c ≥ 0
and a+ b+ 3c < 1.

(F2) : Let u, v ≥ 0 be and

F (u, v, v, u, u+ v, u) = u− ϕ (av + bv + cmax{3u, 2u+ v}) ≤ 0.

If u > v, then u ≤ ϕ ((a+ b+ 3c)u) ≤ ϕ (u) < u, a contradiction. Hence u ≤ v, which
implies u ≤ ϕ (v).

Similarly, F (u, v, u, v, v, u+ v) ≤ 0 implies u ≤ ϕ (v).

4. Main results

Lemma 4.1. [1] Let f and g be weakly compatible self mappings of a nonempty
set X . If f and g have a unique point of coincidence w = fx = gx for some x ∈ X ,
then w is the unique common fixed point of f and g.
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Theorem 4.1. Let (X, p) be a partial metric space and A,B, S, T be self mappings
of X such that

F (p(Ax,By), p (Sx, T y) , p (Sx,Ax) ,
p (Ty,By) , p (Sx,By) , p (Ty,Ax)) ≤ 0,

(4.1)

for all x, y ∈ X, where F ∈ Fφ. If there exist u, v ∈ X such that Au = Su and
Bv = Tv, then there exists t ∈ X such that t is the unique point of coincidence of
A and S, as well the unique point of coincidence of B and T .

Proof. First we prove that Su = Tv. Suppose that Su 6= Tv. Then by (4.1) we get

F (p(Au,Bv), p (Su, T v) , p (Su,Au) ,
p (Tv,Bv) , p (Su,Bv) , p (Tv,Au)) ≤ 0,

F (p(Su, T v), p (Su, T v) , p (Su, T v) ,
p (Su, T v) , p (Su, T v) , p (Su, T v)) ≤ 0.

By (P2) and (F1) we obtain

F (p(Su, T v), p (Su, T v) , p (Su, T v) ,
p (Su, T v) , 2p (Su, T v) , p (Su, T v)) ≤ 0.

By (F2a) we get

p (Su, T v) ≤ φ (p (Su, T v)) < p (Su, T v) ,

a contradiction. Hence, p (Su, T v) = 0 and Su = Tv = Au = Bv = t for some t of
X .

Assuming that there exists w 6= u such that Aw = Sw and Aw 6= Au, then by
(4.1) we obtain

F (p(Aw,Bv), p (Sw, Tv) , p (Sw,Aw) ,
p (Tv,Bv) , p (Sw,Bv) , p (Tv,Aw)) ≤ 0,

F (p(Sw, Tv), p (Sw, Tv) , p (Sw, Sw) ,
p (Tv, T v) , p (Sw, Tv) , p (Sw, Tv)) ≤ 0.

By (F1), (P2) and (F2a) we obtain

p (Sw, Tv) ≤ φ (p (Sw, Tv)) < p (Sw, Tv) ,

if p (Sw, Tv) 6= 0, a contradiction. Hence, p (Sw, Tv) = 0, which implies Sw =
Aw = Tv = Bv = Su = t. Similarly one proves that t is the unique point of
coincidence of B and T .
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Theorem 4.2. Let (X, p) be a partial complete metric space and A,B, S, T be self
mappings of X such that AX ⊂ TX and BX ⊂ SX. If the inequality (4.1) holds
for all x, y ∈ X, where F ∈ Fφ and one of AX, BX, SX, TX is a closed subset of
(X, p), then:

(i) A and S have a coincidence point,

(ii) B and T have a coincidence point.

Moreover, if the pairs (A,S) and (B, T ) are weakly compatible, then A,B, S and
T have a unique common fixed point.

Proof. Let x0 be an arbitrary point in X . Since AX ⊂ TX , there exists x1 ∈ X

such that Tx1 = Ax0. Since BX ⊂ SX , there exists x2 ∈ X such that Sx2 = Bx1.
Continuing this process, we construct the sequences {xn} and {yn} in X defined by

y2n = Tx2n+1 = Ax2n, y2n+1 = Sx2n+2 = Bx2n+1, n ∈ N.(4.2)

We prove that {yn} is a Cauchy sequence in (X, p). By (4.1) for x = x2n and
y = x2n+1 we have successively

F (p(Ax2n, Bx2n+1), p (Sx2n, T x2n+1) , p (Sx2n, Ax2n) ,
p (Tx2n+1, Bx2n+1) , p (Sx2n, Bx2n+1) , p (Tx2n+1, Ax2n)) ≤ 0,

F (p(y2n, y2n+1), p (y2n−1, y2n) , p (y2n−1, y2n) ,
p (y2n, y2n+1) , p (y2n−1, y2n+1) , p (y2n, y2n)) ≤ 0.

(4.3)

Since by (P4),

p (y2n−1, y2n+1) ≤ p (y2n−1, y2n) + p (y2n, y2n+1)− p (y2n, y2n)

≤ p (y2n−1, y2n) + p (y2n, y2n+1)

and by (P2),

p (y2n, y2n) ≤ p (y2n−1, y2n) ,

by (4.2) and (F1) we obtain

F (p(y2n, y2n+1), p (y2n−1, y2n) , p (y2n−1, y2n) ,
p (y2n, y2n+1) , p (y2n−1, y2n) + p (y2n, y2n+1) , p (y2n−1, y2n)) ≤ 0.

By (F2a) we obtain

p (y2n, y2n+1) ≤ φ (p (y2n−1, y2n)) .

By (4.1) for x = x2n+2 and y = x2n+1, we obtain

F (p(Ax2n+2, Bx2n+1), p (Sx2n+2, T x2n+1) , p (Sx2n+2, Ax2n+2) ,
p (Tx2n+1, Bx2n+1) , p (Sx2n+2, Bx2n+1) , p (Tx2n+1, Ax2n+2)) ≤ 0,
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F (p(y2n+2, y2n+1), p (y2n+1, y2n) , p (y2n+1, y2n+2) ,
p (y2n, y2n+1) , p (y2n+1, y2n+1) , p (y2n, y2n+2)) ≤ 0.

(4.4)

Since by (P4),

p (y2n, y2n+2) ≤ p (y2n, y2n+1) + p (y2n+1, y2n+2)

and by (P2),

p (y2n+1, y2n+1) ≤ p (y2n, y2n+1) ,

by (4.4) and (F1) we obtain

F (p(y2n+2, y2n+1), p (y2n, y2n+1) , p (y2n+1, y2n+2) ,
p (y2n, y2n+1) , p (y2n, y2n+1) , p (y2n, y2n+1) + p (y2n+1, y2n+2)) ≤ 0.

By (F2b) we obtain

p (y2n+2, y2n+1) ≤ φ (p (y2n+1, y2n))

which implies

p (yn, yn+1) ≤ φ (p (yn−1, yn)) ≤ ... ≤ φn (p (y1, y0)) .

For n,m ∈ N with m > n, by repeated use of (P4), we have that

p (yn, ym) ≤ p (yn, yn+1) + p (yn+1, yn+2) + ...+ p (ym−1, ym)

≤

m−1∑

k=n

φk (p (y0, y1)) .

Since
∞∑
k=0

φk (p (y0, y1)) < ∞, then limn→∞

m−1∑
k=n

φk (p (y0, y1)) = 0 and

limn,m→∞ p (yn, ym) = 0 and so

ps (yn, ym) ≤ 2p (yn, ym) → 0 as n,m → ∞.

This implies that {yn} is a Cauchy sequence in the metric space (X, ps). Since
(X, p) is complete, by Lemma 2.1, (X, ps) is complete. Therefore, there exists y ∈ X

such that limn→∞ ps (yn, y) = 0 and by (2.1)

p (y, y) = lim
n→∞

p (yn, y) = lim
n,m→∞

p (yn, ym) = 0.

This implies that limn→∞ p (y2n, y) = limn→∞ p (y2n−1, y) = 0 and
limn→∞ p (Sx2n, y) = 0.

Now we can suppose, without loss of generality, that SX is a closed subset of
the partial metric space (X, p). Then there exists u ∈ X such that y = Su.
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By (4.1) with x = u and y = x2n+1, we have

F (p(Au,Bx2n+1), p (Su, Tx2n+1) , p (Su,Au) ,
p (Tx2n+1, Bx2n+1) , p (Su,Bx2n+1) , p (Tx2n+1, Au)) ≤ 0,

F (p(Au, y2n+1), p (Su, y2n) , p (Su,Au) ,
p (y2n, y2n+1) , p (Su, y2n+1) , p (y2n, Au)) ≤ 0.

(4.5)

Letting n tends to infinity we obtain by Lemma 2.2 that

F (p (y,Au) , 0, p (y,Au) , 0, 0, p (y,Au)) ≤ 0,

which implies by (F2b) that p (y,Au) ≤ φ (0) = 0, i.e. y = Au = Su and u is a
coincidence point of A and S.

Since AX ⊂ TX , y ∈ TX , hence there exists v ∈ X such that y = Tv. By (4.1)
for x = u and y = v we obtain

F (p(Au,Bv), p (Su, T v) , p (Su,Au) , p (Tv,Bv) , p (Su,Bv) , p (Tv,Au)) ≤ 0,

F (p(y,Bv), 0, 0, p (y,Bv) , p (y,Bv) , 0) ≤ 0.

By (F2a) it follows that p (y,Bv) = 0, i.e. y = Bv = Tv and v is a coincidence
point of T and B. By Theorem 4.1, y is the unique point of coincidence of (A,S)
and (B, T ).

Moreover, if (A,S) and (B, T ) are weakly compatible, y is the unique common
fixed point A,B, S and T .

If A = B and S = T , we obtain the following result:

Corollary 4.1. Let (X, p) be a partial complete metric space and A,S be self map-
pings of X with AX ⊂ SX such that

F (p(Ax,Ay), p (Sx, Sy) , p (Sx,Ax) ,
p (Sy,Ay) , p (Sx,Ay) , p (Sy,Ax)) ≤ 0,

(4.6)

for all x, y ∈ X, where F ∈ Fφ. If one of AX or SX is a closed set in X, then A

and S have a coincidence point.

Moreover, if (A,S) is weakly compatible, then A and S have a coincidence point.

For a function f : (X, p) → (X, p) we denote

Fix (f) = {x ∈ X : x = fx}.

Theorem 4.3. Let A,B, S and T be self mappings of a partial metric space (X, p).
If the inequality (4.1) holds for all x, y ∈ X, then

[Fix (S) ∩ Fix (T )] ∩ Fix (A) = [Fix (S) ∩ Fix (T )] ∩ Fix (B) .
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Proof. Let x ∈ [Fix (S) ∩ Fix (T )] ∩ Fix (A). Then by (4.1) we have

F (p(Ax,Bx), p (Sx, Tx) , p (Sx,Ax) , p (Tx,Bx) , p (Sx,Bx) , p (Tx,Ax)) ≤ 0,

F (p(x,Bx), p (x, x) , p (x, x) , p (x,Bx) , p (x,Bx) , p (x, x)) ≤ 0.

By (P2),

p (x, x) ≤ p (x,Bx)

and by (F1) we obtain

F (p (x,Bx) , p (x,Bx) , p (x,Bx) , p (x,Bx) ,
p (x,Bx) + p (x,Bx) , p (x,Bx)) ≤ 0,

which implies by (F2a)

p (x,Bx) ≤ φ (p (x,Bx)) < p (x,Bx) ,

a contradiction if p (x,Bx) 6= 0. Hence p (x,Bx) = 0, i.e. x = Bx. Then

[Fix (S) ∩ Fix (T )] ∩ Fix (A) ⊂ [Fix (S) ∩ Fix (T )] ∩ Fix (B) .

Similarly

[Fix (S) ∩ Fix (T )] ∩ Fix (B) ⊂ [Fix (S) ∩ Fix (T )] ∩ Fix (A) .

Theorems 4.2 and 4.3 imply:

Corollary 4.2. Let S, T and {Ti}i∈N∗ be self mappings of a partial metric space
such that:

a) T2 (X) ⊂ S (X) and T1 (X) ⊂ T (X),

b) one of T1 (X), T2 (X), S (X), T (X) is a closed subset of X and

c) the following inequality:

F (p (Tix, Ti+1y) , p (Sx, T y) , p (Sx, Tix) ,
p (Ty, Ti+1y) , p (Sx, Ti+1y) , p (Ty, Tix)) ≤ 0

holds for all x, y ∈ X, ∀i ∈ N
∗ and F ∈ Fφ. Then S, T and {Ti}i∈N∗ have a unique

common fixed point.
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