FACTA UNIVERSITATIS (NIŠ) SER. MATH. INFORM. Vol. 31, No 5 (2016), 1061–1071 DOI:10.22190/FUMI1605061P

ON DECOMPOSABLE AND WARPED PRODUCT GENERALIZED QUASI EINSTEIN MANIFOLDS

Prajjwal Pal and Sahanous Mallick

Abstract. The object of the present paper is to study decomposable and warped product generalized quasi Einstein manifolds.

Keywords: Einstein manifold; Warped product; Ricci tensor; Generalized quasi-Einstein manifolds

1. Introduction

A Riemannian manifold $(M^n, g), n = \dim M \ge 2$, is said to be an Einstein manifold if the following condition

(1.1)
$$R_{ij} = \frac{r}{n}g_{ij}$$

holds on M, where R_{ij} and r denote the Ricci tensor and the scalar curvature of (M^n, g) , respectively. According to Besse([2], p. 132), (1.1) is called the Einstein metric condition. Einstein manifolds play an important role in Riemannian Geometry as well as in general theory of relativity. Also, Einstein manifolds form a natural subclass of various classes of Riemannian manifolds by a curvature condition imposed on their Ricci tensor ([2], p. 432-433). For instance, every Einstein manifold belongs to the class of Riemannian manifolds (M^n, g) realizing the following relation:

(1.2)
$$R_{ij} = \lambda g_{ij} + \mu A_i A_j,$$

where $\lambda, \ \mu \in \mathbb{R}$ and A_i is a non-zero covariant vector. Moreover, different structures on Einstein manifolds have been studied by several authors.

A non-flat Riemannian manifold (M^n, g) (n > 2) is defined to be a quasi-Einstein manifold if its Ricci tensor R_{ij} of type (0,2) is not identically zero and satisfies the condition (1.2).

It is to be noted that Chaki and Maity [5] also introduced the notion of quasi-Einstein manifolds in a different way. They have taken λ and μ as scalars and

Received April 06, 2016; accepted July 20, 2016 2010 Mathematics Subject Classification. 53C25

the non-zero covariant vector A_i as a unit covariant vector. Such an n-dimensional manifold is denoted by the symbol $(QE)_n$. Quasi-Einstein manifolds have been studied by several authors such as De and Ghosh ([9], [10], [11], [12]), Ghosh, De and Binh [16], De and De [8], Debnath and Konar [14], Bejan and Binh [1] and many others.

Quasi-Einstein manifolds arose during the study of exact solutions of the Einstein field equations, as well as during considerations of quasi-umbilical hypersurfaces of semi-Euclidean manifolds. For instance, the Robertson-Walker space-time are quasi-Einstein manifolds. Also, quasi-Einstein manifold can be taken as a model of the perfect fluid space-time in general relativity [12]. So quasi-Einstein manifolds have some importance in the general theory of relativity.

Quasi-Einstein manifolds have been generalized by several authors in several ways such as generalized quasi-Einstein manifolds ([6], [10], [19]), super quasi Einstein manifolds ([7], [13], [21]), N(k)-quasi-Einstein manifolds ([17], [20], [25]) and many others. Also in [24] quasi-Einstein warped products have been studied by Sular and $\ddot{O}zg\ddot{u}r$.

In a recent paper De and Ghosh [10] introduced the notion of generalized quasi Einstein manifolds. A non-flat Riemannian manifold is called a generalized quasi Einstein manifold if its Ricci tensor R_{ij} of type (0,2) is non-zero and satisfies the condition

(1.3)
$$R_{ij} = \lambda g_{ij} + \mu A_i A_j + \nu B_i B_j,$$

where λ , μ and ν are certain non-zero scalars and A_i , B_i are two orthogonal unit covariant vectors such that $g^{ij}A_iA_j = 1$, $g^{ij}B_iB_j = 1$ and $g^{ij}A_iB_j = 0$. The vectors A_i and B_i are called the generators of the manifold and λ , μ and ν are called the associated scalars. Such a manifold is denoted by $G(QE)_n$. If $\nu = 0$, then the manifold reduces to a quasi Einstein manifold. $G(QE)_n$ arose during the study of 2-quasi umbilical hypersurface of a Euclidean space [10]. In 2011, De and Mallick [15] prove the existence of $G(QE)_n$ by several examples. Motivated by the above studies, the authors study the decomposability and warped product of $G(QE)_n$.

The paper is organized as follows:

First, we state some examples of $G(QE)_n$. Then in Section 3, we study a decomposable generalized quasi Einstein manifold. Section 4 deals with a $G(QE)_n$ warped product manifold. Finally, we consider a $G(QE)_n$ warped product manifold, base of which is unit dimensional.

2. Examples of $G(QE)_n$

Example 2.1. [15] A 2-quasi-umbilical hypersurface of a space of constant curvature is a $G(QE)_n$, which is not a quasi-Einstein manifold.

Example 2.2. [15] A quasi-umbilical hypersurface of a Sasakian space form is a $G(QE)_n$, which is not a quasi-Einstein manifold.

Example 2.3. De and Mallick [15] considered a Riemannian metric g on \mathbb{R}^4 by

(2.1)
$$ds^{2} = g_{ij}dx^{i}dx^{j} = (x^{4})^{\frac{4}{3}}[(dx^{1})^{2} + (dx^{2})^{2} + (dx^{3})^{2}] + (dx^{4})^{2}$$

Then they showed that (M^4,g) is a generalized quasi-Einstein manifold, which is not a quasi-Einstein manifold.

Example 2.4. [22] $\ddot{O}zg\ddot{u}r$ and Sular assumed an isometrically immersed surface \bar{M} in E^3 with non-zero distinct principal curvatures λ and μ . Then they considered the hypersurface $M = \bar{M} \times E^{n-2}$ in $E^{n+1}, n \ge 4$. The principal curvatures of M are $\tilde{\lambda}, \tilde{\mu}, 0, ..., 0$, where 0 occures (n-2)-times. Hence the manifold is a 2-quasi umbilical hypersurface and so it is generalized quasi-Einstein.

Example 2.5. [22] Özgür and Sular assumed a sphere S^2 in E^{k+2} given by the immersion $f: S^2 \to E^{k+2}$ and BS^2 be the bundle of unit normal to S^2 . The hypersurface M defined by the map $\varphi_t: BS^2 \to E^{k+2}$, $\varphi_t(x,\xi) = F(x,t\xi) = f(x) + t\xi$ is called the tube of radius t over S^2 . It was proved in [4] that if (λ, λ) are the principal curvature of S^2 then the principal curvatures of M are $(\frac{\lambda}{1-t\lambda}, \frac{\lambda}{1-t\lambda}, -\frac{1}{t}, ..., -\frac{1}{t})$, where $-\frac{1}{t}$ occures (k-1)-times. So M is 2-quasi umbilical and hence it is generalized quasi-Einstein.

3. Decomposable $G(QE)_n$

A Riemannian manifold (M^n, g) is said to be decomposable or a product manifold [23] if it can be expressed as $M_1^p \times M_2^{n-p}$ for $2 \le p \le (n-2)$, that is, in some coordinate neighbourhood of the Riemannian space (M^n, g) , the metric can be expressed as

(3.1)
$$ds^2 = g_{ij}dx^i dx^j = \bar{g}_{ab}dx^a dx^b + g^*_{\alpha\beta}dx^\alpha dx^\beta,$$

where \bar{g}_{ab} are functions of $x^1, x^2, ..., x^p$ denoted by \bar{x} and $g^*_{\alpha\beta}$ are functions of $x^{p+1}, x^{p+2}, ..., x^n$ denoted by $x^*; a, b, c, ...$ run from 1 to p and $\alpha, \beta, \gamma, ...$ run from p+1 to n.

The two parts of (3.1) are the metrics of $M_1^p (p \ge 2)$ and $M_2^{n-p} (n-p \ge 2)$ which are called the components of the decomposable manifold $M^n = M_1^p \times M_2^{n-p} (2 \le p \le n-2)$.

Let (M^n, g) be a Riemannian manifold such that $M_1^p (p \ge 2)$ and $M_2^{n-p}(n-p\ge 2)$ are components of this manifold. Here throughout this section each object denoted by a 'bar' is assumed to be from M_1 and each object denoted by 'star' is assumed to be from M_2 .

Then in a decomposable Riemannian manifold $M^n = M_1^p \times M_2^{n-p} (2 \le p \le n-2)$, the following relations hold [26]:

 $R_{ab} = \bar{R}_{ab}; R_{\alpha\beta} = R^*_{\alpha\beta}; R_{a\alpha} = 0; r = \bar{r} + r^*,$

where r, \bar{r} and r^* are scalar curvatures of M, M_1 and M_2 respectively.

Let us consider a Riemannian manifold (M^n, g) , which is a decomposable $G(QE)_n$. Then $M^n = M_1^p \times M_2^{n-p} (2 \le p \le n-2)$. Now from (1.3) we get

(3.2)
$$\bar{R}_{ab} = \lambda \bar{g}_{ab} + \mu \bar{A}_a \bar{A}_b + \nu \bar{B}_a \bar{B}_b,$$

 $R_{a\alpha} = \lambda g_{a\alpha} + \mu \bar{A}_a A^*_\alpha + \nu \bar{B}_a B^*_\alpha.$

 $\mu \bar{A}_a A^*_\alpha + \nu \bar{B}_a B^*_\alpha = 0.$

 $\mu \bar{A}_a A^*_\alpha = 0,$

 $\nu \bar{B}_a B^*_\alpha = 0,$

and

(3.3) $R_{\alpha\beta}^{*} = \lambda g_{\alpha\beta}^{*} + \mu A_{\alpha}^{*} A_{\beta}^{*} + \nu B_{\alpha}^{*} B_{\beta}^{*},$ where (3.4) $A_{i}(x) = \begin{cases} \bar{A}_{i} & \text{for } i=1,2,...,p \\ A_{i}^{*} & \text{for } i=p+1,...,n. \end{cases}$

Also we have (3.5) which implies that

(3.6) If possible, let (3.7)

which implies

 $\begin{array}{ll} (3.8) & \bar{A}_a A^*_\alpha = 0, \\ \text{since } \mu \neq 0. \text{ Hence} \\ (3.9) & either \ \bar{A}_a = 0 \ or \ A^*_\alpha = 0 \end{array}$

(but not both, since A_i is no more a unit vector).

Using (3.7) in (3.6) we get (3.10)

which implies

(3.11) $\bar{B}_a B^*_{\alpha} = 0,$ since $\nu \neq 0.$ Therefore (3.12) $either \ \bar{B}_a = 0 \ or \ B^*_{\alpha} = 0,$

From (3.9) and (3.12) we have four cases as follows:

Case I: $\bar{A}_a = 0$ and $\bar{B}_a = 0$, Case II: $A^*_{\alpha} = 0$ and $B^*_{\alpha} = 0$, Case III: $\bar{A}_a = 0$ and $B^*_{\alpha} = 0$, Case IV: $A^*_{\alpha} = 0$ and $\bar{B}_a = 0$. Now if possible let $\bar{A}_a = 0$ and $\bar{B}_a = 0$, then (3.2) reduces to

This shows that the manifold M_1^p is an Einstein manifold. On the other hand, if possible let $A_{\alpha}^* = 0$ and $B_{\alpha}^* = 0$, then (3.3) reduces to

$$(3.14) R^*_{\alpha\beta} = \lambda g^*_{\alpha\beta}.$$

As above (3.14) shows that the manifold M_2^{n-p} is an Einstein manifold.

Obviously the other cases are trivial. We get the similar results if we assume that (3.10) holds.

Thus we have the following:

Theorem 3.1. If a $G(QE)_n$ is a decomposable Riemannian manifold (M^n, g) such that $M = M_1^p \times M_2^{n-p}$, $(2 \le p \le n-2)$, and either (3.7) or (3.10) holds, then one component of the decomposable manifold is an Einstein manifold and the other is a generalized quasi Einstein manifold.

4. $G(QE)_n$ warped product manifolds

The study of warped product manifold was initiated by Kručkovič [18] in 1957. Again in 1969 Bishop and O'Neill [3] also obtained the same notion of the warped product manifolds while they were constructing a large class of manifolds of negative curvature. Warped product are generalizations of the Cartesian product of Riemannian manifolds. Let (\bar{M}, \bar{g}) and (M^*, g^*) be two Riemannian manifolds. Let \bar{M} and M^* be covered with coordinate charts $(U; x^1, x^2, ..., x^p)$ and $(V; y^{p+1}, y^{p+2}, ..., y^n)$ respectively.

Then the warped product $M = \overline{M} \times_f M^*$ is the product manifold of dimension n furnished with the metric

(4.1)
$$g = \pi^*(\bar{g}) + (f \circ \pi)\sigma^*(g^*),$$

where $\pi: M \to \overline{M}$ and $\sigma: M \to M^*$ are natural projections such that the warped product manifold $\overline{M} \times_f M^*$ is covered with the coordinate chart

$$(U\times V; x^1, x^2, ..., x^p, x^{p+1} = y^{p+1}, x^{p+2} = y^{p+2}, ..., x^n = y^n).$$

Then the local components of the metric g with respect to this coordinate chart are given by

(4.2)
$$g_{ij} = \begin{cases} \bar{g}_{ij} & \text{for } i=a \text{ and } j=b, \\ fg_{ij}^* & \text{for } i=\alpha \text{ and } j=\beta, \\ 0 & \text{otherwise,} \end{cases}$$

Here $a, b, c, ... \in \{1, 2, ..., p\}$ and $\alpha, \beta, \gamma, ... \in \{p + 1, p + 2, ..., n\}$ and $i, j, k, ... \in \{1, 2, ..., n\}$. Here \overline{M} is called the base, M^* is called the fiber and f is called warping function of the warped product $M = \overline{M} \times_f M^*$. We denote by $\Gamma_{jk}^i, R_{ijkl}, R_{ij}$ and r as the components of Levi-Civita connection ∇ , the Riemann-Christoffel curvature tensor R, Ricci tensor S and the scalar curvature of (M, g) respectively. Moreover we consider that, when Ω is a quantity formed with respect to g, we denote by $\overline{\Omega}$ and Ω^* , the similar quantities formed with respect to \overline{g} and g^* respectively. Then the non-zero local components of Levi-Civita connection ∇ of (M, g) are given by

(4.3)
$$\Gamma^{a}_{bc} = \bar{\Gamma}^{a}_{bc}, \ \Gamma^{\alpha}_{\beta\gamma} = \Gamma^{*\alpha}_{\beta\gamma}, \ \Gamma^{a}_{\beta\gamma} = -\frac{1}{2}\bar{g}^{ab}f_{b}g^{*}_{\beta\gamma}, \ \Gamma^{\alpha}_{a\beta} = \frac{1}{2f}f_{a}\delta^{\alpha}_{\beta},$$

where $f_a = \partial_a f = \frac{\partial f}{\partial x^a}$. The local components $R_{hijk} = g_{hl}R_{ijk}^l = g_{hl}(\partial_k\Gamma_{ij}^l - \partial_j\Gamma_{ik}^l + \Gamma_{ij}^m\Gamma_{mk}^l - \Gamma_{ik}^m\Gamma_{mj}^l), \partial_k = \frac{\partial}{\partial x^k}$, of the Riemann-Christoffel curvature tensor R of (M, g) which may not vanish identically are the following:

$$(4.4) \qquad R_{abcd} = \bar{R}_{abcd}, R_{a\alpha b\beta} = -fT_{ab}g^*_{\alpha\beta}, R_{\alpha\beta\gamma\delta} = fR^*_{\alpha\beta\gamma\delta} - f^2 PG^*_{\alpha\beta\gamma\delta},$$

where $G_{ijkl} = g_{il}g_{jk} - g_{ik}g_{jl}$ and

 $T_{ab} = -\frac{1}{2f} (\nabla_b f_a - \frac{1}{2f} f_a f_b), \quad tr(T) = g^{ab} T_{ab}, P = \frac{1}{4f^2} g^{ab} f_a f_b.$ Again the non-zero local components of the Ricci tensor $R_{jk} = g^{il} R_{ijkl}$ of (M, g) are given by

(4.5)
$$R_{ab} = \bar{R}_{ab} + (n-p)T_{ab}, \quad R_{\alpha\beta} = R^*_{\alpha\beta} - Qg^*_{\alpha\beta},$$

where Q = f((n - p - 1)P - tr(T)). The scalar curvature r of (M, g) is given by

(4.6)
$$r = \bar{r} + \frac{r^*}{f} - (n-p)[(n-p-1)P - 2tr(T)].$$

Let $M = \overline{M} \times_f M^*$ be a non-flat warped product manifold and also let M be a $G(QE)_n$. That is,

(4.7)
$$R_{ab} = \lambda g_{ab} + \mu A_a A_b + \nu B_a B_b.$$

From (4.7), using (4.5) we get

(4.8)
$$\bar{R}_{ab} + (n-p)T_{ab} = \lambda \bar{g}_{ab} + \mu \bar{A}_a \bar{A}_b + \nu \bar{B}_a \bar{B}_b$$

where

(4.9)
$$A_i(x) = \begin{cases} \bar{A}_i & \text{for } i=1, \dots, p \\ A_i^* & \text{otherwise,} \end{cases}$$

and

(4.10)
$$B_i(x) = \begin{cases} \bar{B}_i & \text{for } i=1, \dots, p \\ B_i^* & \text{otherwise,} \end{cases}$$

Then from (4.8) we get

(4.11)
$$\bar{R}_{ab} = \lambda \bar{g}_{ab} + \mu \bar{A}_a \bar{A}_b + \nu \bar{B}_a \bar{B}_b - (n-p)T_{ab},$$

If possible, we assume that \overline{M} is also $G(QE)_p$, then from (4.11) we get

$$(4.12) T_{ab} = 0.$$

Conversely, if (4.12) holds, then from (4.11) we can conclude that \overline{M} is a $G(QE)_p$. Thus we have the following:

Theorem 4.1. $M = \overline{M} \times_f M^*$ is a $G(QE)_n$ warped product manifold, if and only if \overline{M} is a $G(QE)_p$ provided $T_{ab} = 0$.

 $T_{ab} = k\bar{g}_{ab},$

Now if in particular (4.13)

where $k \neq 0$ is some constant. Then (4.11) takes the form

(4.14)
$$\bar{R}_{ab} = \{\lambda - k(n-p)\}\bar{g}_{ab} + \mu\bar{A}_a\bar{A}_b + \nu\bar{B}_a\bar{B}_b,$$

where A_i and B_i are defined by (4.9) and (4.10) from which it follows that \overline{M} is a $G(QE)_p$. Conversely, if \overline{M} is a $G(QE)_n$ then using (4.14) in (4.11) we get (4.13). Thus we have the following:

Theorem 4.2. $M = \overline{M} \times_f M^*$ is a $G(QE)_n$ warped product manifold, then \overline{M} is a $G(QE)_p$ if and only if (4.13) holds.

Similarly, we get from (4.7)

(4.15)
$$R_{\alpha\beta} = \lambda g_{\alpha\beta} + \mu A_{\alpha} A_{\beta} + \nu B_{\alpha} B_{\beta}.$$

Using (4.5), (4.15) yields

(4.16)
$$R^*_{\alpha\beta} = (\lambda f + Q)g^*_{\alpha\beta} + \mu A^*_{\alpha}A^*_{\beta} + \nu B^*_{\alpha}B^*_{\beta}.$$

Hence M^* is a $G(QE)_{n-p}$.

Converse is trivial. Thus we have the following:

Theorem 4.3. $M = \overline{M} \times_f M^*$ is a $G(QE)_n$ warped product manifold, if and only if M^* is a generalized quasi-Einstein manifold of dimension (n-p).

5. $G(QE)_n$ warped product manifolds with unit dimensional base

In this section, we consider $G(QE)_n$ warped product manifolds $M = I \times_f M^*$, $dimI = 1, dimM^* = n - 1 (n \ge 3), f = exp\{\frac{q}{2}\}$. We take the metric on I as $(dt)^2$. Using the above consideration and (4.5), we get

(5.1)
$$R_{tt} = \bar{R}_{tt} - \frac{(n-1)}{16} [4q'' + (q')^2]$$

which implies

(5.2)
$$R_{tt} = -\frac{(n-1)}{16} [4q'' + (q')^2]$$

since \bar{R}_{tt} of I is zero. Also

(5.3)
$$R_{\alpha\beta} = R_{\alpha\beta}^* - \frac{e^{\frac{q}{2}}}{16} [4(n-1)q'' + (2n-3)(q')^2] g_{\alpha\beta}^*$$

where '' and ''' denote the 1st order and 2nd order partial derivative respectively, with respect to 't'. Since M is a generalized quasi Einstein manifold, from (1.3) we have

(5.4)
$$R_{tt} = \lambda g_{tt} + \mu A_t A_t + \nu B_t B_t$$

and

(5.5)
$$R_{\alpha\beta} = \lambda g_{\alpha\beta} + \mu A_{\alpha} A_{\beta} + \nu B_{\alpha} B_{\beta},$$

where we take A_i and B_i as defined in (4.9) and (4.10). Now since dim I = 1, we can take

(5.6)
$$\bar{A}_t = l \quad and \quad \bar{B}_t = m$$

where l and m are functions on M. Using (4.1), (4.2), (4.9), (4.10) and (5.6), the equations (5.4) and (5.5) reduce to

(5.7)
$$R_{tt} = \lambda + \mu l^2 + \nu m^2,$$

P. Pal and S. Mallick

and

(5.8)
$$R_{\alpha\beta} = \lambda e^{\frac{q}{2}} g^*_{\alpha\beta} + \mu A^*_{\alpha} A^*_{\beta} + \nu B^*_{\alpha} B^*_{\beta}.$$

From (5.2) and (5.7) we get

(5.9)
$$\lambda + \mu l^2 + \nu m^2 = -\frac{(n-1)}{16} [4q'' + (q')^2]$$

Again from (5.3) and (5.8) we obtain

(5.10)
$$R_{\alpha\beta}^* = \frac{e^{\frac{3}{2}}}{16} [4(n-1)q'' + (2n-3)(q')^2 + 16\lambda] g_{\alpha\beta}^* + \mu A_{\alpha}^* A_{\beta}^* + \nu B_{\alpha}^* B_{\beta}^*,$$

where λ , μ and ν are related by (5.9). Thus (5.10) implies that M^* is a generalized quasi Einstein manifold. Hence we have the following:

Theorem 5.1. If $M = I \times_f M^*$, is a $G(QE)_n$ warped product manifold and dimI = 1, $dimM^* = n - 1$ ($n \ge 3$), then M^* is a generalized quasi Einstein manifold.

Now, we consider warped product manifolds $M = I \times_f M^*$, $\dim I = 1$, $\dim M^* = n - 1 (n \ge 3)$, $f = exp\{\frac{q}{2}\}$ and M^* is a $(QE)_n$. We take the metric on I as $(dt)^2$. In this case, (5.2) and (5.3) can also be obtained using the above consideration and (4.5). Since M^* is $(QE)_n$, from (1.2) we have

(5.11)
$$R^*_{\alpha\beta} = \lambda g^*_{\alpha\beta} + \mu A^*_{\alpha} A^*_{\beta},$$

where λ and μ are certain non-zero scalars and A_i^* is an unit covariant vector such that $g_{ij}^* A_i^* A_j^* = 1$ and

(5.12)
$$A_i(x) = \begin{cases} A_i & \text{for } i=1\\ A_i^* & \text{otherwise.} \end{cases}$$

Using (5.11) in (5.3) we get

(5.13)
$$R_{\alpha\beta} = \lambda g_{\alpha\beta}^* + \mu A_{\alpha}^* A_{\beta}^* - \frac{e^{\frac{q}{2}}}{16} [4(n-1)q'' + (2n-3)(q')^2] g_{\alpha\beta}^*.$$

which implies

(5.14)
$$R_{\alpha\beta} = -\frac{e^{\frac{q}{2}}}{16} [4(n-1)q'' + (2n-3)(q')^2] g^*_{\alpha\beta} + \lambda g^*_{\alpha\beta} + \mu A^*_{\alpha} A^*_{\beta}.$$

Now using (4.2) and (5.12) in (5.14) we obtain

(5.15)
$$R_{\alpha\beta} = -\frac{1}{16} [4(n-1)q'' + (2n-3)(q')^2] g_{\alpha\beta} + \frac{\lambda}{e^{\frac{q}{2}}} g_{\alpha\beta} + \mu A_{\alpha} A_{\beta\beta}$$

Now if we choose $g_{\alpha\beta} = e^{\frac{q}{2}} B_{\alpha} B_{\beta}$, where

(5.16)
$$B_i(x) = \begin{cases} \bar{B}_i & \text{for } i=1\\ B_i^* & \text{otherwise.} \end{cases}$$

Then (5.15) yields

(5.17)
$$R_{\alpha\beta} = -\frac{1}{16} [4(n-1)q'' + (2n-3)(q')^2] g_{\alpha\beta} + \mu A_{\alpha} A_{\beta} + \lambda B_{\alpha} B_{\beta}.$$

Again from (5.2) we get

(5.18)

$$R_{tt} = \frac{1}{16} [4(n-1)q'' + (2n-3)(q')^2] g_{tt} - \frac{1}{16} [4(n-1)q'' + (2n-3)(q')^2] - \frac{(n-1)}{16} [(q')^2 + 4q''],$$

since $\bar{g}_{tt} = 1$ and $g_{tt} = \bar{g}_{tt}$ in *I*. Thus (5.18) can be written as

(5.19)
$$R_{tt} = \frac{1}{16} [4(n-1)q'' + (2n-3)(q')^2] g_{tt} - \frac{(3n-4)}{16} (q')^2 + \frac{2(n-1)}{4} q''.$$

Since dim I = 1, we can take

(5.20)
$$\bar{A}_t = q' \text{ and } \bar{B}_t = \sqrt{q''}$$

where q' and q'' are functions on M. Then using (5.12),(5.16) and (5.20) we can write (5.19) as follows:

$$(5.21)R_{tt} = \frac{1}{16} [4(n-1)q'' + (2n-3)(q')^2]g_{tt} - \frac{(3n-4)}{16}A_tA_t + \frac{2(n-1)}{4}B_tB_t.$$

Thus from (5.17) and (5.21) we can canclude that $M = I \times_f M^*$ is a generalized quasi Einstein manifold if M^* is a quasi Einstein manifold. Hence we have the following:

Theorem 5.2. If $M = I \times_f M^*$, is a warped product manifold and dimI = 1, $dim M^* = n - 1 (n \ge 3)$ and M^* is a quasi Einstein manifold, then M is a generalized quasi Einstein manifold.

REFERENCES

- 1. C. L. BEJAN and T. Q. BINH: Generalized Einstein manifolds, WSPC-Proceedings, Trim Size, dga 2007, 47 54.
- A. L. BESSE: *Einstein manifolds*, Ergeb. Math. Grenzgeb., Folge, Bd. 10, Springer-Verlag, Berlin, Heidelberg, New York, 1987.
- R. L. BISHOP and B. O'NEILL: Manifolds of negative curvature, Trans. Amer. Math. Soc., 145(1969), 1 – 49.
- T. E. CECIL and P. J. RYAN: *Tight and Taut Immersions of Manifolds*, Research Notes in Mathematics, 107, Pitman (Advanced Publishing Program), Boston, M. A., 1985.
- M. C. CHAKI and R. K. MAITY: On quasi Einstein manifolds, Publ. Math. Debrecen, 57(2000), 297 – 306.

P. Pal and S. Mallick

- M. C. CHAKI: On generalized quasi Einstein manifolds, Publ. Math. Debrecen, 58(2001), 683 - 691.
- 7. M. C. CHAKI: On super quasi-Einstein manifolds, Publ. Math. Debrecen, **64**(2004), 481 488.
- U. C. DE and B. K. DE: On quasi-Einstein manifolds, Commun. Korean Math. Soc., 23(2008), 413 – 420.
- U. C. DE and G. C. GHOSH: On quasi Einstein manifolds, Periodica Math. Hungarica, 48(2004), 223 – 231.
- U. C. DE and G. C. GHOSH: On generalized quasi Einstein manifolds, Kyungpook Math. J., 44(2004), 607 - 615.
- 11. U. C. DE and G. C. GHOSH: On conformally flat special quasi Einstein manifolds, Publ. Math. Debracen, **66**(2005), 129 – 136.
- U. C. DE and G. C. GHOSH: On quasi-Einstein and special quasi-Einstein manifolds, Proc. of the Int. Conf. of Mathematics and its applications, Kuwait University, April 5 – 7, 2004, 178 – 191.
- P. DEBNATH and A. KONAR: On super quasi-Einstein manifolds, Publications de L'institute Mathematique, Nouvelle serie, Tome 89(2011), 95 – 104.
- P. DEBNATH and A. KONAR: On quasi-Einstein manifolds and quasi-Einstein spacetimes, Differ. Geom. Dyn. Syst., 12(2010), 73 – 82.
- 15. U. C. DE and S. MALLICK: On the existence of generalized quasi Einstein manifolds, Archivum Mathematicum (Brno), Tomus, 47(2011), 279 – 291.
- G. C. GHOSH, U. C. DE and T. Q. BINH: Certain curvature restrictions on a quasi-Einstein manifold, Publ. Math. Debrecen, 69(2006), 209 – 217.
- 17. A. A. HOSSEINZADEH and A. TALESHIAN: On conformal and quasi-conformal curvature tensors of an N(k)-quasi-Einstein manifold, Commun. Korean Math. Soc., **27**(2012), 317 326.
- G. I. KRUČKOVIČ: On semi-reducible Riemannian spaces, Dokl. Akad. Nauk SSSR 115(1957), 862 – 865 (in Russian).
- C. ÖZGÜR: On a class of generalized quasi-Einstein manifolds, Applied Sciences, Balkan Society of Geometers, Geometry Balkan Press, 8(2006), 138 – 141.
- C. OZGÜR: N(k)-quasi-Einstein manifolds satisfying certain conditions, Chaos, Solitons and Fractals, 38(2008), 1373 – 1377.
- C. ÖZGÜR: On some classes of super quasi-Einstein manifolds, Chaos, Solitons and Fractals, 40(2009), 1156 - 1161.
- C. ÖZGÜR and S. SULAR: On some properties of generalized quasi-Einstein manifolds, Indian Journal of Mathematics, 50(2008), 297 – 302.
- 23. J. A. SCHOUTEN: Ricci-Calculus, An introduction to Tensor Analysis and its Geometrical Applications, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1954.
- 24. S. SULAR and C. ÖZG[']UR: On quasi-Einstein warped products, Ann. St. Univ. "Al I Cuza" Iasi (S.N.), Tomul **58**(2012), 353 – 362.
- A. TALESHIAN and A. A. HOSSEINZADEH: Investigation of Some Conditions on N(k)-quasi-Einstein manifolds, Bull. Malays. Math. Soc., 34(2011), 455 – 464.
- K. YANO and M. KON: Structures on manifolds, World scientific, Singapore, 1984, 418 – 421.

Prajjwal Pal Chakdaha Co-operative Colony Vidyayatan(H.S) P.O.-Chakdaha, Dist-Nadia West Bengal, PIN-741222, India prajjwalpal@yahoo.in

Sahanous Mallick Department of Mathematics Chakdaha College P.O.-Chakdaha, Dist-Nadia West Bengal, PIN-741222, India sahanousmallick@gmail.com