
FACTA UNIVERSITATIS (NIŠ)
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ON THE MEASUREMENT OF GROWTH PROPERTIES OF

ENTIRE AND MEROMORPHIC FUNCTIONS FOCUSING THEIR

RELATIVE TYPE AND RELATIVE WEAK TYPE

Sanjib Kumar Datta and Tanmay Biswas

Abstract. The concepts of relative growth indicators such as relative order, relative
type, relative weak type, etc. have widely been used to avoid comparing growths of
entire and meromorphic functions just with exp functions. Using the notions of several
relative growth indicators as mentioned earlier, in this paper we would like to find out
the limits in terms of classical growth indicators (i.e. order, type, weak type etc.) in
which the relative type, relative weak type, etc. of meromorphic functions with respect
to entire functions should lie.
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1. Introduction, Definitions and Notations

Let C be the set of all finite complex numbers. Let f be an entire function
defined on C. The maximum modulus function corresponding to entire f is defined
as Mf (r) = max {|f (z)| : |z| = r}. The order ( lower order) of an entire function
f is defined in terms of the growth of f with respect to exp z function which is as
follows:

ρf = lim sup
r→∞

log logMf (r)

log logMexp z (r)
= lim sup

r→∞

log logMf (r)

log (r)

(

λf = lim inf
r→∞

log logMf (r)

log logMexp z (r)
= lim inf

r→∞

log logMf (r)

log (r)

)

.

When f is a meromorphic function, Mf (r) cannot be defined as f is not
analytic. In this case one may define another function Tf (r) known as Nevanlinna’s
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Characteristic function of f, playing the same role as maximum modulus function
in the following manner:

Tf (r) = Nf (r) +mf (r) ,

where the function Nf (r, a)

(

−

Nf (r, a)

)

known as counting function of a-points

(distinct a-points) of meromorphic f is defined as

Nf (r, a) =

r
∫

0

nf (t, a)− nf (0, a)

t
dt+

−

nf (0, a) log r





−

Nf (r, a) =

r
∫

0

−

nf (t, a)−
−

nf (0, a)

t
dt+

−

nf (0, a) log r



 ,

moreover we denote by nf (r, a)
(

−

nf (r, a)
)

the number of a-points (distinct a-

points) of f in |z| ≤ r and an ∞ -point is a pole of f . In many occasions Nf (r,∞)

and
−

Nf (r,∞) are denoted by Nf (r) and
−

Nf (r) respectively.

Also the function mf (r,∞) alternatively denoted by mf (r) known as the
proximity function of f is defined as follows:

mf (r) =
1

2π

∫ 2π

0

log+
∣

∣f
(

reiθ
)∣

∣ dθ,

where
log+ x = max (log x, 0) for all x > 0 .

Also we may denote m
(

r, 1
f−a

)

by mf (r, a).

If f is an entire function, then the Nevanlinna’s Characteristic function
Tf (r) of f is defined as

Tf (r) = mf (r) .

Further, if f is a non-constant entire then Tf (r) is strictly increasing and
continuous function of r. Also its inverse T−1

f : (Tf (0) ,∞) → (0,∞) exist and is

such that lim
s→∞

T−1
f (s) = ∞. However, in case of meromorphic functions, the growth

indicators such as order and lower order which are classical in complex analysis are
defined in terms of their growths with respect to exp z function as the following:

ρf = lim sup
r→∞

log Tf (r)

logTexp z (r)
= lim sup

r→∞

logTf (r)

log
(

r
π

) = lim sup
r→∞

logTf (r)

log (r) +O(1)

(

λf = lim inf
r→∞

logTf (r)

logTexp z (r)
= lim inf

r→∞

logTf (r)

log
(

r
π

) = lim inf
r→∞

logTf (r)

log (r) +O(1)

)

.
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Next, we give the definitions of type and weak type of meromorphic functions
which are also another type of classical growth indicators used for comparing the
relative growth of two meromorphic functions having same non zero finite order
with respect to another meromorphic function:

Definition 1.1. The type σf and lower type σf of a meromorphic function f are
defined as

σf = lim sup
r→∞

Tf (r)

rρf
and σf = lim inf

r→∞

Tf (r)

rρf
, 0 < ρf < ∞ .

Datta and Jha [4] introduced the definition of weak type of a meromorphic
function of finite positive lower order in the following way:

Definition 1.2. [4] The weak type τf and the growth indicator τf of a meromor-
phic function f of finite positive lower order λf are defined by

τ f = lim sup
r→∞

Tf (r)

rλf
and τf = lim inf

r→∞

Tf (r)

rλf
, 0 < λf < ∞ .

Extending the notion of relative order as introduced by Bernal {[1], [2]},
Lahiri and Banerjee [7] gave the definition of relative order of a meromorphic func-
tion f with respect to an entire function g , denoted by ρg (f) as follows:

ρg (f) = inf {µ > 0 : Tf (r) < Tg (r
µ) for all sufficiently large r}

= lim sup
r→∞

logT−1
g Tf (r)

log r
.

The definition coincides with the classical one [7] if g (z) = exp z.

In the same way, one can define the relative lower order of a meromorphic
function f with respect to entire g denoted by λg (f) in the following manner :

λg (f) = lim inf
r→∞

logT−1
g Tf (r)

log r
.

In the case of meromorphic functions, it therefore seems reasonable to define
suitably the relative type and relative weak type of a meromorphic function with
respect to an entire function to determine the relative growth of two meromorphic
functions having same non zero finite relative order or relative lower order with
respect to an entire function. Datta and Biswas [5] also gave such definitions of
relative type and relative weak type of a meromorphic function f with respect to an
entire function g which are as follows:
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Definition 1.3. [5] The relative type σg (f) of a meromorphic function f with
respect to an entire function g are defined as

σg (f) = lim sup
r→∞

T−1
g Tf (r)

rρg(f)
, where 0 < ρg (f) < ∞.

Similarly, one can define the lower relative type σg (f) in the following way:

σg (f) = lim inf
r→∞

T−1
g Tf (r)

rρg(f)
, where 0 < ρg (f) < ∞.

Definition 1.4. [5] The relative weak type τg (f) of a meromorphic function f

with respect to an entire function g with finite positive relative lower order λg (f)
is defined by

τg (f) = lim inf
r→∞

T−1
g Tf (r)

rλg(f)
.

In a like manner, one can define the growth indicator τg (f) of a meromorphic
function f with respect to an entire function g with finite positive relative lower
order λg (f) as

τ g (f) = lim sup
r→∞

T−1
g Tf (r)

rλg(f)
.

Considering g = exp z one may easily verify that Definition 1.3 and Defini-
tion 1.4 coincide with the classical definition of type (lower type) and weak type of
a meromorphic function.

For entire and meromorphic functions, the notion of the growth indicators
of its such as order, type and weak type are classical in complex analysis and during
the past decades, several researchers have already been continued their studies in
the area of comparative growth properties of entire and meromorphic functions in
different directions using the growth indicator such as order, type and weak type.
But at that time, the concept of relative order and consequently relative type and
relative weak type of meromorphic function with respect to another entire function
which have already been discussed above was mostly unknown to complex analysts
and was not known for the technical advantage given by such notion which gives an
idea to avoid comparing growth just with exp function to calculate order, type and
weak type respectively. In the paper, we investigate some relative growth properties
of entire and meromorphic functions with respect to another entire function on the
basis of relative type and relative weak type. We use the standard notations and
definitions of the theory of entire and meromorphic functions which are available in
[6] and [9]. Hence we do not explain those in details.

2. Lemma

In this section we present a lemma due to Debnath et al. [3]:
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Lemma 2.1. [3] Let f be a meromorphic function 0 < λf ≤ ρf < ∞ and g be an
entire function with 0 < λg ≤ ρg < ∞. Then

λf

ρg
≤ λg (f) ≤ min

{

λf

λg

,
ρf

ρg

}

≤ max

{

λf

λg

,
ρf

ρg

}

≤ ρg (f) ≤
ρf

λg

.

3. Main Results

In this section we state the main results of the paper.

Theorem 3.1. Let f be a meromorphic function 0 < λf ≤ ρf < ∞ and g be an
entire function with 0 < λg ≤ ρg < ∞. Then

max

{

[

σf

τg

]
1

λg

,

[

σf

τ g

]
1

λg

}

≤ σg (f) ≤ min

{

[

τ f

τg

]
1
λg

,

[

σf

σg

]
1
ρg

,

[

τf

σg

]
1
ρg

}

and

[

σf

τg

]
1

λg

≤ σg (f) ≤ min

{

[

σf

σg

]
1
ρg

,

[

σf

σg

]
1
ρg

,

[

τf

τg

]
1

λg

,

[

τf

τ g

]
1

λg

,

[

τ f

σg

]
1
ρg

,

[

τf

σg

]
1
ρg

}

.

Proof. From the definitions of σf and σf , we have for all sufficiently large values of
r that

(3.1) Tf (r) ≤ (σf + ε) · rρf ,

(3.2) Tf (r) ≥ (σf − ε) · rρf

and also for a sequence of values of r tending to infinity we get that

(3.3) Tf (r) ≥ (σf − ε) · rρf ,

(3.4) Tf (r) ≤ (σf + ε) · rρf .

Similarly from the definitions of σg and σg, it follows for all sufficiently large values
of r that

Tg (r) ≤ (σg + ε) ·rρg i.e., r ≤ T−1
g [(σg + ε) · rρg ] i.e., T−1

g (r) ≥

[

(

r

(σg + ε)

)
1
ρg

]

,

Tg (r) ≥ (σg − ε) · rρg i.e., r ≥ T−1
g [(σg − ε) · rρg ] i.e., T−1

g (r) ≤

[

(

r

(σg − ε)

)
1
ρg

]
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and for a sequence of values of r tending to infinity, we obtain that

Tg (r) ≥ (σg − ε) ·rρg i.e., r ≥ T−1
g [(σg − ε) · rρg ] i.e., T−1

g (r) ≤

[

(

r

(σg − ε)

)
1
ρg

]

,

Tg (r) ≤ (σg + ε)·rρg i.e., r ≤ T−1
g [(σg + ε) · rρg ] i.e., T−1

g (r) ≥

[

(

r

(σg − ε)

)
1
ρg

]

.

Further from the definitions of τf and τf , it follows for all sufficiently large values
of r that

(3.5) Tf (r) ≤ (τ f + ε) · rλf ,

(3.6) Tf (r) ≥ (τf − ε) · rλf

and also for a sequence of values of r tending to infinity, we get that

(3.7) Tf (r) ≥ (τ f − ε) · rλf ,

(3.8) Tf (r) ≤ (τf + ε) · rλf .

Also from the definitions of τ g and τg, we obtain for all sufficiently large values of
r that

Tg (r) ≤ (τ g + ε)·rλg i.e., r ≤ T−1
g

[

(τ g + ε) · rλg
]

i.e., T−1
g (r) ≥

[

(

r

(τ g + ε)

)
1
λg

]

,

Tg (r) ≥ (τg − ε) · rλg i.e., r ≥ T−1
g

[

(τg − ε) · rλg
]

i.e., T−1
g (r) ≤

[

(

r

(τg − ε)

)
1

λg

]

and for a sequence of values of r tending to infinity, we obtain that

Tg (r) ≥ (τ − ε) ·rλg i.e., r ≥ T−1
g

[

(τ g − ε) · rλg
]

i.e., T−1
g (r) ≤

[

(

r

(τ g − ε)

)
1

λg

]

,

Tg (r) ≤ (τg + ε)·rλg i.e., r ≤ T−1
g

[

(τg + ε) · rλg
]

i.e., T−1
g (r) ≥

[

(

r

(τg − ε)

)
1
λg

]

.

Now from (3.3) and in view of (3.9), we get for a sequence of values of r tending to
infinity that

T−1
g Tf (r) ≥ T−1

g [(σf − ε) · rρf ]

i.e., T−1
g Tf (r) ≥

(

(σf − ε) · rρf

(τg + ε)

)
1

λg
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i.e., T−1
g Tf (r) ≥

[

(σf − ε)

(τg + ε)

]
1

λg

· r
ρf

λg i.e.,
T−1
g Tf (r)

r
ρf

λg

≥

[

(σf − ε)

(τ g + ε)

]
1
λg

.

Since in view of Lemma 2.1,
ρf

λg
≥ ρg (f) and as ε (> 0) is arbitrary, therefore it

follows from above that

lim sup
r→∞

T−1
g Tf (r)

(r)
ρg(f)

≥

[

σf

τ g

]
1
λg

i.e., σg (f) ≥

[

σf

τg

]
1
λg

.

Similarly from (3.2) and in view of (3.9), it follows for a sequence of values of r
tending to infinity that

T−1
g Tf (r) ≥ T−1

g

[

(σf − ε) · r
ρf
]

i.e., T−1
g Tf (r) ≥

(

(σf − ε) · r
ρf

(τg − ε)

)
1

λg

i.e., T−1
g Tf (r) ≥

[

(σf − ε)

(τg + ε)

]
1

λg

· r
ρf
λg i.e.,

T−1
g Tf (r)

r
ρf
λg

≥

[

(σf − ε)

(τg + ε)

]
1
λg

.

Since in view of Lemma 2.1, it follows that
ρf

λg
≥ ρg (f) . Also ε (> 0) is arbitrary.

So we get from above that

lim sup
r→∞

T−1
g Tf (r)

r
ρg(f)

≥

[

σf

τg

]
1
λg

i.e., σg (f) ≥

[

σf

τg

]
1
λg

.

Again in view of (3.9), we have from (3.5) for all sufficiently large values of r that

T−1
g Tf (r) ≤ T−1

g

[

(τ f + ε) · rλf
]

i.e., T−1
g Tf (r) ≤

(

(τ f + ε) · rλf

(τg − ε)

)

1
λg

i.e., T−1
g Tf (r) ≤

[

(τ f + ε)

(τg − ε)

]
1

λg

· r
λf
λg i.e.,

T−1
g Tf (r)

r
λf
λg

≤

[

(τ f + ε)

(τg − ε)

]
1

λg

.

Since in view of Lemma 2.1, we get that
λf

λg
≤ ρg (f) and as ε (> 0) is arbitrary.

Therefore it follows from above that

lim sup
r→∞

T−1
g Tf (r)

r
ρg(f)

≤

[

τ f

τg

]
1
λg

i.e., σg (f) ≤

[

τf

τg

]
1

λg

.

Again in view of (3.5), we have from (3.1) for all sufficiently large values of r that

T−1
g Tf (r) ≤ T−1

g [(σf + ε) · rρf ]
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i.e., T−1
g Tf (r) ≤

(

(σf + ε) · rρf

(σg − ε)

)
1
ρg

i.e., T−1
g Tf (r) ≤

[

(σf + ε)

(σg − ε)

]
1
ρg

· r
ρf
ρg i.e.,

T−1
g Tf (r)

r
ρf
ρg

≤

[

(σf + ε)

(σg − ε)

]
1
ρg

.

As in view of Lemma 2.1, it follows that
ρf

ρg
≤ ρg (f) . Since ε (> 0) is arbitrary, we

get from (3.9) that

lim sup
r→∞

T−1
g Tf (r)

r
ρg(f)

≤
[

σf

σg

]
1
ρg

i.e., σg (f) ≤
[

σf

σg

]
1
ρg

.

Further in view of (3.5), we have from (3.5) for all sufficiently large values of r that

T−1
g Tf (r) ≤ T−1

g

[

(τ f + ε) · rλf
]

i.e., T−1
g Tf (r) ≤

(

(τ f + ε) · rλf

(σg − ε)

)

1
ρg

i.e., T−1
g Tf (r) ≤

[

(τf+ε)
(σg−ε)

]
1
ρg

· r
λf
ρg

i.e.,
T−1
g Tf (r)

r
λf
ρg

≤
[

(τf+ε)
(σg−ε)

]
1
ρg

.

Since in view of Lemma 2.1, we get that
λf

ρg
≤ ρg (f) and as ε (> 0) is arbitrary.

Therefore it follows from above that

lim sup
r→∞

T−1
g Tf (r)

r
ρg (f)

≤
[

τf

σg

]
1
ρg

i.e., σg (f) ≤
[

τf

σg

]
1
ρg

.

Thus the first part of the theorem follows from (3.9) , (3.9) , (3.9) , (3.9) and (3.9) .

Further from (3.2) and in view of (3.9), we get for all sufficiently large values of
r that

T−1
g Tf (r) ≥ T−1

g [(σf − ε) · rρf ]

i.e., T−1
g Tf (r) ≥

(

(σf − ε) · rρf

(τg + ε)

)
1

λg

i.e., T−1
g Tf (r) ≥

[

(σf−ε)
(τg+ε)

]
1

λg
· r

ρf
λg

i.e.,
T−1
g Tf (r)

r
ρf
λg

≥
[

(σf−ε)
(τg+ε)

]
1
λg

.
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Now in view of Lemma 2.1, it follows that
ρf

λg
≥ ρg (f) . Since ε (> 0) is arbitrary,

we get from above that

lim inf
r→∞

T−1
g Tf (r)

r
ρg (f)

≥
[

σf

τg

]
1
λg

i.e., σg (f) ≥
[

σf

τg

]
1

λg
.

Also in view of (3.5) , we get from (3.1) for a sequence of values of r tending to
infinity that

T−1
g Tf (r) ≤ T−1

g [(σf + ε) · rρf ]

i.e., T−1
g Tf (r) ≤

(

(σf + ε) · rρf

(σg − ε)

)
1
ρg

i.e., T−1
g Tf (r) ≤

[

(σf+ε)
(σg−ε)

]
1
ρg

· r
ρf
ρg

i.e.,
T−1
g Tf (r)

r
ρf
ρg

≤
[

(σf+ε)
(σg−ε)

]
1

ρg(m,p)

.

Again in view of Lemma 2.1,
ρf

ρg
≤ ρg (f) and ε (> 0) is arbitrary, so we get from

(3.9) that

lim inf
r→∞

T−1
g Tf (r)

r
ρg(f)

≤
[

σf

σg

]
1
ρg

i.e., σg (f) ≤
[

σf

σg

]
1
ρg

.

Likewise from (3.4) and in view of (3.5), it follows for a sequence of values of r
tending to infinity that

T−1
g Tf (r) ≤ T−1

g [(σf + ε) · rρf ]

i.e., T−1
g Tf (r) ≤

(

(σf + ε) · rρf

(σg − ε)

)
1
ρg

i.e., T−1
g Tf (r) ≤

[

(σf+ε)
(σg−ε)

]
1
ρg

· r
ρf
ρg

i.e.,
T−1
g Tf (r)

r
ρf
ρg

≤
[

(σf+ε)
(σg−ε)

]
1
ρg

.

Analogously, we get from (3.9) that

lim inf
r→∞

T−1
g Tf (r)

r
ρg(f)

≤
[

σf

σg

]
1
ρg

i.e., σg (f) ≤
[

σf

σg

]
1
ρg

,



1020 S.K. Datta and T. Biswas

since in view of Lemma 2.1,
ρf

ρg
≤ ρg (f) and ε (> 0) is arbitrary.

Further in view of (3.9) , we get from (3.5) for a sequence of values of r tending
to infinity that

T−1
g Tf (r) ≤ T−1

g

[

(τ f + ε) · rλf
]

i.e., T−1
g Tf (r) ≤

(

(τ f + ε) · rλf

(τg − ε)

)

1
λg

i.e., T−1
g Tf (r) ≤

[

(τf+ε)
(τg−ε)

]
1

λg
· r

λf
λg

i.e.,
T−1
g Tf (r)

r
λf
λg

≤
[

(τf+ε)
(τg−ε)

]
1
λg

.

As in view of Lemma 2.1, we get that
λf

λg
≤ ρg (f) and as ε (> 0) is arbitrary.

Therefore it follows from above that

lim inf
r→∞

T−1
g Tf (r)

r
ρg (f)

≤
[

τf

τg

]
1

λg

i.e., σg (f) ≤
[

τf

τg

]
1
λg

.

Similarly from (3.8) and in view of (3.9), it follows for a sequence of values of r
tending to infinity that

T−1
g Tf (r) ≤ T−1

g

[

(τf + ε) · rλf
]

i.e., T−1
g Tf (r) ≤

(

(τf + ε) · rλf

(τg − ε)

)

1
λg

i.e., T−1
g Tf (r) ≤

[

(τf+ε)
(τg−ε)

]
1
λg

· r
λf
λg

i.e.,
T−1
g Tf (r)

r
λf
λg

≤
[

(τf+ε)
(τg−ε)

]
1

λg
.

Also in view of Lemma 2.1, we get that
λf

λg
≤ ρg (f) and as ε (> 0) is arbitrary,

therefore it follows from above that

lim inf
r→∞

T−1
g Tf (r)

r
ρg (f)

≤
[

τf
τg

]
1
λg

i.e., σg (f) ≤
[

τf
τg

]
1

λg
.

Again in view of (3.5) , we get from (3.5) for a sequence of values of r tending to
infinity that

T−1
g Tf (r) ≤ T−1

g

[

(τ f + ε) · rλf
]
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i.e., T−1
g Tf (r) ≤

(

(τ f + ε) · rλf

(σg − ε)

)

1
ρg

i.e., T−1
g Tf (r) ≤

[

(τf+ε)
(σg−ε)

]
1
ρg

· r
λf
ρg

i.e.,
T−1
g Tf (r)

r
λf
ρg

≤
[

(τf+ε)
(σg−ε)

]
1
ρg

.

Since in view of Lemma 2.1, we get that
λf

ρg
≤ ρg (f) and as ε (> 0) is arbitrary, so

it follows from above that

lim inf
r→∞

T−1
g Tf (r)

r
ρg (f)

≤
[

τf

σg

]
1
ρg

i.e., σg (f) ≤
[

τf

σg

]
1
ρg

.

Similarly from (3.8) and in view of (3.5), it follows for a sequence of values of r
tending to infinity that

T−1
g Tf (r) ≤ T−1

g

[

(τf + ε) · rλf
]

i.e., T−1
g Tf (r) ≤

(

(τf + ε) · rλf

(σg − ε)

)

1
ρg

i.e., T−1
g Tf (r) ≤

[

(τf+ε)
(σg−ε)

]
1
ρg

· r
λf
ρg

i.e.,
T−1
g Tf (r)

r
λf
ρg

≤
[

(τf+ε)
(σg−ε)

]
1
ρg

.

As in view of Lemma 2.1, we get that
λf

ρg
≤ ρg (f). Also as ε (> 0) is arbitrary,

therefore it follows from above that

lim inf
r→∞

T−1
g Tf (r)

r
ρg (f)

≤
[

τf
σg

]
1
ρg

i.e., σg (f) ≤
[

τf
σg

]
1
ρg

.

Hence the second part of the theorem follows from (3.9) , (3.9) , (3.9) , (3.9) , (3.9) ,
(3.9) and (3.9) .

Theorem 3.2. Let f be a meromorphic function 0 < λf ≤ ρf < ∞ and g be an
entire function with 0 < λg ≤ ρg < ∞. Then

max

{

[

τ f

τ g

]
1

λg

,

[

τf

τg

]
1
λg

,

[

σf

σg

]
1
ρg

,

[

σf

σg

]
1
ρg

,

[

σf

τ g

]
1
λg

,

[

σf

τg

]
1

λg

}

≤ τ g (f) ≤

[

τ f

σg

]
1
ρg
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and

max

{

[

σf

σg

]
1
ρg

,

[

τf

τg

]
1
λg

,

[

σf

τg

]
1

λg

}

≤ τg (f) ≤ min

{

[

τf

σg

]
1
ρg

,

[

τ f

σg

]
1
ρg

}

.

Proof. We obtain from (3.7) and (3.9), for a sequence of values of r tending to
infinity that

T−1
g Tf (r) ≥ T−1

g

[

(τ f − ε) · rλf
]

i.e., T−1
g Tf (r) ≥

(

(τ f − ε) · rλf

(τg + ε)

)

1
λg

i.e., T−1
g Tf (r) ≥

[

(τf−ε)
(τg+ε)

]
1

λg
· r

λf

λg

i.e.,
T−1
g Tf (r)

r
λf

λg

≥
[

(τf−ε)
(τg+ε)

]
1

λg
.

Since in view of Lemma 2.1, we get that
λf

λg
≥ λg (f) and as ε (> 0) is arbitrary,

therefore it follows from above that

lim sup
r→∞

T−1
g Tf (r)

r
λg(f)

≥
[

τf

τg

]
1

λg

i.e., τg (f) ≥
[

τf

τg

]
1
λg

.

Further we obtain from (3.6) and (3.9), for a sequence of values of r tending to
infinity that

T−1
g Tf (r) ≥ T−1

g

[

(τf − ε) · rλf
]

i.e., T−1
g Tf (r) ≥

(

(τf − ε) · rλf

(τg − ε)

)

1
λg

i.e., T−1
g Tf (r) ≥

[

(τf−ε)
(τg−ε)

]
1

λg
· r

λf

λg

i.e.,
T−1
g Tf (r)

r
λf

λg

≥
[

(τf−ε)
(τg−ε)

]
1
λg

.

As in view of Lemma 2.1, we get that
λf

λg
≥ λg (f) and as ε (> 0) is arbitrary,

therefore it follows from above that

lim sup
r→∞

T−1
g Tf (r)

r
λg(f)

≥
[

τf
τg

]
1
λg

i.e., τ g (f) ≥
[

τf
τg

]
1

λg
.
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Now from (3.3) and in view of (3.5), we get for a sequence of values of r tending to
infinity that

T−1
g Tf (r) ≥ T−1

g [(σf − ε) · rρf ]

i.e., T−1
g Tf (r) ≥

(

(σf − ε) · rρf

(σg + ε)

)
1
ρg

i.e., T−1
g Tf (r) ≥

[

(σf−ε)
(σg+ε)

]
1
ρg

· r
ρf

ρg

i.e.,
T−1
g Tf (r)

r
ρf

ρg

≥
[

(σf−ε)
(σg+ε)

]
1
ρg

.

Analogously from (3.2) and in view of (3.5), it follows for a sequence of values of r
tending to infinity that

T−1
g Tf (r) ≥ T−1

g

[

(σf − ε) · r
ρf
]

i.e., T−1
g Tf (r) ≥

(

(σf − ε) · rρf

(σg + ε)

)
1
ρg

i.e., T−1
g Tf (r) ≥

[

(σf−ε)
(σg+ε)

]
1
ρg

· r
ρf
ρg

i.e.,
T−1
g Tf (r)

r
ρf
ρg

≥
[

(σf−ε)
(σg+ε)

]
1
ρg

.

As in view of Lemma 2.1,
ρf

ρg
≥ λg (f) and as ε (> 0) is arbitrary, we get from (3.9)

that

lim sup
r→∞

T−1
g Tf (r)

r
λg (f)

≥
[

σf

σg

]
1
ρg

i.e., τ g (f) ≥
[

σf

σg

]
1
ρg

.

Simialrly, we get from (3.9) that

lim sup
r→∞

T−1
g Tf (r)

r
λg (f)

≥
[

σf

σg

]
1
ρg

i.e., τ g (f) ≥
[

σf

σg

]
1
ρg

,

since in view of Lemma 2.1,
ρf

ρg
≤ λg (f) and ε (> 0) is arbitrary.

Likewise from (3.3) and in view of (3.9), we get for a sequence of values of r
tending to infinity that

T−1
g Tf (r) ≥ T−1

g [(σf − ε) · rρf ]
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i.e., T−1
g Tf (r) ≥

(

(σf − ε) · rρf

(τg + ε)

)
1

λg

i.e., T−1
g Tf (r) ≥

[

(σf−ε)
(τg+ε)

]
1

λg
· r

ρf

λg

i.e.,
T−1
g Tf (r)

r
ρf

λg

≥
[

(σf−ε)
(τg+ε)

]
1
λg

.

Since in view of Lemma 2.1, we get that
ρf

λg
≥ λg (f) and as ε (> 0) is arbitrary,

therefore it follows from above that

lim sup
r→∞

T−1
g Tf (r)

r
λg(f)

≥
[

σf

τg

]
1
λg

i.e., τ g (f) ≥
[

σf

τg

]
1

λg
.

Further from (3.2) and in view of (3.9), it follows for a sequence of values of r

tending to infinity that

T−1
g Tf (r) ≥ T−1

g

[

(σf − ε) · r
ρf
]

i.e., T−1
g Tf (r) ≥

(

(σf − ε) · r
ρf

(τg − ε)

)
1

λg

i.e., T−1
g Tf (r) ≥

[

(σf−ε)
(τg−ε)

]
1

λg
· r

ρf
λg

i.e.,
T−1
g Tf (r)

r
ρf
λg

≥
[

(σf−ε)
(τg−ε)

]
1
λg

.

As in view of Lemma 2.1, we get that
ρf

λg
≥ λg (f) and also as ε (> 0) is arbitrary,

it follows from above that

lim sup
r→∞

T−1
g Tf (r)

r
λg(f)

≥
[

σf

τg

]
1
λg

i.e., τ g (f) ≥
[

σf

τg

]
1

λg
.

Again from (3.5) and (3.5), we have for all sufficiently large values of r that

T−1
g Tf (r) ≤ T−1

g

[

(τ f + ε) · rλf
]

i.e., T−1
g Tf (r) ≤

(

(τ f + ε) · rλf

(σg − ε)

)

1
ρg
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i.e., T−1
g Tf (r) ≤

[

(τf+ε)
(σg−ε)

]
1
ρg

· r
λf
ρg

i.e.,
T−1
g Tf (r)

r
λf
ρg

≤
[

(τf+ε)
(σg−ε)

]
1
ρg

.

Since in view of Lemma 2.1, we get that
λf

ρg
≤ λg (f) and as ε (> 0) is arbitrary,

therefore it follows from above that

lim sup
r→∞

T−1
g Tf (r)

rλg(f)
≤
[

τf

σg

]
1
ρg

i.e., τg (f) ≤
[

τf

σg

]
1
ρg

.

Thus the first part of the theorem follows from (3.9) , (3.9) , (3.9) , (3.9) , (3.9) , (3.9)
and (3.9) .

Further from (3.6) and in view of (3.9), we get for all sufficiently large values of
r that

T−1
g Tf (r) ≥ T−1

g

[

(τf − ε) · rλf
]

i.e., T−1
g Tf (r) ≥

(

(τf − ε) · rλf

(τg + ε)

)

1
λg

i.e., T−1
g Tf (r) ≥

[

(τf−ε)
(τg+ε)

]
1
λg

· r
λf
λg

i.e.,
T−1
g Tf (r)

r
λf
λg

≥
[

(τf−ε)
(τg+ε)

]
1

λg
.

Since in view of Lemma 2.1, we get that
λf

λg
≥ λg (f) and as ε (> 0) is arbitrary,

therefore it follows from above that

lim inf
r→∞

T−1
g Tf (r)

r
λg(f)

≥
[

τf
τg

]
1
λg

i.e., τg (f) ≥
[

τf
τg

]
1

λg
.

Again from (3.2) and in view of (3.5), we get for all sufficiently large values of r
that

T−1
g Tf (r) ≥ T−1

g [(σf − ε) · rρf ]

i.e., T−1
g Tf (r) ≥

(

{(σf − ε) · rρf }

(σg + ε)

)
1
ρg

i.e., T−1
g Tf (r) ≥

[

(σf−ε)
(σg+ε)

]
1
ρg

· r
ρf
ρg

i.e.,
T−1
g Tf (r)

r
ρf
ρg

≥
[

(σf−ε)
(σg+ε)

]
1
ρg

.
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As in view of Lemma 2.1,
ρf

ρg
≥ λg (f) and ε (> 0) is arbitrary, we get from (3.9)

that

lim inf
r→∞

T−1
g Tf (r)

r
λg (f)

≥
[

σf

σg

]
1
ρg

i.e., τg (f) ≥
[

σf

σg

]
1
ρg

.

Again from (3.2) and in view of (3.9), we get for all sufficiently large values of r
that

T−1
g Tf (r) ≥ T−1

g [(σf − ε) · rρf ]

i.e., T−1
g Tf (r) ≥

(

(σf − ε) · rρf

(τg + ε)

)
1

λg

i.e., T−1
g Tf (r) ≥

[

(σf−ε)
(τg+ε)

]
1

λg
· r

ρf
λg

i.e.,
T−1
g Tf (r)

r
ρf
λg

≥
[

(σf−ε)
(τg+ε)

]
1
λg

.

Since in view of Lemma 2.1, we get that
ρf

λg
≥ λg (f) and as ε (> 0) is arbitrary,

therefore it follows from above that

lim inf
r→∞

T−1
g Tf (r)

r
λg(f)

≥
[

σf

τg

]
1
λg

i.e., τg (f) ≥
[

σf

τg

]
1

λg
.

Moreover, we get from (3.5) and (3.5) for a sequence of values of r tending to infinity
that

T−1
g Tf (r) ≤ T−1

g

[

(τ f + ε) · rλf
]

i.e., T−1
g Tf (r) ≤

(

(τ f + ε) · rλf

(σg − ε)

)

1
ρg

i.e., T−1
g Tf (r) ≤

[

(τf+ε)
(σg−ε)

]
1
ρg

· r
λf
ρg

i.e.,
T−1
g Tf (r)

r
λf
ρg

≤
[

(τf+ε)
(σg−ε)

]
1
ρg

.

As in view of Lemma 2.1, we get that
λf

ρg
≤ λg (f) and also as ε (> 0) is arbitrary,

it follows from above that

lim inf
r→∞

T−1
g Tf (r)

r
λg(f)

≤
[

τf

σg

]
1
ρg

i.e., τg (f) ≤
[

τf

σg

]
1
ρg

.
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Similarly, from (3.8) and in view of (3.5), it follows for a sequence of values of r
tending to infinity that

T−1
g Tf (r) ≤ T−1

g

[

(τf + ε) · rλf
]

i.e., T−1
g Tf (r) ≤

(

(τf + ε) · rλf

(σg − ε)

)

1
ρg

i.e., T−1
g Tf (r) ≤

[

(τf+ε)
(σg−ε)

]
1
ρg

· r
λf
ρg

i.e.,
T−1
g Tf (r)

r
λf
ρg

≤
[

(τf+ε)
(σg−ε)

]
1
ρg

.

Since in view of Lemma 2.1, we get that
λf

ρg
≤ λg (f) and as ε (> 0) is arbitrary,

therefore it follows from above that

lim inf
r→∞

T−1
g Tf (r)

r
λg(f)

≤
[

τf
σg

]
1
ρg

i.e., τg (f) ≤
[

τf
σg

]
1
ρg

.

Hence the second part of the theorem follows from (3.9) , (3.9) , (3.9) , (3.9) and
(3.9) .
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