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ESSENTIALLY SEMI-REGULAR LINEAR RELATIONS

Aymen Ammar, Bilel Boukettaya and Aref Jeribi

Abstract. In this paper, we study the essentially semi-regular linear relation opera-
tors everywhere defined in Hilbert space. We establish a Kato-type decomposition of
essentially semi-regular relations in Hilbert spaces. The result is then applied to study
and give some properties of the Samuel-multiplicity.
Keywords: linear relation, semi regular relation, essentially semi regular relation

1. Introduction

The notion of essentially semi-regularity operators amongst the various concepts
of regularity originated by the classical treatment of perturbation theory is owed to
Kato and has been studied by many authors, for instance, we cite [1], [7], [11], [12]
and [18]. We remark that all the above authors considered only the case of bounded
linear operators. It is the purpose of this paper to consider the class of essentially
semi-regularity in the more general setting of linear relations in Hilbert spaces.
Many properties of essentially semi-regularity for the case of linear operators re-
main to be valid in the context of linear relations, sometimes under supplementary
conditions.
The purpose of this paper is to extend the results of the type mentioned above to
multi-valued linear relations in Hilbert spaces.
In section 2 we make the paper easily accessible, the presentation is more or less
self-contained. Some basic notations and results from the theory of linear relations
in linear and Hilbert space are recalled in [4], [9] and [17]. Section 3 contains the
main results of the paper. We begin to give a definition of semi-regular and essen-
tially semi-regular linear relations of a closed linear relation A everywhere defined in
Hilbert space. In the second part of Section 3, we collect several results concerning
the adjoint and the structure of essentially semi-regular linear relations. Finally,
we establish some results on Samuel multiplicity of essentially semi-regular linear
relations.
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We will denote the set of nonnegative integers by N. Let X denote an infinite
dimensional separable Hilbert space overK = R or C. A multi-valued linear operator
in X or simply a linear relation in X, A : X → X is a mapping from a subspace
D(A) ⊂ X, called the domain of A, into the collection of nonempty subsets ofX such
that A(αx1 +βx2) = αAx1 +βAx2 for all nonzero α, β scalars and x1, x2 ∈ D(A).
For x ∈ X \D(A) we define Ax = Ø. With this convention, we have D(A) = {x ∈
X : Ax 6= Ø}. If A maps the points of its domain to singletons, then A is said to
be a single-valued or simply an operator. We denote the class of linear relations in
X by LR(X,Y ). A ∈ LR(X,Y ) is uniquely determined by its graph G(A), which
is defined by:

G(A) = {(x, y) ∈ X × Y such that x ∈ D(A) and y ∈ Ax}.

Let A ∈ LR(X,Y ). The inverse of A is a linear relation A−1 given by:

G(A−1) = {(y, x) ∈ Y ×X such that (x, y) ∈ G(A)}.
The subspaces A(0), A−1(0) = N(A) = {x ∈ X : (x, 0) ∈ G(A)} and R(A) =
A(D(A)) are called the multi-valued part, the null space and the range of A, re-
spectively. Furthermore, we define the nullity and the defect of A by

α(A) = dimN(A) and β(A) = codim R(A)

respectively. A closed linear relation A from a Banach space X into a Banach
space Y is said to be upper semi-Fredholm relation, which we abbreviate as Φ+

if A has closed range and α(A) < ∞, we denoted by A ∈ Φ+(X,Y ). A is called
lower semi-Fredholm relation, which we abbreviate as Φ− if R(A) is a closed finite
codimensional subspace of Y and we denoted by A ∈ Φ−(X,Y ). A is said to be semi-
Fredholm (resp. Fredholm) relation if A ∈ Φ+(X,Y )∪Φ−(X,Y ) (resp. Φ+(X,Y )∩
Φ−(X,Y )). If A is semi-Fredholm, then the index of A is defined as follows:

i(A) = α(A) − β(A)

where the value of the difference is computed as i(A) = +∞ if α(A) is infinite and
β(A) < ∞ and i(A) = −∞ if β(A) is infinite and α(A) < ∞.
Let M and N are subspaces of X and of the dual space X∗, respectively, then

M⊥ := {x
′

∈ X∗ such that x
′

x = 0 for all x ∈ M}

and
N⊤ := {x ∈ X such that x

′

x = 0 for all x
′

∈ N}.

Let A ∈ LR(X,Y ). Then the adjoint relation A∗ of A is defined by

G(A∗) = {(y
′

, x
′

) ∈ Y ∗ ×X∗ : x
′

x = y
′

y for all (x, y) ∈ G(A)}.

For A and B ∈ LR(X,Y ), the linear relations A+B and AB are defined by

G(A+B) = {(x, y + z) such that (x, y) ∈ G(A) and (x, z) ∈ G(B)},
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G(AB) = {(x, y) ∈ X×Y such that (x, y) ∈ G(A) and (y, z) ∈ G(B) for some y ∈ Y }.

Since the composition of linear relations is clearly associative, for all n ∈ Z, An is
defined as usual with A0 = I and A1 = A. It is easy to see that (A−1)n = (An)−1.
Let A ∈ LR(X), if λ ∈ K, then λ−A stands λI−A where I is the identity operator
in X.
Let A ∈ LR(X), if M is a subspace of X then A|M is defined by G(A|M ) =
G(A) ∩ (M ×X) and AM is defined by G(AM ) = G(A) ∩ (M ×M). Assume that
X1 and X2 are two subspaces of X such that X = X1 ⊕ X2. We say that A is
completely reduced by the pair (X1, X2) if A = AX1

⊕ AX2
. In such a case, we

have D(A) = D(AX1
) ⊕D(AX2

), N(A) = N(AX1
) ⊕N(AX2

), R(A) = R(AX1
)⊕

R(AX2
), A(0) = AX1

(0) ⊕ AX2
(0) and An = (AX1

)n ⊕ (AX2
)n for all n ∈ N, (see

[17],[6]).
In order to characterize these classes of linear relations, one introduces the following
notations. Let QA denote the quotient map from X onto X/A(0). It is easy to see
that QAA is single-valued and so we can define ‖Ax‖ = ‖QAAx‖, x ∈ D(A) and
‖A‖ = ‖QAA‖ called the norm of Ax and A respectively, and the minimum modulus
of A is the quantity

γ(A) :=















+∞, if D(A) ⊂ N(A);

inf
{ ‖Ax‖

d(x,N(A))
: x ∈ D(A)\N(A)

}

, otherwise.

Definition 1.1. We say that A is closed if its graph is a closed subspace of X×X,
continuous if for each neighborhood V in R(A), A−1 is neighborhood in D(A)
(equivalently ‖A‖ < ∞), bounded if it is continuous and its domain is whole X and
open if its inverse is continuous (i.e., γ(A) > 0).

We denote by CR(X) (resp. by BR(X)) the set of all closed (resp. bounded) linear
relations on X . The class of all bounded and closed linear relations on X is denoted
by BCR(X).
For A ∈ LR(X), the kernels and the ranges of the iterates An, n ∈ N, form two
increasing and decreasing chains, respectively, i.e., the chain of kernels

N(A0) = 0 ⊂ N(A) ⊂ N(A2) ⊂ . . .

and the chain of ranges

R(A0) = X ⊃ R(A) ⊃ R(A2) ⊃ . . .

We define the generalized kernel and the generalized range of A by

N∞(A) =
⋃

n∈N

N(An) and R∞(A) =
⋂

n∈N

R(An).

We define the singular chain manifold of A ∈ LR(X) by

Rc(A) =

(

∞
⋃

n=1

N(An)

)

⋂

(

∞
⋃

n=1

An(0)

)

.
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We say that A has trivial singular chain if Rc(A) = 0. The resolvent set of A is the
set

ρ(A) = {λ ∈ C such that λ− A is bijective, open with dense range} .

When A is closed, ρ(A) coincides with the set

ρ(A) =
{

λ ∈ C such that (λ−A)−1 is everywhere defined and single valued
}

.

We denote the set of all closed linear relations on X by CR(X) and by BR(X) the
set of all bounded linear relations on X.

1.1. Preliminary and auxiliary result

In this section we collect some results of the theory of multi-valued linear operators
which are used to prove the main results in the next.

Lemma 1.1. [9, Theorems I.3.1, IV.5.2] Let A ∈ LR(X). Then
(i) AA−1(M) = M ∩R(A) +A(0) for all M ⊂ X.
(ii) A−1A(M) = M ∩D(A) +N(A) for all M ⊂ X.
(iii) A(M +N) = A(M) +A(N), for all M ⊂ X and N ⊂ D(A).

(iv) If M,N are closed and N ⊂ M , then
X/N

M/N
= X/M.

(v) If N ⊂ M is closed, then M/N is closed in X/N if and only if M is closed in
X.

Lemma 1.2. [9, Chapter III] Let A ∈ LR(X). Then
(i) A∗ is a bounded linear relation if A is a bounded linear relation.
(ii) If B is continuous with D(A) ⊂ D(B) then (A+ B)∗ = A∗ +B∗.
(iii) N(A∗) = R(A)⊥.
(iv) If A is closed, then R(A) is closed if and only if R(A∗) is closed if and only if
A is open if and only if A∗ is open.

The proof of the next result can be found in [17].

Lemma 1.3. [17, Lemma 7.2] Let A be a linear relation in Banach space. Then
N(A− λ)n ⊂ R(Am) for all m,n ∈ N and for each λ 6= 0.

Lemma 1.4. [13, Lemma 9] Let X an Hilbert space and A ∈ LR(X).
If A is bounded then, for all n ∈ N∗, An∗ = A∗n.

2. Some properties of essentially semi-regular linear relations

The goal of this section is to introduce, study and develop some properties of
essential semi-regular linear relations. We begin with the following Lemma.
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Lemma 2.1. [14, Lemma 3.7] Let A ∈ LR(X). Then the following statements
are equivalent

(i) N(A) ⊂ R(An) for every n ∈ N,

(ii) N(Am) ⊂ R(A) for every m ∈ N,

(iii) N(Am) ⊂ R(An) for every n,m ∈ N.

Definition 2.1. We say that a linear relation A ∈ LR(X) is semi regular if R(A)
is closed and A verifies one of the equivalent conditions of Lemma 2.1.

Trivial examples of regular linear relations are surjective multi-valued operators as
well as injective multi-valued operators with closed range. For an essential version of
semi regular linear relation we use the following notations. For subspacesM,N ⊂ X
we write M ⊆e N if there exists a finite-dimensional subspace F ⊂ X such that
M ⊆ N + F.

In [12], V. Muller proved that M ⊆e N if and only if dim

(

M

M ∩N

)

< ∞ if and

only if dim

(

M +N

M

)

< ∞ if and only if there is a finite-dimensional subspace

F ⊂ X such that M ⊆ N + F.

Definition 2.2. Let A ∈ LR(X) is said essentially semi-regular if R(A) is closed
and N(A) ⊆e R

∞(A).

It is clear that if A is semi-regular, then A is essentially semi-regular.

Lemma 2.2. Let X an Hilbert space and A ∈ CR(X) be a closed range, every-
where defined and ρ(A) 6= Ø. Suppose that for every n ∈ N there is a finite-
dimensional subspace Fn ⊂ X such that N(A) ⊆ R(An) + Fn for every n ∈ N (i.e.,
A is essentially semi-regular). Then R(An) is closed for all n ∈ N.

Proof. Observe that An is closed and everywhere defined for all n ∈ N, since A
is closed and everywhere defined and ρ(A) 6= Ø by [10, Lemma 3.1]. We show
by induction that R(An) is closed. For n = 1, it is clear by the assumption.
We may assume that Fn ⊆ N(A). Since R(An) is closed and dimFn < ∞, then
R(An) + Fn is closed. However, A is closed, then A0 = A|R(An)+Fn

is also closed.
Since Fn ⊆ N(A), then using [9, II.6.1], we have 0 < γ(A) < γ(A0), then A0 is
open. Consequently, by Lemma 1.2 (iv), we infer that R(A0) is closed.
Moreover, since Fn ⊆ N(A) and N(A) ⊆ R(An) + Fn, then

A(Fn) +R(An+1) ⊆ A(N(A)) +R(An+1) ⊆ A(Fn) +R(An+1).
Therefore,

A(N(A)) +R(An+1) = R(An+1) +A(Fn).

Hence, by Lemma 1.1 (iii), we have
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R(A0) = A(Fn +R(An))
= A(Fn) +A(R(An))
= A(N(A)) +R(An+1)
= AA−1(0) +R(An+1)
= A(0) +R(An+1)
= R(An+1), (A(0) ⊂ R(An+1)).

Then R(An+1) is closed and hence R(An) is closed for all n ∈ N.

Theorem 2.1. Let X be a Hilbert space and A is a bounded linear relation.
If A is essentially semi-regular then A∗ is essentially semi-regular.

Proof. Since A ∈ BR(X) then from (i) of Lemma 1.2, we have A∗ ∈ BR(X∗). Let
A is essentially semi-regular, then R(A) is closed. It follows from Lemma 1.2 (iv)
that R(A∗) is closed.
By Lemma 2.2, we have R(An) is closed. Let n ∈ N, then from Lemma 1.2 and
Lemma 1.4, we infer that

R∞(A∗) =
⋂

n∈N

R(A∗n)

=
⋂

n∈N

R(An∗)

=
⋂

n∈N

N(An)⊥

=
(

⋃

n∈N

N(An)
)⊥

=
(

N∞(A)
)⊥

⊃ (R(A) + F )⊥

= R(A)⊥ ∩ F⊥

= N(A∗) ∩ F⊥.

Since codim(F⊥) < ∞, then N(A∗) ⊆e R
∞(A∗), this implies that A∗ is essentially

semi regular.

Theorem 2.2. Let A, B ∈ BCR(X) and commute (AB = BA) such that N(B) ⊂
R(A) and N(A) ⊂ R(B).
If AB is essentially semi-regular then A and B are essentially semi-regular.

Proof. We show that B is essentially semi-regular. Clearly

N(B) ⊂ N(AB) ⊆ N(BA) ⊆e R
∞(BA) ⊆e R

∞(B).
To prove that R(B) is closed. Let yn is a sequence in R(B) such that yn → y. Since
A is closed and everywhere defined then QAA is a bounded operator with A(0)
that is closed and by [9, Lemma IV.5.2], we infer that R(QAAB) = R(AB)/A(0)
is closed and QAAyn converging to QAAy ∈ R(QAAB). Thus Ay ⊂ R(AB), hence
y ∈ A−1(R(AB)) = N(A) +R(B) = R(B) since N(A) ⊂ R(B), which implies that
R(B) is closed. The same reasoning shows that A is essentially semi-regular.
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If X is a Hilbert space, then the class of semi-regular coincides with the class
of all quasi-Fredholm linear relations of degree 0 introduced in [16], in order to
study the Kato decomposable linear relations in Hilbert spaces. We shall establish
an analogous result when A is essentially a semi-regular relation in a Hilbert space
which will be crucial to prove the main theorems of the next.

Theorem 2.3. Let X be an infinite dimensional Hilbert space and A ∈ BCR(X).
Then the following statements are equivalent.

(i) N∞(A) ⊆e R
∞(A) and R(A) is closed,

(ii) N∞(A) ⊆e R(A) and R(A) is closed,

(iii) N(A) ⊆e R
∞(A) and R(A) is closed,

(iv) there exists a decomposition X = X1 ⊕ X2 with the properties that AX1
⊂

X1, AX2
⊂ X2, dimX1 < ∞, AX2

a semi regular linear relation and AX1
is a

bounded operator nilpotent of degree d.

Proof. The implications (i) ⇒ (ii) and (ii) ⇒ (iii) are clear because N(A) ⊂
N∞(A) and R∞(A) ⊂ R(A).
(iii) ⇒ (iv) To prove this, we first show that: there exists d ∈ N ∪ {0} such that

a) N(A) ∩R(Ad) = N(A) ∩R(An), ∀ n ≥ d.

b) N(A) ∩R(Ad) is closed.

c) R(A) +N(Ad) is closed in X.
Since N(A) ⊆e R

∞(A) then
(

dim
N(A)

N(A) ∩R∞(A)

)

= dim

(

R(A) +N∞(A)

R(A)

)

< ∞,

so we can deduce the codimension ofN(A)∩R(Am) inN(A) is bounded independent
of m, therefore (codim(N(A) ∩ R(An)))n is an increasing and bounded sequence
and therefore it has a limit. Hence, there is some smallest d ∈ N ∪ {0} for which
N(A) ∩ R(Ad) = N(A) ∩ R(Ad+m) for all nonnegative integer m, and thus (a) is
satisfied. From Lemma 2.2, we infer that N(A) ∩ R(Ad) is closed and by Lemma
1.1 (v), N(Ad) +R(A) is also closed and thus (b) and (c) are satisfied.
Now, proceeding exactly as in the proof of [15, Theorem 5.2], we can construct two
closed subspaces X1 and X2 of X verifying the following properties:

a. X = X1 ⊕X2 with dimX1 < ∞.

b. AX = AX1
⊕AX2

.

c. AX2
is a regular linear relation.

d. AX1
is a bounded operator nilpotent of degree d.

(iv) ⇒ (i) Since A = AX1
⊕ AX2

, then N(An) = N((AX1
)n) ⊕ N((AX2

)n) and
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R∞(A) = R∞(AX1
) ⊕ R∞(AX2

). Since AX1
is nilpotent of degree d, we obtain

that R∞(A) = R∞(AX2
). The semi-regularity of AX2

and the fact that R(A) =
R(AX1

) ⊕ R(AX2
) entails that R(A) is closed and N(An

X2
) ⊂ R∞(AX2

) = R∞(A)

for every n ∈ N. By assumption there is d ∈ N such that Ad
X1

= 0 and thus for
every n ≥ d, we obtain

N(An) = N ⊕N((AX2
)n) ⊂ R∞(A)⊕N.

Hence N∞(A) ⊆e R
∞(A), since N is finite-dimensional.

Remark 2.1. Let X be n Hilbert space and A ∈ BCR(X) is everywhere defined. Clearly,
using the previous theorem that A is essentially semi-regular if it satisfies any of the
equivalent conditions of Theorem 2.3.

Lemma 2.3. [5, Proposition 2.5] Let A ∈ CR(X) verify X = X1 ⊕X2 such that
AX2

is a semi-regular linear relation and AX1
is a bounded operator nilpotent of

degree d. Then
(i) N(AX2

) = N(A) ∩R∞(A) = N(A) ∩R(An), for every n ∈ N

(ii) For every nonnegative integer n ≥ d, we have R(A) +N(An) = A(X2)⊕X1 is
closed.

Theorem 2.4. Let X be a Hilbert space such that A ∈ CR(X) is essentially semi-
regular and λ ∈ D(0, δ)\{0}. Then

(i) A ∈ Φ+(X) if and only if λ−A ∈ Φ+(X)

(ii) A ∈ Φ−(X) if and only if λ−A ∈ Φ−(X)

(iii) A ∈ Φ(X) if and only if λ−A ∈ Φ(X).

Proof. (i) Let λ−A ∈ Φ+(X) for all λ ∈ D(0, δ)\{0}. Write for short A0 = AR∞(A)

is the restriction of A to R∞(A) and λ0 = λR∞(A). Since A is essentially semi-
regular, then by Lemma 2.2, R(An) is closed for every n ∈ N and thus R∞(A) is
closed and A0 is closed. It follows from [3, Lemma 20] that A0 is surjective and
therefore A0 ∈ Φ−(X). Applying [3, Proposition 8], we get λ0 −A0 ∈ Φ−(X) with
β(λ0 − A0) ≤ β(A0) = 0 and i(λ0 − A0) = i(A0) for all | λ |< δ. Moreover, by
Lemma 1.3, N(λ0 −A0) = N(λ−A) ∩R∞(A) = N(λ−A). Hence,

α(λ −A) = i(λ0 −A0)
= i(A0) = α(A0)
= dim(N(A) ∩R∞(A))

for all | λ |< δ. Since A is essentially semi-regular and λ − A ∈ Φ+(X), then
dimN(λ − A) = dim(N(A) ∩ R∞(A)) < ∞. On the other hand, by Theorem 2.3,
there exists a decomposition X = X1 ⊕X2 such that AX2

is a semi-regular linear
relation, AX1

is a bounded operator nilpotent and dimX1 < ∞. Then by Lemma
2.3, we have

N(A) = N(AX1
) +N(AX2

)
= N(AX1

) +N(A) ∩R∞(A).
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By assumption, N(AX1
) is finite-dimensional and since dimN(A) ∩ R∞(A) < ∞,

then N(A) is finite-dimensional. Furthermore, we have R(A) = R(AX1
) +R(AX2

)
is closed since AX2

is semi-regular and R(AX1
) is finite dimensional. Hence, A ∈

Φ+(X).
The opposite implication from [3, Theorem 25].
(ii) Assume that λ− A ∈ Φ−(X), then R(λ − A) is closed, and by [9, Proposition
III.1.4], R(λ−A)⊥ = N(λ−A∗) for all λ ∈ D(0, δ)\{0}. Thus, by part (i)

β(λ−A) = α(λ −A∗) = dim(N(A∗) ∩R(A∗d))
= codim[N(A∗) ∩R(A∗d)]⊥

= codim[N(A∗)⊥ +R(A∗d)⊥]
= codim[N(Ad) +R(A)]

for all 0 <| λ |< δ. Then codim[R(A) +N(Ad)] is finite. From Lemma 2.3, we infer
that R(A) + N(Ad) = R(AX2

) ⊕ X1, which implies that R(AX2
) + X1 is finitely

codimensional. Since dimX1 < ∞ then R(AX2
) is finitely codimensional and thus

β(A) = codimR(A) = codimR(AX2
) < ∞. Applying the same reasoning to the

proof of the part (i), we have that R(A) is closed and hence A ∈ Φ−(X). The
opposite implication from [3, Theorem 25].
The proof of (iii) is an immediate of (i) and (ii).

Samuel multiplicity operators have been studied by several authors. Particu-
larly, in [18], the authors studied the Samuel multiplicity of essentially semi-regular
operators. In what follows, we extend this study to the general case of multi-valued
linear operators.

Definition 2.3. For any essentially semi-regular linear relation operator A in a
Hilbert space X, define its shift (Samuel) multiplicity by

s.mult(A) = lim
k→∞

(

β(Ak)

k

)

Similarly, define its backward shift (Samuel) multiplicity by

b.s.mult(A) = lim
k→∞

(

α(Ak)

k

)

.

Lemma 2.4. Let X be a Banach space and A ∈ CR(X) then
(i) If A is semi-regular with a trivial singular chain and α(A) < ∞ then α(An) =
nα(A).
(ii) If A is semi-regular with finite codimensional range then β(An) = nβ(A).
(iii) If A is semi regular then there exists a positive constant δ > 0, such that λ−A
is semi regular for all 0 <| λ |< δ.

Proof. (i) Since A is a trivial singular chain, then by [17, Lemma 4.4],

N(An)

N(An−1)
≃ N(A) ∩R(An−1).
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Since A is semi-regular, it follows that dimN(An) = dimN(A) + dimN(An−1).
Thus, a successive repetition of this argument leads to α(An) = nα(A).
(ii) The same technique used in [8, Lemma 3.4] gives the result. In fact, let n be a
positive integer. [17, Lemma 4.1] implies that

R(An−1)

R(An)
≃

X

N(An−1) +R(A)

for every n ∈ N. Since A is semi regular then for every n ∈ N, N(A) ⊂ R(An), or
equivalently, N(An) ⊂ R(A), which implies

R(An−1)

R(An)
≃

X

R(A)
.

On the other hand, it follows from Lemma 1.1(iv) that
(

X

R(An−1)
×

R(An−1)

R(An)

)

≃
X

R(An)

and hence
codimR(An) = codimR(An−1) + codimR(A).

By induction, β(An) = nβ(A) for all n ∈ N.
(iii) See [3, Theorem 23].

Lemma 2.5. Let X be a Hilbert space and A ∈ CR(X) is essentially semi-regular.
(i) α(λ−A) = α(AX2

) ≤ α(A) for all 0 <| λ |< δ.
(ii) β(λ −A) = β(AX2

) ≤ β(A) for all 0 <| λ |< δ.

Proof. (i) Since A is essentially semi-regular, there exists a decomposition X =
X1 ⊕X2 with the properties that dimX1 < ∞, AX2

a semi-regular linear relation
and AX1

is a bounded operator nilpotent of degree d (Ad = 0). Then λ − A =
(λ−A)X1

⊕ (λ−A)X2
for all λ ∈ C. Therefore,

α(λ−A) = α((λ −A)X1
) + α((λ−A)X2

).

Since AX1
is a bounded operator nilpotent of degree d, then (λ−A)X1

is invertible
for all λ 6= 0 which implies that α((λ −A)X1

) = 0. Since AX2
a semi-regular linear

relation, then by Lemma 2.4, there exists a positive constant δ > 0 such that
(λ − A)X2

is semi regular for all 0 <| λ |< δ. It follows from [3, Theorem 27] that
α((λ − A)X2

) = α(AX2
) for all 0 <| λ |< δ. Hence, α(λ − A) = α((λ − A)X2

) =
α(AX2

) ≤ α(A) for all 0 <| λ |< δ.
(ii) Let A be essentially semi-regular, then there exists a decomposition X = X1 ⊕
X2 with the properties that AX1

⊂ X1, AX2
⊂ X2, dimX1 < ∞, AX2

a semi-
regular linear relation and AX1

is a bounded operator nilpotent of degree d. Then
λ−A = (λ−A)X1

⊕ (λ−A)X2
. Therefore,

β(λ−A) = β((λ −A)X1
) + β((λ−A)X2

).

Now, reasoning as in the proof of the part (i), we obtain the result.
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Theorem 2.5. Suppose X is a Hilbert space and A ∈ CR(X) is an essentially
semi-regular relation operator, then
(i) If α(A) < ∞ and Rc(A) = 0, then there exists a positive constant δ > 0 such
that

α(λ −A) = b.s.mult(A)

and if β(A) < ∞, then there exists a positive constant δ > 0 such that

β(λ−A) = s.mult(A)

for all 0 <| λ |< δ.
In particular, the following two functions

λ −→ s.mult(λ−A)

and
λ −→ b.s.mult(λ−A)

are constant on a neighborhood of the origin O(0, δ) = {λ : | λ |< δ}.
(ii) When k is large enough, if α(A) < ∞ and Rc(A) = 0

s.mult(A) = dim

(

X

R(A) +N(Ak)

)

= dim

(

X

R(A) +N∞(A)

)

and if β(A) < ∞ then

b.s.mult(A) = dim(N(A) ∩R(Ak)) = dim(N(A) ∩R∞(A)).

(iii) A is upper semi-Fredholm (resp. lower semi-Fredholm), if and only if, b.s.mult(A) <
∞ (resp. s.mult(A) < ∞). Moreover, if b.s.mult(A) < ∞ and s.mult(A) < ∞, then
A is semi-Fredholm and i(A) = b.s.mult(A)− s.mult(A).

Proof. (i) Since A is essentially semi-regular, applying Theorem 2.3, there exists
a decomposition X = X1 ⊕ X2 with the properties that AX1

⊂ X1, AX2
⊂

X2, dimX1 < ∞, AX2
a semi regular linear relation and AX1

is a bounded operator
nilpotent of degree d. Let dimX1 = n0, then by Lemma 2.4,

b.s.mult(A) = lim
k→∞

(

α(Ak)

k

)

= limk→∞

(

α(Ak
X2

)

k

)

+ lim
k→∞

(

α(Ak
X1

)

k

)

= lim
k→∞

(

α(Ak
X2

)

k

)

+

(

lim
k→∞

n0

k

)

= lim
k→∞

(

kα(AX2
)

k

)

,

= α(AX2
),
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and

s.mult(A) = lim
k→∞

β(Ak)

k
,

= limk→∞

(

β(Ak
X1

)

k

)

+ lim
k→∞

(

β(Ak
X2

)

k

)

= lim
k→∞

(

β(Ak
X2

)

k

)

+ lim
k→∞

(n0

k

)

= lim
k→∞

(

kβ(AX2
)

k

)

= β(AX2
).

By Lemma 2.5, there exists a positive constant δ > 0, such that

α(λ −A) = α(AX2
) = b.s.mult(A)

and
β(λ−A) = β(AX2

) = s.mult(A)

for all 0 <| λ |< δ.
(ii) Since A is essentially semi-regular, applying Theorem 2.3, there exists a decom-
position X = X1 ⊕X2 with the properties that AX1

⊂ X1, AX2
⊂ X2, dimX1 <

∞, AX2
a semi-regular linear relation and AX1

is a bounded operator nilpotent of
degree d. By Lemma 2.3 and the proof of part (i), we have

b.s.mult(A) = α(AX2
) = dim(N(A) ∩R(Ak)) = dim(N(A) ∩R∞(A)).

We begin to prove the following equality: for all k ≥ dimX1

R(A) +N∞(A) = R(AX1
) +R(AX2

) +N∞(AX1
) +N∞(AX2

)

= R(AX1
) +R(AX2

) +N∞(AX2
) +X1

= R(AX1
) +R(AX2

) +N∞(AX2
) +X1

= R(AX1
) +R(AX2

) +X1

= R(AX1
) +R(AX2

) +N(Ak
X1

) +N(Ak
X2

)
= R(A) +N(Ak).

Thus,
X

R(A) +N(Ak)
=

X

R(A) +N∞(A)
for all k ≥ dimX1, and consequently

s.mult(A) = β(AX2
) = dim

(

X2

A(X2)

)

= dim

(

X2 ⊕X1

A(X2)⊕X1

)

= dim

(

X

R(A) +N(Ak)

)

= dim

(

X

R(A) +N∞(A)

)
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for all k ≥ dimX1.
(iii) If A ∈ Φ+(X), then dimN(A) < ∞ which implies that dim(N(A)∩R(A)) < ∞
and by (ii), b.s.mult(A) < ∞. If A ∈ Φ−(X), then β(A) < ∞ which implies that
codim (N∞(A) +R(A)) < ∞ and then by (ii), s.mult(A) < ∞. To prove the con-
verse, let A be essentially semi-regular, then R(A) is closed and applying Theorem
2.3, there exists a decomposition X = X1 ⊕X2 such that AX2

is a semi-regular lin-
ear relation, AX1

is a bounded operator nilpotent and dimX1 < ∞. Suppose that
b.s.mult(A) < ∞ then α(AX2

) < ∞ and consequently, α(A) = α(AX1
)+α(AX2

) <
∞. Since R(A) is closed then A ∈ Φ+(X). Let s.mult(A) < ∞ then β(AX2

) < ∞
and consequently, β(A) = β(AX1

) + β(AX2
) < ∞ and since R(A) is closed, then

A ∈ Φ−(X). On the other hand, if α(A) and β(A) are finite and Rc(A) = 0, then
by Lemma 2.4, i(Ak) = α(Ak)− β(Ak) = k.i(A) and

i(A) = lim
k→∞

(

α(Ak)

k

)

− lim
k→∞

(

β(Ak)

k

)

= b.s.mult(A)− s.mult(A).
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algebras. Birkhäuser Verlag, 2003.



434 A. Ammar, B. Boukettaya and A. Jeribi

13. M. Mnif and Y. Chamkha: Browder spectra of upper triangular matrix linear

relations. Publ. Math. Debrecen, (2013) 569-590.

14. J. P. Labrousse, A. Sandovici, H. de Snoo and H. Winkler: Quasi-Fredholm

relations in Hilbert spaces. Stud. Cercet. Stiint. Ser. Mat. Univ. Bacau, 16 (2006),
93-105.

15. J. P. Labrousse, A. Sandovici, H. de Snoo and H. Winkler: The Kato

decomposition of quasi-Fredholm relations, Oper. Matrices, 4, 1-51 (2010).

16. J. P. Labrousse, A. Sandovici, H. de Snoo and H. Winkler: The Kato

decomposition of quasi-Fredholm relations. Oper. Matrices, 4 (2010), 1-51.

17. A. Sandovici, H. de Snoo and H. Winkler: Ascent, descent, nullity, defect,

and related notions for linear relations in linear spaces. Linear Alg Appl. 453
(2007), 456-497.

18. Q. P. Zeng, H. Zhong and Z. Y. Wu: Samuel multiplicity and the structure of

essentially semi-regular operators: A note on a paper of Fang. Sci. China. Math.
56 (2013), 1213-1231 .

Aymen Ammar

Faculty of Science of Sfax

Department of Mathematics

B. P. 1171, 3000, Sfax

Route de soukra Km 3.5

ammar aymen84@yahoo.fr

Bilel Boukettaya

Faculty of Science of Sfax

Department of Mathematics

B. P. 1171, 3000, Sfax

Route de soukra Km 3.5

boukettayabilel@gmail.com

Aref Jeribi

Faculty of Science of Sfax

Department of Mathematics

B. P. 1171, 3000, Sfax

Route de soukra Km 3.5

Aref.Jeribi@fss.rnu.tn


