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Abstract. In this paper, we investigate some geometrical properties of Riemannian
manifolds equipped with a semi-symmetric non-metric connection. First, it is proved
that an isotropic Riemannian manifold with a semi-symmetric non-metric connection is
Einstein. Then, it is shown that an isotropic Riemannian manifold admitting a proper
concircular vector field with the above mentioned connection is a warped product.
Moreover, the physical properties of a spacetime with a semi-symmetric non-metric
connection are also investigated.
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1. Introduction

Let ∇∗ be a linear connection in an n-dimensional differentiable manifold M .
The torsion tensor T and the curvature tensor R∗ of ∇∗ are given respectively by

T (X,Y ) = ∇∗

XY −∇∗

Y X − [X,Y ]

R∗(X,Y )Z = ∇∗

X∇∗

Y Z −∇∗

Y ∇
∗

XZ −∇∗

[X,Y ]Z

By a triple (M, g, T ), we mean (M, g) is a Riemannian manifold with a torsion
tensor T defined on M which is a smooth section of the tensor bundle (TM). Along
with the Levi-Civita connection ∇, we introduce the linear connection ∇∗ = ∇+T

on the manifold (M, g, T ) for the torsion tensor T . Here and below, unless otherwise
stated, the symbols X,Y and Z stand for arbitrary smooth vector fields on M .

H.A. Hayden [16] introduced a metric connection with a non-zero torsion on a
Riemannian manifold. Such a connection is called Hayden connection, [16]. In [14]
Friedmann and Schouten introduced the notion of a semi-symmetric linear connec-
tion on a differentiable manifold. The connection ∇∗ is symmetric if its torsion
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tensor vanishes, otherwise it is not symmetric. The connection ∇∗ is a metric con-
nection if there is a Riemannian metric g in M such that ∇∗g = 0, otherwise it is
non-metric. K. Yano and M. Kon found a relation between a semi-symmetric metric
connection and the Levi-Civita connection, [27]. Also, K.Yano studied some proper-
ties of the Riemannian manifold endowed with a semi-symmetric metric connection
in [28].

The semi-symmetric metric connection plays an important role in the study of
Riemannian manifolds. There are various physical problems involving the semi-
symmetric metric connection. For example, if a man is moving on the surface of
the earth always facing one defined point, the north pole, then this displacement is
semi-symmetric and metric [20, 23].

In [2], Agashe and Chafle introduced the idea of a semi-symmetric non-metric
connection on a Riemannian manifold and this was further developed by Agashe
and Chafle [3], De and Kamilya [11], De, Sengupta, Binh [21], S.C. Biswas and U.C.
De [5], [12] and others.

Let M be an m dimensional Riemannian manifold with a Riemannian metric g.
A linear connection ∇∗ on a Riemannian manifold M is called a semi-symmetric
connection if the torsion tensor T of the connection

T (X,Y ) = ∇∗

XY −∇∗

Y X − [X,Y ]

satisfies

(1.1) T (X,Y ) = ω(Y )X − ω(X)Y

for any vector fields X and Y on M , where ω is a 1-form associated with the vector
field U on M defined by

(1.2) ω(X) = g(X,U)

Let ∇ be the Levi-Civita connection of a Riemannian manifold M . The semi-
symmetric non-metric connection ∇∗ is given by

(1.3) ∇∗

XY = ∇XY + ω(Y )X

where ω(X) = g(X,U) and X,Y, U are vector fields on M [8]. Using (1.3) we have,

(1.4) (∇∗

Xg)(Y, Z) = −ω(Y )g(X,Z)− ω(Z)g(X,Y )

In [2], N. S. Agashe and M. R. Chafle found a relation between the curvature
tensor with respect to the semi-symmetric non-metric connection ∇∗ and the Levi-
Civita connection ∇

(1.5) R∗(X,Y, Z,W ) = R(X,Y, Z,W )− α(Y, Z)g(X,W ) + α(X,Z)g(Y,W )

where R∗ and R denote curvature tensors with respect to the connections ∇∗ and
∇, respectively, and α is a tensor field of the type (0, 2) defined by

(1.6) α(X,Y ) = g(AX,Y ) = (∇Xω)(Y )− ω(X)ω(Y ) = (∇∗

Xω)(Y )
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where A is a (1, 1)-tensor field which is metrically equivalent to α.

The concept of semi-symmetric non-metric connection has been applied to the
hypersurface of the Riemannian manifold [13], lightlike submanifold [31], K-contact
Riemannian manifold, [17]. In [22] J. Sengupta and U.C.De defined another type
of semi-symmetric non-metric connection. They also considered the hypersurface
of the Riemannian manifold with a semi-symmeric non-metric connection in their
sense.

From (1.5), we get

(1.7) S∗(Y, Z) = S(Y, Z)− (n− 1)α(X,Y )

where S∗ and S denote respectively the Ricci tensor with respect to ∇∗ and ∇.
The tensor α of type (0, 2) given in (1.7) is not symmetric in general and hence
from (1.7) it follows that the Ricci tensor S∗ is not symmetric. But if 1-form ω

associated with the torsion tensor T is closed then it can be shown that the relation
(∇Xω)(Y ) = (∇Y ω)(X) holds for all vector fields X,Y . r∗ and r denote the scalar
curvatures with respect to the linear connection ∇∗ and Levi-Civita connection ∇,
respectively. Then, they are related by the following form:

(1.8) r∗ = r − (n− 1)trace(α)

Manifolds with a semi-symmetric non-metric connection have been studied by
U. C. De and many authors, for example, De, Yıldız, Turan and Acet introduced
3-dimensional quasi-Sasakian manifolds with a semi-symmetric non-metric connec-
tion, [12].

2. Sectional Curvatures of a Riemannian Manifold having

Semi-symmetric Non-metric Connection.

Let Π be a tangent plane to Riemannian manifold with semi-symmetric non-metric
connection Mn at P ∈ Mn given by X,Y ∈ X(Mn). The sectional curvature K

∗(π)
of Π defined by

(2.1) K∗(X,Y )(g(X,X)g(Y, Y )− g2(X,Y )) = g(R∗(X,Y )Y,X)

which is independent of the choice of the basis X,Y , i.e. assume that at any point
P ∈ Mn(∇

∗, g), the sectional curvature is the same for all planes in TP (M). The
case of a 2-dimensional Riemannian manifold having a semi-symmetric non-metric
connection needs to be considered, since it has only one plane at each point. If
at each point the sectional curvature K∗(π) of the Riemannian manifold with a
semi-symmetric non-metric connection is independent of the vector field X,Y , then
this manifold is called an isotropic manifold [18]. Thus we have

(2.2) R∗(X,Y, Z,W ) = K∗(π)(g(X,W )g(Y, Z)− g(X,Z)g(Y,W ))
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From (2.2) we have

(2.3) S∗(X,Y ) = K∗(π)(n − 1)g(X,Y )

and

(2.4) r∗ = K∗(π)n(n− 1)

Using (1.6)− (1.7) and (2.3) we get dω(X,Y ) = 0. Thus 1-form ω is closed. N. S.
Agashe and M. R. Chafle defined the projective curvature tensor of the Riemannian
manifold with respect to a semi-symmetric non-metric connection by, [2]

(2.5) P ∗(X,Y )Z = R∗(X,Y )Z −
1

n− 1
(S∗(Y, Z)X − S∗(X,Z)Y )

and the authors found

(2.6) P ∗(X,Y )Z = P (X,Y )Z

From (2.2), (2.3) and (2.5) we say that if a Riemannian manifold with a semi-
symmetric non-metric connection is isotropic then we have

(2.7) P ∗(X,Y )Z = 0

Therefore, from (2.6) and (2.7) we get

(2.8) P (X,Y )Z = 0

on Mn.

A necessary and sufficient condition for a manifold with a symmetric linear
connection to be projectively flat is that the projective curvature tensor with respect
to vanishes identically on a manifold. It is well known that a Riemannian manifold is
of constant curvature if and only if it is projectively flat and a Riemannian manifold
of constant curvature is conformally flat, [29]. Thus we have

(2.9) R(X,Y )Z =
r

n(n− 1)
[g(Y, Z)X − g(X,Z)Y ]

and

(2.10) C(X,Y )Z = 0

on Mn. Hence, we have the following theorem:

Theorem 2.1. If (M, g) is an isotropic Riemannian manifold admitting a semi-

symmetric non-metric connection, then it is an Einstein manifold.
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By using (1.7), (2.3) and (2.4) we can express α(X,Y ) as

(2.11) α(X,Y ) =
r − r∗

n(n− 1)
g(X,Y )

In view of the relation (1.6), it follows that ω(X) is a proper concircular vector
field, that is

(2.12) (∇Xω)(Y ) =
r − r∗

n(n− 1)
g(X,Y ) + ω(X)ω(Y )

Thus, from (2.12) we can state the following:

Theorem 2.2. An isotropic Riemannian manifold admitting a semi-symmetric

non-metric connection has a proper concircular vector field.

It is known that, [1], if a conformally flat manifold admits a proper concircular
vector field, then this manifold is a subprojective manifold in the sense of Kagan.

Hence, we can state the following theorem:

Theorem 2.3. An isotropic Riemannian manifold admitting a semi-symmetric

non-metric connection is a subprojective manifold, provided that r∗ 6= r.

In [30] K.Yano proved that in a Riemannian manifold M which admits a concir-
cular vector field, it is necessary and sufficient that there exists a coordinate system
with respect to M so the fundamental quadratic differential form may be written
in the form

(2.13) ds2 = (dx1)2 + eqg∗αβdx
αdxβ

where g∗αβ = g∗αβ(x
ν) are the function of xν ; (α, β, ν = 2, 3, ..., n) and q = q(x1) 6=

const. is a differentiable function on I only. Since an isotropic Riemannian manifold
admitting a semi-symmetric non-metric connection has a proper concircular vector
field, the manifold under this consideration is a warped product I ×eq M∗ where
(M∗, g∗) is an (n − 1)-dimensional Riemannian manifold. Since this manifold is
conformally flat, we have

(2.14) (∇XS)(Y, Z)− (∇ZS)(Y,X) =
1

2(n− 1)
(g(Y, Z)dr(X)− g(Y,X)dr(Y ))

Gebarowski, [15], proved that the warped product I ×eq M∗ satisfies (2.14) if
and only if M∗ is an Einstein manifold.

Thus we can state the following theorem:

Theorem 2.4. An isotropic Riemannian manifold admitting a semi-symmetric

non-metric connection is a warped product I ×eq M∗ where M∗ is an Einstein

manifold.
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It is known from the theorem in [9] that every simply connected subprojective
manifold can be isometrically immersed in a Euclidean space as a hypersurface.

This leads to the following result:

Theorem 2.5. A simply connected isotropic Riemannian manifold admitting a

semi-symmetric non-metric connection can be isometrically immersed in a Eu-

clidean space as a hypersurface.

3. Spacetimes admitting a type of semi-symmetric non- metric

connection

General relativity explains gravity as a curvature of spacetime. It is all about
geometry. The basic equation of general relativity is called Einstein’s equation. If
we assume c = 8πG = 1, then Gαβ = Tαβ . It looks simple, but what does it mean?
Unfortunately, the beautiful geometrical meaning of this equation is a bit hard to
find in most treatments of relativity.

Einstein manifolds play an important role in Riemannian Geometry as well as
in general relativity. Also, Einstein manifolds form a natural subclass of various
classes of Riemannian manifolds by a curvature condition imposed on their Ricci
tensor. For example, every Einstein manifold belongs to the class of Riemannian
manifolds realizing the following

S(X,Y ) = ag(X,Y ) + bA(X)A(Y )

where a, b ∈ R and A is a non-zero 1-form such that g(X,U) = A(X) for all vector
fields X . Quasi Einstein manifolds arose during the study of exact solutions of the
Einstein field equations as well as during considerations of quasi-umbilical hyper-
surfaces of semi-Euclidean spaces. For example, the Robertson-Walker spacetimes
are quasi Einstein manifolds.

As already mentioned in the second section, an isotropic spacetime admitting a
semi-symmetric non-metric connection is an Einstein spacetime, that is, this space-
time is of constant curvature.

Spaces with a constant curvature play a significant role in cosmology. The
assumption that the universe is isotropic and homogeneous is given in the simplest
cosmological model. This principle is known as the cosmological principle and,
when translated into the language of Riemannian geometry, asserts that the three
dimensional position space is a space of maximal symmetry, that is, space-like
surfaces of a constant curvature are the Robertson-Walker metrics, while a four-
dimensional space of a constant curvature is the de-Sitter model of universe [26, 19].

The equations of the gravitational field theory are higher order non-linear partial
differential equations so finding exact solutions of these equations is very difficult,
[26, 6]. If some geometric symmetry properties are assumed to be possessed by
the metric tensor, the solutions to these equations can be obtained easily. These
geometric symmetry properties are described by Killing vector fields and lead to
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conservation laws in the form of the first integrals of a dynamical system, [8]. Geo-
metrical symmetries of spacetime are expressed through the equation

(3.1) LξA = 2ΩA

where A represents a geometrical/physical quantity Lξ denotes the Lie derivative
with respect to the vector field ξ and Ω is a scalar.

One of the most simple and widely used example is the metric inheritance sym-
metry for which A = g in (3.1); and for this case, ξ is a Killing vector field if Ω is
zero.

In this section, we denote an isotropic spacetime admitting a semi-symmetric
non-metric connection by (M4, ST ). Since (M4, ST ) is an Einstein spacetime, we
have

(3.2) S(X,Y ) =
r

4
g(X,Y )

Let us consider a spacetime satisfying the Einstein field equation with the cosmo-
logical constant given by the following equation:

(3.3) S(X,Y )−
r

2
g(X,Y ) + λg(X,Y ) = kT (X,Y )

for all vector fields X and Y where S and r denote the Ricci tensor and the scalar
curvature, T is the energy momentum tensor, λ is the cosmological constant and k

is the non-zero gravitational constant.

By virtue of the equations (3.2), (3.3) the energy momentum tensor reduces to
the form

(3.4) T (X,Y ) =
(4λ− r)

4k
g(X,Y )

Taking the covariant derivative of (3.4), we get the following result:

Theorem 3.1. In a (M4, ST ) satisfying the Einstein field equation with the cos-

mological constant, the energy momentum tensor is of the form

(3.5) T (X,Y ) =
(4λ− r)

4k
g(X,Y )

which is covariantly constant.

Now, we assume that ξ is a conformal Killing vector in (M4, ST ). Taking the
Lie derivative of both sides of (3.4)

(3.6) (LξT )(X,Y ) =
(4λ− r)

4k
(Lξg)(X,Y )

By using (3.1) and (3.6), we find

(3.7) (LξT )(X,Y ) = 2ΩT (X,Y )
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In this case, it can be said that the energy momentum tensor has the symmetry
inheritance property. Conversely, if the condition (3.7) holds, it follows from (3.6)
that ξ is a conformal Killing vector field. Thus, we can state the following:

Theorem 3.2. If (M4, ST ) obeys the Einstein field equations with the cosmological

constant, then a vector field ξ is a conformal Killing vector field on this spacetime

if and only if the energy-momentum tensor has the symmetry inheritance property

along ξ.

The well-known symmetry of the energy-momentum tensor T is the matter
collineation defined by (LξT )(X,Y ) = 0. Let ξ be a Killing vector field on the
spacetime under consideration. Then (Lξg)(X,Y ) = 0. By taking the Lie derivative
of both sides of (3.4) with respect to ξ, we get (LξT )(X,Y ) = 0. The converse is
trivial.

Hence, we have the following theorem:

Theorem 3.3. If (M4, ST ) obeys the Einstein field equations with a cosmological

constant, then the spacetime admits matter collineation with respect to the vector

field ξ if and only if ξ is a Killing vector field.

Let us consider the existence of a perfect fluid of (M4, ST ) obeying Einstein
field equations without the cosmological constant. In a perfect fluid spacetime, the
energy momentum tensor is of the form

(3.8) T (X,Y ) = (σ + p)A(X)A(Y ) + pg(X,Y )

where σ is the energy density, p is the isotropic pressure and A is the associated
1-form of the spacetime defined as g(X,U) = A(X) and U is the unit timelike
velocity vector field of the perfect fluid, i.e g(U,U) = A(U) = −1. In (M4, ST ),
from (3.2), (3.3), (3.8) and the Einstein field equations, we get

(3.9) −(kp+
r

4
)g(X,Y ) = k(σ + p)A(X)A(Y )

By contracting (3.9) over X and Y , we have

(3.10) r = kσ − 3kp

Putting X = Y = U in (3.9) leads to

(3.11) r = 4kσ

Since the scalar curvature r of this spacetime is constant, it follows from (3.11)
that the energy density is constant. Combining the equations (3.10) and (3.11), we
get σ + p = 0. Hence, we say that the isotropic pressure is constant. On the other
hand, as σ + p = 0, the fluid behaves as a cosmological constant, [10]. This is also
termed Phantom Barier, [24]. In cosmology, we know such a choice σ = −p leads
to rapid expansion of spacetime, [4]. Consequently, we can state that:
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Theorem 3.4. The spacetime (M4, ST ) obeying the Einstein field equations with-

out the cosmological constant has constant energy density and isotropic pressure and

it represents inflation. Also, the fluid behaves as a constant cosmological constant.

In a dust or pressureless fluid spacetime, the energy momentum tensor is of the
form

(3.12) T (X,Y ) = σA(X)A(Y )

where σ is the energy-density of the dust-like matter and A is a non-zero 1-form
such that A(X) = g(X,U), for all X and U is a timelike vector field of the flow,
[25]. Now, using (3.12) in (3.3), contracting the resulting equation over X and Y

and then putting X = Y = U , we get σ = 0 and so T (X,Y ) = 0. This means that
the spacetime is devoid of the matter. Thus, we have:

Theorem 3.5. A dust fluid isotropic spacetime equipped with a semi-symmetric

non-metric connection satisfying Einstein’s field equations with the cosmological

constant is vacuum.
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