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Ser. Math. Inform. Vol. 29, No 2 (2014), 173–188

ON A CLASS OF β-KENMOTSU MANIFOLDS

Krishnendu De

Abstract. The object of the present paper is to study globally φ-quasiconformally sym-
metric β-Kenmotsu manifolds. It has been shown that a globally φ-quasiconformally
symmetric β-Kenmotsu manifold is globally φ-symmetric. Also we study 3-dimensional
locally φ-symmetric β-Kenmotsu manifolds. Next we study second order parallel ten-
sor and Ricci soliton on 3-dimensional β-Kenmotsu manifolds. Finally, we give some
examples of 3-dimensional β-Kenmotsu manifolds which verifies our result.

1. Introduction

In [25] Tanno classified connected almost contact metric manifolds whose au-
tomorphism groups have the maximum dimension. For such a manifold M, the
sectional curvature of plane section containing ξ is a constant, say c. If c > 0, M is
a homogeneous Sasakian manifold of constant φ-sectional curvature. If c = 0, M
is the product of a line or circle with a Kaehler manifold of constant holomorphic
curvature. If c < 0, M is a warped product space R × f Cn. In [13] Kenmotsu
abstracted the differential geometric properties of the third case. In particular the
almost contact metric structure in this case satisfies

(∇Xφ)Y = �(φX,Y)ξ − η(Y)φX

and an almost contact metric manifold satisfying this condition is called a
Kenmotsu manifold ([11],[13]). Again one has the more general notion of a β-
Kenmotsu structure [11] which may be defined by

(∇Xφ)Y = β(�(φX,Y)ξ − η(Y)φX)(1.1)

where β is a non-zero constant. From the condition one may readily deduce that

∇Xξ = β(X − η(X)ξ).(1.2)
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Kenmotsu manifolds appear as examples of β-Kenmotsu manifolds, with β = 1.
β-Kenmotsu manifolds have been studied by several authors such as Matamba
[26], Janssens, and Vanhecke [11] and many others.
In the classification of Gray and Hervella [9] of almost Hermitian manifolds there
appears a class, W4,of Hermitian manifolds which are closely related to locally
conformally Kaehler manifolds. An almost contact metric structure (φ, ξ, η, �) on
M is trans-Sasakian [19] if (M×R, J,G) belongs to the class W4, where J is the almost
complex structure on M ×R defined by
J (X, f d

d f ) = (φX−fξ, η(X) d
dt ), for all vector fields X on M, f is a smooth function on M

×R and G is the product metric on M ×R. This may be expressed by the condition
[5]

(∇Xφ)Y = α(�(X,Y)ξ − η(Y)X) + β(�(φX,Y)ξ − η(Y)φX)(1.3)

for smooth functions α and β on M. Hence we say that the trans-Sasakian structure
is of type (α,β). In particular, it is normal and it generalizes both α-Sasakian and
β-Kenmotsu structures. From the formula one easily obtains

∇Xξ = −α(φX) + β(X − η(X)ξ).(1.4)

Hence a trans-Sasakian structure of type (α, β) with α, β ∈ R and α = 0 is a
β-Kenmotsu structure. The relation between trans-Sasakian, α-Sasakian and β-
Kenmotsu structures was recently discussed by Marrero [15].

Proposition1.1(Marrero[15]): A trans-Sasakian manifold of dimension ≥5 is
either α-Sasakian, β-Kenmotsu or Cosymplectic.

Let M1 and M2 be almost contact metric manifolds with structure tensors
(φi, ξi, ηi, �i), i = 1, 2. Define an almost complex structure J on M1 ×M2 by

J(X1,X2) = (φ1X1 − e−2μη2(X2)ξ1, φ2X2 + e2μη1(X1)ξ2),(1.5)

where μ is a function on M1 ×M2. Let �̃ be the Riemannian metric on M1 ×M2

defined by
�̃((X1,X2), (Y1,Y2)) = e2ρ�1(X1,Y1) + e2τ�2(X2,Y2),(1.6)

where ρ and τ are function on M1 × M2. Blair and Oubina [5] proved that if
(M1 ×M2, J, �̃) is Kaehlerian, then M2 is β- Kenmotsu if and only if ξ1τ = 0 and
�rad2τ = −βξ2.
Kenmotsu manifolds have been studied by several authors such as G.Pitis ([21],[22]),
Jun, De and Pathak [12], De and Pathak ([8], [6]), Binh, Tamassy, De and Tarafdar
[1], Sulgar, Özgür, and De [23] and many others.

Let (Mn, �), n > 3, be a Riemannian manifold. The notion of the quasi-conformal
curvature tensor was introduced by Yano and Sawaki [28]. According to them a
quasi-conformal curvature tensor is defined by

C∗(X,Y)Z = aR(X,Y)Z + b[S(Y,Z)X − S(X,Z)Y + �(Y,Z)QX

−�(X,Z)QY]− r
n

[
a

n − 1
+ 2b][�(Y,Z)X − �(X,Z)Y],(1.7)
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where a and b are constants, S is the Ricci tensor, Q is the Ricci operator defined by
S(X,Y) = �(QX,Y) and r is the scalar curvature of the manifold Mn. If a = 1 and
b = − 1

n−2 , then (1.7) takes the form

C∗(X,Y)Z = R(X,Y)Z − 1
n − 2

[S(Y,Z)X − S(X,Z)Y + �(Y,Z)QX

−�(X,Z)QY]+
r

(n − 1)(n − 2)
[�(Y,Z)X − �(X,Z)Y]

= C(X,Y)Z,

where C is the conformal curvature tensor [27]. In [7], De and Matsuyama studied
a quasi-conformally flat Riemannian manifold satisfying a certain condition on the
Ricci tensor. From Theorem 5 of [7], it can be proved that a 4-dimensional quasi-
conformally flat semi-Riemannian manifold is the Robertson-Walker space time.
Robertson-Walker spacetime is the warped product I× f M∗,where M∗ is a space of
constant curvature and I is an open interval [16]. Thus quasi-conformal curvature
tensor has some importance in general theory of relativity also. From (1.7), we
obtain

(∇WC∗) (X,Y)Z = a (∇WR) (X,Y)Z + b[(∇WS) (Y,Z)X − (∇WS) (X,Z)Y
+�(Y,Z) (∇WQ) (X) − �(X,Z) (∇WQ) (Y)]

−dr(W)
n

[ a
n − 1

+ 2b
] [
�(Y,Z)X − �(X,Z)Y

]
,(1.8)

where ∇ denotes the Levi-Civita connection . If the condition

∇R = 0(1.9)

holds on M, then M is called locally symmetric. A β-Kenmotsu manifold is said to
be locally φ-symmetric if

φ2((∇XR)(Y,Z)W) = 0,(1.10)

for all vector fields X,Y,Z,W orthogonal to ξ. This notion was introduced for
Sasakian manifolds by Takahashi [24]. Later in [4], Blair, Koufogiorgos and Sharma
studied locally φ-symmetric contact metric manifolds.

In (1.10), if X,Y,Z and W are not horizontal vectors then we call the manifold
globally φ-symmetric.

In this paper, we define locally φ-quasiconformally symmetric and globally φ-
quasiconformally symmetric contact metric manifolds. A contact metric manifold
(M, �) is called locally φ-quasiconformally symmetric if the condition

φ2((∇XC∗)(Y,Z)W) = 0(1.11)

holds on M, where X,Y,Z and W are horizontal vectors. If X,Y,Z and W are
arbitrary vectors then the manifold is called globally φ-quasiconformally symmet-
ric. Quasi-conformal curvature tensor have been studied by several authors such
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as Yano and Sawaki [28], Ghosh and De [10], De and Matsuyama [7], Ozgur and
de [20] and many others. Motivated by the above studies in the present paper we
like to study φ-quasi-conformally symmetric β-Kenmotsu manifolds.

In a Riemannian manifold a tensor α of second order is said to be parallel if

∇α = 0,

where∇ denotes the operator of covariant differentiation with respect to the metric
tensor �.

In 1926 H. Levy [14] proved that a second order symmetric parallel non-
singular tensor on a space of constant curvature is a constant multiple of the metric
tensor. In recent papers R. Sharma [18], generalized Levy’s result and also studied
a second order parallel tensor on Kaehler space of constant holomorphic sectional
curvature as well as on contact manifolds.

A Ricci soliton is a generalization of an Einstein metric. We recall the notion
of Ricci soliton according to [17]. On the manifold M, a Ricci soliton is a triple
(�,V, λ) with �, a Riemannian metric, V a vector field and λ a real scalar such that

£V� + 2S + 2λ� = 0,(1.12)

where £ is a Lie derivative. The Ricci soliton is said to be shrinking, steady and
expanding according as λ is negative, zero and positive.
A Kenmotsu manifold M of dimension n > 2 is called an Einstein manifold if the
Ricci tensor S can be expressed as

S(X,Y) = λ�(X,Y),(1.13)

where λ is a constant and also called an η-Einstein manifold if

S(X,Y) = a�(X,Y) + bη(X)η(Y),(1.14)

where a and b are smooth functions on the manifold.

The paper is organized as follows:
In section 1, we give a brief account of β-Kenmotsu manifolds. After preliminaries,
in the next section , we study globally φ-quasi-conformally symmetric β-Kenmotsu
manifolds. We prove that if a β-Kenmotsu manifold is globallyφ-quasi-conformally
symmetric, then the manifold is an Einstein manifold. We also show that a globally
φ-quasi-conformally symmetric β-Kenmotsu manifold is globally φ-symmetric.
In Section 4, we study 3-dimensional locally φ-quasi-conformally symmetric β-
Kenmotsu manifolds. We prove that a 3-dimensional β-Kenmotsu manifold is
locallyφ-quasiconformally symmetric if and only if the scalar curvature r is constant
if a + b � 0 and r � −6β. In the next section we prove that a parallel symmetric
(0,2) tensor field in a 3-dimensional non-cosympletic β-Kenmotsu manifold is a
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constant multiple of the associated metric tensor. In section 6, I prove that in a
3-dimensional non-cosymplectic β-Kenmotsu manifold, the Ricci soliton (�, ξ, λ) is
shrinking and the manifold is an η-Einstein manifold. We also give some examples
of 3-dimensional β-Kenmotsu manifolds.

2. Priliminaries

Let M be a connected almost contact metric manifold with an almost contact metric
structure (φ,ξ,η,�), that is, φ is an (1,1) tensor field, ξ is a vector field, η is a 1-form
and � is a compatible Riemannian metric such that

φ2(X) = −X + η(X)ξ, η(ξ) = 1, φξ = 0, ηφ = 0(2.1)

�(φX, φY) = �(X,Y) − η(X)η(Y)(2.2)

�(X, ξ) = η(X)(2.3)

for all X, Y ∈ T(M)([2],[3]).
If an almost contact metric manifold satisfies

(∇Xφ)Y = β(�(φX,Y)ξ− η(Y)φX),(2.4)

then M is called a β-Kenmotsu manifold, where ∇ is the Levi-Civita connection of
�. From the above equation it follows that

∇Xξ = β(X − η(X)ξ),(2.5)

and
(∇Xη)Y = β(�(X,Y)− η(X)η(Y)).(2.6)

Moreover, the curvature tensor R and the Ricci tensor S satisfy

R(X,Y)ξ = β(η(X)Y − η(Y)X)(2.7)

and
S(X, ξ) = −β(n − 1)η(X).(2.8)

3. Globally φ-quasiconformally symmetric β-Kenmotsu manifolds

Definition 3.1: A β-Kenmotsu manifold M is said to be globallyφ-quasiconformally
symmetric if the quasi-conformal curvature tensor C∗ satisfies

φ2((∇XC∗)(Y,Z)W) = 0,(3.1)

for all vector fields X,Y,Z ∈ χ(M).
Let us suppose that M is a globally φ-quasiconformally symmetric β-Kenmotsu

manifold. Then by definition

φ2((∇WC∗)(X,Y)Z) = 0,(3.2)
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Using (2.1) we have

− (∇WC∗) (X,Y)Z + η ((∇WC∗) (X,Y)Z)ξ = 0.(3.3)

From (1.8) it follows that

−a� ((∇WR) (X,Y)Z,U) − b�(X,U) (∇WS) (Y,Z) + b�(Y,U) (∇WS) (X,Z)
−b�(Y,Z)� ((∇WQ) X,U) + b�(X,Z)� ((∇WQ) Y,U)

+
1
n

dr(W)
[ a
n − 1

+ 2b
] (
�(Y,Z)�(X,U)− �(X,Z)�(Y,U)

)
+aη ((∇WR) (X,Y)Z) η(U) + b (∇WS) (Y,Z)η(U)η(X)− b (∇WS) (X,Z)η(U)η(Y)
+b�(Y,Z)η ((∇WQ) X) η(U) − b�(X,Z)η ((∇WQ) Y) η(U)

− 1
n

dr(W)
[ a
n − 1

+ 2b
] (
�(Y,Z)η(X) − �(X,Z)η(Y)

)
η(U) = 0.(3.4)

Putting X = U = ei, where {ei}, (i = 1, 2, ..., n) is an orthonormal basis of the tangent
space at each point of the manifold, and taking summation over i, we get

−(a + nb − 2b) (∇WS) (Y,Z) − {b� ((∇WQ) ei, ei) − n − 1
n

dr(W)
( a
n − 1

+ 2b
)

−bη ((∇WQ) ei) η (ei) +
1
n

dr(W)
( a
n − 1

+ 2b
)
}�(Y,Z) + b� ((∇WQ) Y,Z)

+aη ((∇WR) (ei,Y)Z) η(ei) − b (∇WS) (ξ,Z)η(Y) − bη ((∇WQ) Y) η(Z)

+
1
n

dr(W)
( a
n − 1

+ 2b
)
η(Y)η(Z) = 0.(3.5)

Putting Z = ξ, we obtain

−(a + nb − 2b) (∇WS) (Y, ξ) − η(Y){bdr(W) − n − 1
n

dr(W)
( a
n − 1

+ 2b
)

−bη ((∇WQ) ei) η(ei) +
1
n

dr(W)
( a
n − 1

+ 2b
)
} + aη ((∇WR) (ei,Y)ξ) η(ei)

−b (∇WS) (ξ, ξ)η(Y) +
1
n

dr(W)
( a
n − 1

+ 2b
)
η(Y) = 0.(3.6)

Now

η ((∇WQ) ei) η(ei) = � ((∇WQ) ei, ξ) η(ei)

= η ((∇WQ)ξ) = �
(
QφX, ξ

)
= S(φX, ξ) = 0.(3.7)

η ((∇WR) (ei,Y)ξ) η(ei) = � ((∇WR) (ei,Y)ξ, ξ) �(ei, ξ).(3.8)

� ((∇WR) (ei,Y)ξ, ξ) = � (∇WR(ei,Y)ξ, ξ) − � (R(∇Wei,Y)ξ, ξ)

−� (R(ei,∇WY)ξ, ξ) − � (R(ei,Y)∇Wξ, ξ) .
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Since {ei} is an orthonormal basis ∇Xei = 0 and using (2.7) we find

� (R(ei,∇WY)ξ, ξ) = β(�(η(ei)∇WY − η(∇WY)ei, ξ))
= β(η(ei)η(∇WY) − η(∇WY)η(ei))
= 0.

As
� (R(ei,Y)ξ, ξ) + � (R(ξ, ξ) Y, ei) = 0(3.9)

we have
� (∇WR(ei,Y)ξ, ξ) + � (R(ei,Y)ξ,∇Wξ) = 0.(3.10)

Using this we get
� ((∇WR) (ei,Y)ξ, ξ) = 0.(3.11)

By the use of (3.7), (3.8) and (3.11), from (3.6) we obtain

(∇WS) (Y, ξ) =
1
n

dr(W)η(Y),(3.12)

since a + (n − 2)b � 0. Because if a + (n − 2)b = 0 then from (1.7), it follows that
C∗ = aC. So we can not take a+ (n−2)b = 0. Putting Y = ξ in (3.12) we get dr(W) = 0.
This implies r is constant. So from (3.12), we have

(∇WS) (Y, ξ) = 0.(3.13)

Using (2.8), this implies

S(Y,W) = λ�(Y,W),(3.14)

where λ = −β(n − 1). Hence we can state the following:

Theorem 3.1. If a β-Kenmotsu manifold is globally φ-quasiconformally symmetric, then
the manifold is an Einstein manifold.

Next suppose S(X,Y) = λ�(X,Y), i.e. QX = λX. Then from (1.7) we have

C∗(X,Y)Z = aR(X,Y)Z

+
[
2bλ − r

n

( a
n − 1

+ 2b
)] [
�(Y,Z)X − �(X,Z)Y

]
,(3.15)

which gives us
(∇WC∗) (X,Y)Z = a (∇WR) (X,Y)Z.(3.16)

Applying φ2 on both sides of the above equation we have

φ2 (∇WC∗) (X,Y)Z = aφ2 (∇WR) (X,Y)Z.(3.17)

Hence we can state:

Theorem 3.2. A globallyφ-quasiconformally symmetric β-Kenmotsu manifold is globally
φ-symmetric.

Remark 3.1. Since a globally φ-symmetric β-Kenmotsu manifold is always a globally φ-
quasiconformally symmetric manifold, from Theorem 3.2 we conclude that on a β-Kenmotsu
manifold, globally φ-symmetry and globally φ-quasiconformally symmetry are equivalent.
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4. 3-dimensional locallyφ-quasiconformally symmetric β-Kenmotsu
manifolds

Let us consider a 3-dimensional β-Kenmotsu manifold. It is known that the
conformal curvature tensor vanishes identically in the 3-dimensional Riemannian
manifold. Thus we find

R(X,Y)Z = �(Y,Z)QX − �(X,Z)QY + S(Y,Z)X − S(X,Z)Y

− r
2

[�(Y,Z)X − �(X,Z)Y],(4.1)

where Q is the Ricci operator, that is, �(QX,Y) = S(X,Y) and r is the scalar
curvature of the manifold.

Putting Z = ξ in (4.1) and using (2.8) we have

η(Y)QX − η(X)QY = (
r
2
+ β)[η(Y)X − η(X)Y].(4.2)

Putting Y = ξ in (4.2) and using (2.1) and (2.8), we get

QX =
1
2

[(r + 2β)X − (r + 6β)η(X)ξ],(4.3)

that is,

S(X,Y) =
1
2

[(r + 2β)�(X,Y)− (r + 6β)η(X)η(Y)].(4.4)

Using (4.3) in (4.1), we get

R(X,Y)Z = (
r + 4β

2
)[�(Y,Z)X − �(X,Z)Y] − (

r + 6β
2

)[�(Y,Z)η(X)ξ

−�(X,Z)η(Y)ξ+ η(Y)η(Z)X − η(X)η(Z)Y].(4.5)

Putting (4.3), (4.4) and (4.5) into (1.7) we have

C∗(X,Y)Z = (a + b)(r + 6β)[
1
3
{�(Y,Z)X − �(X,Z)Y}

−1
2
{�(Y,Z)η(X)ξ− �(X,Z)η(Y)ξ

+η(Y)η(Z)X − η(X)η(Z)Y}].(4.6)

Thus we have
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Lemma 4.1. Let M be a 3-dimensional β-Kenmotsu manifold.
If a + b = 0 or r = −6β, then the quasi-conformal curvature tensor vanishes identically.

Next, we assume that a + b � 0 or r � −6β. Taking the covariant differentiation
of (4.6), we get

(∇WC∗)(X,Y)Z =
dr(W)

3
(a + b){�(Y,Z)X − �(X,Z)Y}

−dr(W)
2

(a + b){�(Y,Z)η(X)ξ

−�(X,Z)η(Y)ξ+ η(Y)η(Z)X − η(X)η(Z)Y}
−1

2
(r + 6β)(a+ b)[�(Y,Z)(∇Wη)(X)ξ − �(X,Z)(∇Wη)(Y)ξ

+�(Y,Z)η(X)∇Wξ − �(X,Z)η(Y)∇Wξ

+�(Y,∇Wξ)η(Z)X + �(Z,∇Wξ)η(Y)X
−�(X,∇Wξ)η(Z)Y − �(Z,∇Wξ)η(X)Y].

If the vector fields X, Y and Z are horizontal, then the above equation is rewritten
as follows:

(∇WC∗)(X,Y)Z =
dr(W)

3
(a + b){�(Y,Z)X − �(X,Z)Y}

−1
2

(r + 6β)(a + b)[�(Y,Z)(∇Wη)(X)ξ − �(X,Z)(∇Wη)(Y)ξ].(4.7)

Operating φ2 to the above equation, then we find

φ2((∇WC∗)(X,Y)Z) = −dr(W)
3

(a + b){�(Y,Z)X − �(X,Z)Y}.(4.8)

Hence we conclude the following theorem:

Theorem 4.1. A 3-dimensional β-Kenmotsu manifold is locallyφ-quasiconformally sym-
metric if and only if the scalar curvature r is constant if a + b � 0 and r � −6β.

If β = 1, then the manifold reduces to a Kenmotsu manifold. Thus from the
above theorem we get the following:

Corollary 4.1. A 3-dimensional Kenmotsu manifold is locally φ-quasiconformally sym-
metric if and only if the scalar curvature r is constant if a + b � 0 and r � −6.
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5. Second order parallel tensor

Let us consider a parallel symmetric (0,2)-tensor δ on a 3-dimensional β-
Kenmotsu manifold M.
Then, by ∇δ = 0, we have

δ(R(U,V)X,Y) + δ(X,R(U,V)Y) = 0,(5.1)

where U,V,X and Y are arbitrary vectors fields on M.
As δ is symmetric , putting U = X = Y = ξ in (5.1), we obtain

δ(ξ,R(ξ,X)ξ) = 0.(5.2)

Now applying (2.7) in (5.2) we have

βδ(Y, ξ) − βη(Y)δ(ξ, ξ) = 0.(5.3)

Differentiating (5.3) covariantly along X we find

β{δ(∇XY, ξ) + δ(Y,∇Xξ)} − β{�(∇XY, ξ)
+�(Y,∇Xξ)}δ(ξ, ξ) − 2β�(Y, ξ)δ(∇Xξ, ξ) = 0.(5.4)

Putting Y = ∇XY in (5.2) we get

β{δ(∇XY, ξ) − βη(∇XY)δ(ξ, ξ)} = 0.(5.5)

From (5.4) and (5.5) we have

βδ(Y,∇Xξ) − β�(Y,∇Xξ)δ(ξ, ξ) − 2β�(Y, ξ)δ(∇Xξ, ξ) = 0,

which implies that
β2{δ(Y,X) − �(Y,X)δ(ξ, ξ)} = 0.

This implies either
δ(Y,X) = δ(ξ, ξ)�(Y,X), or, β = 0.(5.6)

Since δ and � are parallel tensor fields, λ = δ(ξ, ξ) is constant on U. By the paral-
lelity of δ and � it must be δ = λ� on whole of M. Thus we have the following:

Theorem 5.1. A parallel symmetric (0,2) tensor in a 3-dimensional non-cosympletic β-
Kenmotsu manifold is a constant multiple of the associated metric tensor.

6. Ricci solitons

Suppose a 3-dimensional β-Kenmotsu manifold admits a Ricci soliton de-
fined by (1.12). It is well known that ∇� = 0. Since λ in the Ricci soliton equation
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(1.12) is a constant, so ∇λ� = 0. Thus £V� + 2S is parallel. Hence using the previ-
ous theorem we have £V� + 2S is a constant multiple of metric tensors �, that is,
£V� + 2S = a�,where a is constant. Hence £V� + 2S + 2λ� reduces to (a + 2λ)�, that
implies λ = −a/2. So we have the following:

Theorem 6.1. In a 3-dimensional non-cosymplectic β-Kenmotsu manifold, the Ricci soli-
ton (�,V, λ) is shrinking or expanding according as a is positive or negative.

Now in particular we investigate the case V = ξ. Then (1.12) reduces to

£ξ� + 2S + 2λ� = 0.(6.1)

Using (2.5) in a 3-dimensional β-Kenmotsu manifold we have

£ξ�(Y,Z) = 2β(�(Y,Z)− η(Y)η(Z)).(6.2)

Then using (6.1) in (6.2) we get λ = −S(ξ, ξ) = β(n − 1). Also from (6.1) it follows
that the manifold is an η-Einstein manifold. Thus we have

Corollary 6.1. In a 3-dimensional non-cosymplectic β-Kenmotsu manifold, the Ricci soli-
ton (�, ξ, λ) is shrinking and the manifold is an η-Einstein manifold.

7. Example of a 3-dimensional β- Kenmotsu manifold

Example 7.1: We consider the 3-dimensional manifold M = {(x, y, z) ∈ R3, z � 0},
where (x, y, z) are standard co-ordinate of R3.

The vector fields

e1 = ez ∂
∂x
, e2 = ez(

∂
∂x
+
∂
∂y

), e3 = α
∂
∂z

are linearly independent at each point of M, where α is constant.

Let � be the Riemannian metric defined by

�(e1, e1) = �(e2, e2) = �(e3, e3) = 1

�(e1, e3) = �(e1, e2) = �(e2, e3) = 0,

Let η be the 1-form defined by η(Z) = �(Z, e3) for any Z ∈ χ(M).

Let φ be the (1, 1) tensor field defined by

φ(e1) = −e2, φ(e2) = e1, φ(e3) = 0.
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Then using the linearity of φ and �, we have

η(e3) = 1,

φ2Z = −Z + η(Z)e3,

�(φZ, φW) = �(Z,W) − η(Z)η(W),

for any Z,W ∈ χ(M).

Then for e3 = ξ , the structure (φ, ξ, η, �) defines an almost contact metric
structure on M.

Let ∇ be the Levi-Civita connection with respect to metric �. Then we have
[e1, e2] = 0, [e1, e3] = −αe1 and [e2, e3] = −αe2.

Taking e3 = ξ and using Koszul formula for the Riemannian metric �, we can
easily calculate

∇e1e1 = αe3, ∇e1e2 = 0, ∇e1e3 = −αe1,

∇e2e1 = 0, ∇e2e2 = −αe3, ∇e2e3 = −αe2,

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0.(7.1)

We see that the structure (φ, ξ, η, �) satisfies the formula (2.5) for β = −α. Hence
the manifold is a β-Kenmotsu manifold with β = constant.

Example 7.2: We consider the 3-dimensional manifold M = {(x, y, z) ∈ R3, z � 0},
where (x, y, z) are standard co-ordinate of R3.

The vector fields

e1 = z
∂
∂x
, e2 = z

∂
∂y
, e3 = z

∂
∂z

are linearly independent at each point of M.

Let � be the Riemannian metric defined by

�(e1, e1) = �(e2, e2) = �(e3, e3) = 1

�(e1, e3) = �(e1, e2) = �(e2, e3) = 0,

that is, the form of the metric becomes

� =
dx2 + dy2 + dz2

z2 .

Let η be the 1-form defined by η(Z) = �(Z, e3) for any Z ∈ χ(M).

Let φ be the (1, 1) tensor field defined by

φ(e1) = −e2, φ(e2) = e1, φ(e3) = 0.
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Then using the linearity of φ and �, we have

η(e3) = 1,

φ2Z = −Z + η(Z)e3,

�(φZ, φW) = �(Z,W) − η(Z)η(W),

for any Z,W ∈ χ(M).
Then for e3 = ξ , the structure (φ, ξ, η, �) defines an almost contact metric

structure on M.
Let ∇ be the Levi-Civita connection with respect to metric �. Then we have

[e1, e3] = e1e3 − e3e1

= z
∂
∂x

(z
∂
∂z

) − z
∂
∂z

(z
∂
∂x

)

= z2 ∂
2

∂x∂z
− z2 ∂

2

∂z∂x
− z
∂
∂x

= −e1.(7.2)

Similarly, [e1, e2] = 0 and [e2, e3] = −e2.

The Riemannian connection ∇ of the metric � is given by

2�(∇XY,Z) = X�(Y,Z) + Y�(Z,X) − Z�(X,Y)
− �(X, [Y,Z])− �(Y, [X,Z]) + �(Z, [X,Y]),(7.3)

which known as Koszul’s formula.
Using (7.3) we have

2�(∇e1e3, e1) = −2�(e1, e1)
= 2�(−e1, e1).(7.4)

Again by (7.3)
2�(∇e1e3, e2) = 0 = 2�(−e1, e2)(7.5)

and

2�(∇e1e3, e3) = 0 = 2�(−e1, e3).(7.6)

From (7.4), (7.5) and (7.6) we obtain

2�(∇e1e3,X) = 2�(−e1,X),

for all Xεχ(M).
Thus

∇e1e3 = −e1.
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Therefore, (7.3) further yields

∇e1e1 = e3, ∇e1e2 = 0, ∇e1e3 = −e1,

∇e2e1 = 0, ∇e2e2 = e3, ∇e2e3 = −e2,

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0.(7.7)

(7.7) tells us that the manifold satisfies (2.5) for β = −1 and ξ = e3. Hence the
manifold is a β-Kenmotsu manifold with β =constant.

It is known that

R(X,Y)Z = ∇X∇YZ − ∇Y∇XZ − ∇[X,Y]Z.(7.8)

With the help of the above results and using (7.8), it can be easily verified that

R(e1, e2)e3 = 0, R(e2, e3)e3 = −e2, R(e1, e3)e3 = −e1,

R(e1, e2)e2 = −e1, R(e2, e3)e2 = e3, R(e1, e3)e2 = 0,

R(e1, e2)e1 = e2, R(e2, e3)e1 = 0, R(e1, e3)e1 = e3.

From the above expressions of the curvature tensor we obtain

S(e1, e1) = �(R(e1, e2)e2, e1) + �(R(e1, e3)e3, e1)
= −2.(7.9)

Similarly we have
S(e2, e2) = S(e3, e3) = −2.

Therefore,
r = S(e1, e1) + S(e2, e2) + S(e3, e3) = −6.

Thus the scalar curvature r is constant. Hence Theorem 4.1 is verified.
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