ON THE DIVERGENCE OF NÖRLUND LOGARITHMIC MEANS WITH RESPECT TO THE L^{1} NORM ON SOME UNBOUNDED VILENKIN GROUPS

Nacima Memić

Abstract

Using the results of the paper [1] we give a divergence result of Nörlund logarithmic means for some unbounded Vilenkin groups. We prove that the boundedness of the subsequence $\left(\left\|F_{M_{n}}\right\|_{1}\right)_{n}$ implies the divergence in the L^{1} norm of the sequence $\left(t_{n} f\right)_{n}$ for a conveniently chosen integrable function f. We provide an example to illustrate a direct application of this result.

Keywords: Vilenkin groups; Integrable function; Sequence of integers; Fourier series.

1. Introduction

In their paper [1] the authors proved a convergence result of the subsequence $\left(t_{M_{n}} f\right)_{n}$ to the integrable function f in the L^{1} norm for some unbounded Vilenkin groups. The main tool was the boundedness of the sequence $\left(\left\|F_{M_{n}}\right\|_{1}\right)_{n}$. Paradoxically, this is the reason of the divergence of the whole sequence $\left(t_{n} f\right)_{n}$.

Therefore, in order to construct unbounded groups on which the sequence $\left(t_{n} f\right)_{n}$ converges in the L^{1} norm, the property of uniform boundedness needs to be avoided.

Other divergence results can also be found in [1] and [2]. Many known results and open problems are presented in the work of Gat [3].

Let $\left(m_{0}, m_{1}, \ldots, m_{n}, \ldots\right)$ be a sequence of integers not less than 2 . The Vilenkin group G is defined by $G:=\prod_{n=0}^{\infty} \mathbb{Z}_{m_{n}}$, where $\mathbb{Z}_{m_{n}}$ denotes a discrete group of order m_{n}, with addition $\bmod m_{n}$.

It is said that G is unbounded if the sequence $\left(m_{0}, m_{1}, \ldots, m_{n}, \ldots\right)$ is unbounded.
Each element from G can be represented as a sequence $\left(x_{n}\right)_{n}$, where $x_{n} \in$ $\left\{0,1, \ldots, m_{n}-1\right\}$, for every integer $n \geq 0$. Addition in G is obtained coordinatewise.

The topology on G is generated by the subgroups
$I_{n}:=\left\{x=\left(x_{i}\right)_{i} \in G, x_{i}=0\right.$ for $\left.i<n\right\}$, and their translations $I_{n}(y):=\left\{x=\left(x_{i}\right)_{i} \in G, x_{i}=y_{i}\right.$ for $\left.i<n\right\}$.

The basis $\left(e_{n}\right)_{n}$ is formed by elements $e_{n}=\left(\delta_{i n}\right)_{i}$.
Define the sequence $\left(M_{n}\right)_{n}$ as follows: $M_{0}=1$ and $M_{n+1}=m_{n} M_{n}$.
If $\left|I_{n}\right|$ denotes the normalized product measure of I_{n} then it can be easily seen that $\left|I_{n}\right|=M_{n}^{-1}$.

The generalized Rademacher functions are defined by

$$
r_{n}(x):=e^{\frac{2 n i x n}{n_{n}}}, n \in \mathbb{N} \cup\{0\}, x \in G .
$$

For every non-negative integer n, there exists a unique sequence $\left(n_{i}\right)_{i}$ so that

$$
n=\sum_{i=0}^{\infty} n_{i} M_{i} .
$$

and the system of Vilenkin functions (see [4]), by

$$
\psi_{n}(x):=\prod_{i=0}^{\infty} r_{i}^{n_{i}}(x), n \in \mathbb{N} \cup\{0\}, x \in G .
$$

The Fourier coefficients, the partial sums of the Fourier series, the Dirichlet kernels and Fejér kernels are respectively defined as follows

$$
\begin{aligned}
\hat{f}(n) & :=\int f(x) \bar{\psi}_{n}(x) d x, \\
S_{n} f & :=\sum_{k=0}^{n-1} \hat{f}(k) \psi_{k}, \\
D_{n} & :=\sum_{k=0}^{n-1} \psi_{k} \\
K_{n} & :=\frac{1}{n} \sum_{k=1}^{n} D_{k} .
\end{aligned}
$$

It can be easily seen that

$$
S_{n} f(y)=\int D_{n}(y-x) f(x) d x
$$

and

$$
D_{M_{n}}(x)=M_{n} 1_{I_{n}}(x) .
$$

The notation C will be used for independent positive constant. Throughout this paper we write \log for the function $\log _{2}$.

The Nörlund logarithmic means are defined by

$$
t_{n} f:=\frac{1}{l_{n}} \sum_{k=1}^{n-1} \frac{S_{k} f}{n-k^{\prime}} \quad l_{n}:=\sum_{k=1}^{n-1} \frac{1}{k} .
$$

The functions $F_{n}, n \in \mathbb{N}$ are defined by

$$
F_{n}:=\frac{1}{l_{n}} \sum_{k=1}^{n-1} \frac{D_{k}}{n-k^{\prime}}
$$

it is clear that

$$
t_{n} f=F_{n} * f .
$$

2. Results

Lemma 2.1. The sequence of functions

$$
\frac{1}{l_{M_{n+1}}} \sum_{k=1}^{\left[\frac{m_{n}}{2}\right] M_{n}-1} \frac{D_{k}}{M_{n+1}-k}
$$

is uniformly bounded in the L^{1} norm.
Proof. Since (see [1, Lemma 1])

$$
D_{M_{k}-j}(x)=D_{M_{k}}(x)-{\bar{\psi} M_{k}-1}(-x) D_{j}(-x), \quad 1 \leq j<M_{k},
$$

we obtain that

$$
\begin{align*}
\sum_{k=1}^{\left[\frac{m_{n}}{2}\right] M_{n}-1} \frac{D_{k}(x)}{M_{n+1}-k}= & \sum_{k=M_{n+1}-\left[\frac{n_{n}}{2}\right] M_{n}+1}^{M_{n+1}-1} \frac{D_{M_{n+1}-k}(x)}{k} \\
= & \sum_{k=M_{n+1}-\left[\frac{n n}{2}\right] M_{n}+1}^{M_{n+1}-1} \frac{1}{k}\left(D_{M_{n+1}}(x)-\bar{\psi}_{M_{n+1}-1}(-x) D_{k}(-x)\right) \tag{2.1}\\
= & \left(l_{M_{n+1}}-l_{M_{n+1}-\left[\frac{m_{n}}{2}\right] M_{n}+1}\right) D_{M_{n+1}}(x) \\
& -\bar{\psi}_{M_{n+1}-1}(-x) \sum_{k=M_{n+1}-\left[\frac{n_{n}}{2}\right]}^{M_{n+1}-1} \frac{1}{k} D_{k}(-x) .
\end{align*}
$$

Now we have

$$
\begin{align*}
& \sum_{k=M_{n+1}-\left[\frac{m_{n}}{2}\right] M_{n}+1}^{M_{n+1}-1} \frac{1}{k} D_{k} \\
= & \sum_{k=M_{n+1}-\left[\frac{m_{n}}{2}\right] M_{n}}^{M_{n+1}-1}\left(\frac{1}{k}-\frac{1}{k+1}\right) \sum_{j=1}^{k} D_{j} \tag{2.2}\\
& -\frac{1}{M_{n+1}-\left[\frac{m_{n}}{2}\right] M_{n}} \sum_{j=1}^{M_{n+1}-\left[\left[m_{n}\right] M_{n}\right.} D_{j}+\frac{1}{M_{n+1}} \sum_{j=1}^{M_{n+1}-1} D_{j} \\
= & \sum_{k=M_{n+1}-\left[\frac{m_{n}}{2}\right] M_{n}}^{M_{n+1}-1} \frac{1}{k+1} K_{k}-K_{M_{n+1}-\left[\frac{m_{n}}{2}\right] M_{n}}+\frac{M_{n+1}-1}{M_{n+1}} K_{M_{n+1}-1} .
\end{align*}
$$

From [1, Lemma 3] we get for every $k \in\left\{M_{n+1}-\left[\frac{m_{n}}{2}\right] M_{n}, \ldots, M_{n+1}-1\right\}$,

$$
\left\|K_{k}\right\|_{1} \leq C \sum_{i=0}^{n+1} \frac{1}{2^{i}} \frac{1}{M_{n+1-i}} \sum_{t=0}^{n-i} M_{t+1} \log m_{t} \leq C \max _{t=0, \ldots, n} \log m_{t}
$$

Using this fact and Formula (2.2) we get

$$
\begin{aligned}
\left\|\sum_{k=M_{n+1}-\left[\frac{m_{n}}{2}\right] M_{n}+1}^{M_{n+1}-1} \frac{1}{k} D_{k}\right\|_{1} & \leq \sum_{k=M_{n+1}-\left[\frac{m_{n}}{2}\right] M_{n}}^{M_{n+1}-1} \frac{1}{k+1}\left\|K_{k}\right\|_{1} \\
& +\left\|K_{M_{n+1}-\left[\frac{m_{n}}{2}\right] M_{n}}\right\|_{1}+\left\|K_{M_{n+1}-1}\right\|_{1} \\
& \leq C \max _{t=0, \ldots, n} \log m_{t} .
\end{aligned}
$$

Using Formula (2.1) we get for every $n \in \mathbb{N}$,

$$
\frac{1}{l_{M_{n+1}}}\left\|\sum_{k=1}^{\left[\frac{m_{n}}{2}\right] M_{n}-1} \frac{D_{k}}{M_{n+1}-k}\right\|_{1} \leq C\left\|D_{M_{n+1}}\right\|_{1}+C \frac{\max _{t=0, \ldots, n} \log m_{t}}{\sum_{t=0}^{n} \log m_{t}}=O(1)
$$

Theorem 2.1. If the sequence $\left(m_{n}\right)_{n}$ is unbounded and if the sequence $\left(F_{M_{n}}\right)_{n}$ is bounded in L^{1}, then there exists a function $f \in L^{1}$ such that $t_{n} f \rightarrow f$ in L^{1}.

Proof. We first write

$$
\begin{aligned}
l_{M_{n+1}} F_{M_{n+1}} & =\sum_{k=1}^{M_{n+1}-1} \frac{D_{k}}{M_{n+1}-k} \\
& =\sum_{k=1}^{\left[\frac{m_{n}}{2}\right] M_{n}} \frac{D_{k}}{M_{n+1}-k}+\sum_{k=\left[\frac{m_{n}}{2}\right] M_{n}+1}^{M_{n+1}-1} \frac{D_{k}}{M_{n+1}-k} \\
& =\sum_{k=1}^{\left[\frac{m_{n}}{2}\right] M_{n}} \frac{D_{k}}{M_{n+1}-k}+\sum_{k=1}^{M_{n+1}-\left[\frac{m_{n}}{2}\right] M_{n}-1} \frac{D_{k+\left[\frac{m_{n}}{2}\right] M_{n}}^{M_{n+1}-\left[\frac{m_{n}}{2}\right] M_{n}-k}}{} \\
& =I+I I .
\end{aligned}
$$

Without loss of generality we may assume that m_{n} is even since the proof for odd numbers can be obtained in a similar way.

Since

$$
D_{s M_{n+1}+k}=D_{s M_{n+1}}+\psi_{s M_{n+1}} D_{k}, \quad 1 \leq k<M_{n+1}
$$

we obtain that

$$
\begin{aligned}
I I & =\sum_{k=1}^{\frac{M_{n+1}}{2}-1} \frac{D_{k+\frac{M_{n+1}}{2}}}{\frac{M_{n+1}}{2}-k}=\sum_{k=1}^{\frac{M_{n+1}}{2}-1} \frac{D_{\frac{M_{n+1}}{2}}+\psi_{\frac{M_{n+1}}{2}} D_{k}}{\frac{M_{n+1}}{2}-k} \\
& =D_{\frac{M_{n+1}}{2}} \sum_{k=1}^{\frac{M_{n+1}}{2}-1} \frac{1}{\frac{M_{n+1}}{2}-k}+\psi_{\frac{M_{n+1}}{2}} \sum_{k=1}^{\frac{M_{n+1}}{2}-1} \frac{D_{k}}{\frac{M_{n+1}}{2}-k} \\
& =l_{\frac{M_{n+1}}{2}} D_{\frac{M_{n+1}}{2}}+\psi_{\frac{M_{n+1}}{2}} l_{\frac{M_{n+1}}{2}} F_{\frac{M_{n+1}}{2}} .
\end{aligned}
$$

It follows that

$$
F_{M_{n+1}}=\frac{1}{l_{M_{n+1}}} \sum_{k=1}^{\frac{M_{n+1}}{2}} \frac{D_{k}}{M_{n+1}-k}+\frac{l_{M_{n+1}}}{l_{M_{n+1}}} D_{\frac{M_{n+1}^{2}}{}}+\psi_{\frac{M_{n+1}}{2}} \frac{l_{M_{n+1}}}{l_{M_{n+1}}} F_{\frac{M_{n+1}}{2}}
$$

which leads from $\psi_{\frac{M_{n+1}^{2}}{2}}= \pm 1$,

$$
\psi_{\frac{M_{n+1}}{2}} F_{M_{n+1}}=\frac{\psi_{\frac{M_{n+1}}{2}}}{l_{M_{n+1}}} \sum_{k=1}^{\frac{M_{n+1}}{2}} \frac{D_{k}}{M_{n+1}-k}+\frac{l_{\frac{M_{n+1}}{2}}}{l_{M_{n+1}}} \psi_{\frac{M_{n+1}}{2}} D_{\frac{M_{n+1}}{2}}+\frac{l_{\frac{M_{n+1}}{2}}}{l_{M_{n+1}}} F_{\frac{M_{n+1}}{2}}
$$

and

$$
\begin{aligned}
\left\|F_{\frac{M_{n+1}^{2}}{}} * f\right\|_{1} & \geq\left\|\psi_{\frac{M_{n+1}^{2}}{2}} D_{\frac{M_{n+1}}{2}} * f\right\|_{1}-C\left\|\psi_{\frac{M_{n+1}}{2}} F_{M_{n+1}} * f\right\|_{1} \\
& -C\left\|\frac{\psi_{\frac{M_{n+1}^{2}}{2}}^{l_{M_{n+1}}} \sum_{k=1}^{2}}{D_{k}}\right\|_{1}^{M_{n+1}-k} * f \|_{1} .
\end{aligned}
$$

Under the boundedness assumption of $\left(F_{M_{n}}\right)_{n}$ in L^{1} we get

$$
\left\|\psi_{\frac{M_{n+1}^{2}}{}} F_{M_{n+1}} * f\right\|_{1} \leq C\|f\|_{1}
$$

Applying Lemma 2.1 we get

$$
\left\|\frac{\psi_{M_{n+1}}^{2}}{l_{M_{n+1}}} \sum_{k=1}^{\frac{M_{n+1}}{2}} \frac{D_{k}}{M_{n+1}-k} * f\right\|_{1} \leq C\|f\|_{1}
$$

In order to prove the divergence of $\left(F_{\frac{M_{n+1}}{2}} * f\right)_{n}$ for some function $f \in L^{1}$ it suffices to prove that $\left(\psi_{\frac{M_{n+1}}{2}} D_{\frac{M_{n+1}}{2}} * f\right)_{n}$ diverges.

Let the subsequence of even numbers $\left(m_{n_{k}}\right)_{k}$ be so that

$$
\sum_{k=0}^{\infty} \frac{1}{\sqrt{\log m_{n_{k}}}}<+\infty
$$

We construct the integrable function

$$
f(x)=\sum_{k=0}^{\infty} \frac{1}{\sqrt{\log m_{n_{k}}}} D_{M_{n_{k}+1}}\left(x-e_{n_{k}}\right)
$$

For arbitrary positive integers n, k and $y \in G$ we have

$$
\begin{aligned}
& \psi_{\frac{M_{n_{k}+1}}{2}} D_{\frac{M_{n_{k}+1}}{2}} * D_{M_{n_{l}+1}}\left(x-e_{n_{l}}\right)(y) \\
& =M_{n_{l}+1} M_{n_{k}} \int_{\left\{t: y-t-e_{n_{l}} \in I_{n_{l}+1}\right\} \cap I_{n_{k}}} \psi_{M_{n_{k}}}^{\frac{m_{n_{k}}}{2}}(t)\left(1+\psi_{M_{n_{k}}}(t)+\ldots+\psi_{M_{n_{k}}}^{\frac{m_{n_{k}}}{2}-1}(t)\right) d t .
\end{aligned}
$$

The last expression does not vanish only if

$$
y \in e_{n_{l}}+I_{n_{k}}+I_{n_{l}+1}
$$

This is equivalent to

$$
\begin{cases}y \in e_{n_{l}}+I_{n_{l}+1}, & k \geq l+1 \\ y \in I_{n_{k}}, & k<l+1\end{cases}
$$

Therefore, if $k \geq l+1$, we have for $y \in e_{n_{l}}+I_{n_{l}+1}$

$$
\left\{t: y-t-e_{n_{l}} \in I_{n_{l}+1}\right\} \cap I_{n_{k}}=I_{n_{l}+1} \cap I_{n_{k}}=I_{n_{k}}
$$

In this case

$$
\psi_{M_{n_{k}}}^{\frac{m n_{k}}{2}} D_{\frac{M_{n_{k}+1}}{2}} * D_{M_{n_{l}+1}}\left(x-e_{n_{l}}\right)(y)=0
$$

For $l \geq k$ and $y \in I_{n_{k}}$, we have

$$
\begin{aligned}
\left\{t: y-t-e_{n_{l}} \in I_{n_{l}+1}\right\} \cap I_{n_{k}} & =\left\{t: t-\left(y-e_{n_{l}}\right) \in I_{n_{l}+1}\right\} \cap I_{n_{k}} \\
& =y-e_{n_{l}}+I_{n_{l}+1} \cap I_{n_{k}}=y-e_{n_{l}}+I_{n_{l}+1} .
\end{aligned}
$$

It follows that for $l \geq k$

$$
\begin{aligned}
& \psi_{M_{n_{k}}}^{\frac{m_{n_{k}}}{2}} D_{\frac{M_{n_{k}+1}}{2}} * D_{M_{n_{l}+1}}\left(x-e_{n_{l}}\right)(y) \\
& =M_{n_{k}} 1_{I_{n_{k}}}(y) \psi_{M_{n_{k}}}^{\frac{m_{n_{k}}}{2}}\left(y-e_{n_{l}}\right) \cdot\left(1+\psi_{M_{n_{k}}}\left(y-e_{n_{l}}\right)+\ldots+\psi_{M_{n_{k}}}^{\frac{m_{n_{k}}}{2}}\left(y-e_{n_{l}}\right)\right) .
\end{aligned}
$$

Therefore, we get

$$
\begin{align*}
& \left\|\psi_{M_{n_{k}}}^{\frac{m_{n_{k}}}{2}} D_{\frac{M_{n_{k}+1}}{2}} * f\right\|_{1} \\
& =M_{n_{k}} \int_{I_{n_{k}}} \left\lvert\,\left(1+\psi_{M_{n_{k}}}\left(y-e_{n_{k}}\right)+\ldots+\psi_{M_{n_{k}}}^{\frac{m_{n_{k}}}{2}-1}\left(y-e_{n_{k}}\right)\right) \frac{\psi_{M_{n_{k}}}^{\frac{m_{n_{k}}}{2}}\left(y-e_{n_{k}}\right)}{\sqrt{\log m_{n_{k}}}}\right. \tag{2.3}\\
& \quad+\sum_{l=k+1}^{\infty}\left(1+\psi_{M_{n_{k}}}(y)+\ldots+\psi_{M_{n_{k}}}^{\frac{m_{n_{k}}}{2}}-1\right. \\
& \quad(y)) \left.\frac{\psi_{M_{n_{k}}}^{\frac{m_{n_{k}}}{2}}(y)}{\sqrt{\log m_{n_{l}}}} \right\rvert\, d y .
\end{align*}
$$

We have

$$
\begin{aligned}
1+\psi_{M_{n_{k}}}(y)+\ldots+\psi_{M_{n_{k}}}^{\frac{m_{n_{k}}}{2}-1}(y)= & \frac{\sin \frac{\pi}{2} y_{n_{k}} \cos \frac{m_{n_{k}}-2}{2 m_{n_{k}}} \pi y_{n_{k}}}{\sin \frac{\pi}{m_{n_{k}}} y_{n_{k}}} \\
& +i \frac{\sin \frac{\pi}{2} y_{n_{k}} \sin \frac{m_{n_{k}}-2}{2 m_{n_{k}}} \pi y_{n_{k}}}{\sin \frac{\pi}{m_{n_{k}}} y_{n_{k}}} .
\end{aligned}
$$

Suppose that $y_{n_{k}}$ is even, then we have

$$
1+\psi_{M_{n_{k}}}(y)+\cdots+\psi_{M_{n_{k}}}^{\frac{m_{n_{k}}}{2}-1}(y)=0
$$

and

$$
\left|1+\psi_{M_{n_{k}}}\left(y-e_{n_{k}}\right)+\cdots+\psi_{M_{n_{k}}}^{\frac{m n_{k}}{2}-1}\left(y-e_{n_{k}}\right)\right| \sim\left|\cot \frac{\pi}{m_{n_{k}}} y_{n_{k}}\right|
$$

If in the right side of (2.3) we only integrate on even $y_{n_{k}}$, for

$$
y_{n_{k}} \in\left\{1, \ldots, m_{n_{k}}-1\right\}
$$

we get

$$
\begin{aligned}
\left\|\psi_{M_{n_{k}}}^{\frac{m_{n_{k}}}{2}} D_{\frac{M_{n_{k}+1}}{}} * f\right\|_{1} & \geq C \frac{1}{m_{n_{k}} \sqrt{\log m_{n_{k}}}} \sum_{y_{n_{k}} \in\left\{2, \ldots, m_{n_{k}}-2\right\} ; y_{n_{k}}}\left|\cot \frac{\pi}{m_{n_{k}}} y_{n_{k}}\right| \\
& \sim \sqrt{\log m_{n_{k}}} .
\end{aligned}
$$

Since in [1, Theorem 2] the authors proved that under certain conditions $t_{n} f-f \rightarrow 0$ in L^{1}, we may provide an example where $\left(t_{n} f\right)_{n}$ diverges and the condition of [1, Theorem 2] is not verified.

Example 2.1. There exists an unbounded Vilenkin group represented by the sequence $\left(m_{n}\right)_{n}$ such that

1. $\log m_{n_{k}} \sim \sqrt{n_{k}}$, for some subsequence $\left(m_{n_{k}}\right)_{k}$ and
2. $t_{n} f \leftrightarrow f$ in L^{1}.

Using Theorem 2.1 and [1, Lemma 4] it suffices to construct a sequence $\left(m_{n}\right)_{n}$ such that

$$
\sup _{n} \frac{\sum_{k=0}^{n-1}\left(\log m_{k}\right)^{2}}{\sum_{k=0}^{n-1} \log m_{k}}<+\infty .
$$

Let $m_{k}=2$ if $k \neq 4^{s}$ for all positive integers s, and $\log m_{k}=2^{s}=\sqrt{k}$ if $k=4^{s}$. Hence we have

$$
\sum_{k=0}^{n-1}\left(\log m_{k}\right)^{2}=\sum_{s=[\log \sqrt{n-1]}+1}^{n-1}(\log 2)^{2}+\sum_{s=0}^{[\log \sqrt{n-1}]} 4^{s} \leq n(\log 2)^{2}+C 4^{\log \sqrt{n}} \sim n .
$$

On the other hand we have

$$
\sum_{k=0}^{n-1} \log m_{k} \sim n \log 2+2^{\log \sqrt{n}} \sim n
$$

from which we easily obtain the result.

3. Conclusion

Example 2.1 is very similar to Example 1, given in [1], where the authors proved a divergence result for some sequence $\left(m_{n}\right)_{n}$ satisfying $\log m_{n}=O\left(n^{\frac{1}{4}}\right)$. It is clear that in both cases divergence is a direct consequence of the boundedness of the subsequence $\left(\left\|F_{M_{n}}\right\|_{1}\right)_{n}$. This gives a better understanding on the behaviour of unbounded sequences $\left(m_{n}\right)_{n}$ that may define groups on which L^{1}-convergence of $\left(t_{n} f\right)_{n}$ is satisfied for all integrable functions.

Acknowledgement. I would like to thank the referees for their valuable comments and suggestions.

REFERENCES

1. I. Blahota and G. Gát: Norm summabitity of Nörlund logarithmic means on unbounded Vilenkin groups. Anal. Theory Appl. Vol 24, 1 (2008), 1-17.
2. G. GÁt and U. Goginava: On the divergence of Nörlund logarithmic means of Walsh-Fourier series. Acta Math. Sinica. 25 (6) (2009), 903-916.
3. G. GÁт, Convergence and divergence of fejer means of Fourier series on one and two dimensional Walsh and Vilenkin groups, Facta Universitatis, Ser.:Elec. Energ. 21 (3) (2008), 291-307.
4. N. Ya. Vilenkin: A class of complete orthonormal systems. Izv. Akad. Nauk. U.S.S.R., Ser. Mat. 11 (1947), 363-400.

Nacima Memić
University of Sarajevo, Faculty of Science
Department of Mathematics
Zmaja od Bosne 33-35 71000 Sarajevo, Bosnia and Herzegovina
nacima.o@gmail.com

