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ON THE DIVERGENCE OF NÖRLUND LOGARITHMIC MEANS WITH
RESPECT TO THE L1 NORM ON SOME UNBOUNDED VILENKIN GROUPS

Nacima Memić

Abstract. Using the results of the paper [1] we give a divergence result of Nörlund
logarithmic means for some unbounded Vilenkin groups. We prove that the boundedness
of the subsequence (‖FMn‖1)n implies the divergence in the L1 norm of the sequence (tn f )n

for a conveniently chosen integrable function f . We provide an example to illustrate a
direct application of this result.
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1. Introduction

In their paper [1] the authors proved a convergence result of the subsequence
(tMn f )n to the integrable function f in the L1 norm for some unbounded Vilenkin
groups. The main tool was the boundedness of the sequence (‖FMn‖1)n. Paradoxi-
cally, this is the reason of the divergence of the whole sequence (tn f )n.

Therefore, in order to construct unbounded groups on which the sequence
(tn f )n converges in the L1 norm, the property of uniform boundedness needs to be
avoided.

Other divergence results can also be found in [1] and [2]. Many known results
and open problems are presented in the work of Gat [3].

Let (m0,m1, . . . ,mn, . . . ) be a sequence of integers not less than 2. The Vilenkin
group G is defined by G :=

∏∞
n=0Zmn , whereZmn denotes a discrete group of order

mn, with addition mod mn.

It is said that G is unbounded if the sequence (m0,m1, . . . ,mn, . . . ) is unbounded.

Each element from G can be represented as a sequence (xn)n, where xn ∈
{0, 1, . . . ,mn − 1}, for every integer n ≥ 0. Addition in G is obtained coordinate-
wise.
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The topology on G is generated by the subgroups
In := {x = (xi)i ∈ G, xi = 0 for i < n}, and their translations
In(y) := {x = (xi)i ∈ G, xi = yi for i < n}.

The basis (en)n is formed by elements en = (δin)i.
Define the sequence (Mn)n as follows: M0 = 1 and Mn+1 = mnMn.
If |In| denotes the normalized product measure of In then it can be easily seen

that |In| =M−1
n .

The generalized Rademacher functions are defined by

rn(x) := e
2πixn

mn , n ∈N ∪ {0}, x ∈ G.

For every non-negative integer n, there exists a unique sequence (ni)i so that

n =
∞∑
i=0

niMi.

and the system of Vilenkin functions (see [4]), by

ψn(x) :=
∞∏
i=0

rni
i (x), n ∈N ∪ {0}, x ∈ G.

The Fourier coefficients, the partial sums of the Fourier series, the Dirichlet
kernels and Fejér kernels are respectively defined as follows

f̂ (n) :=
∫

f (x)ψ̄n(x)dx,

Sn f :=
n−1∑
k=0

f̂ (k)ψk,

Dn :=
n−1∑
k=0

ψk,

Kn :=
1
n

n∑
k=1

Dk.

It can be easily seen that

Sn f (y) =
∫

Dn(y − x) f (x)dx,

and
DMn(x) =Mn1In(x).

The notation C will be used for independent positive constant. Throughout this
paper we write log for the function log2.
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The Nörlund logarithmic means are defined by

tn f :=
1
ln

n−1∑
k=1

Sk f
n − k

, ln :=
n−1∑
k=1

1
k
.

The functions Fn, n ∈N are defined by

Fn :=
1
ln

n−1∑
k=1

Dk

n − k
,

it is clear that
tn f = Fn ∗ f .

2. Results

Lemma 2.1. The sequence of functions

1
lMn+1

[ mn
2 ]Mn−1∑

k=1

Dk

Mn+1 − k

is uniformly bounded in the L1 norm.

Proof. Since (see [1, Lemma 1])

DMk− j(x) = DMk (x) − ψMk−1(−x)Dj(−x), 1 ≤ j < Mk,

we obtain that

(2.1)

[ mn
2 ]Mn−1∑

k=1

Dk(x)
Mn+1−k

=

Mn+1−1∑
k=Mn+1−[ mn

2 ]Mn+1

DMn+1−k(x)
k

=

Mn+1−1∑
k=Mn+1−[ mn

2 ]Mn+1

1
k

(DMn+1(x) − ψ̄Mn+1−1(−x)Dk(−x))

= (lMn+1 − lMn+1−[ mn
2 ]Mn+1)DMn+1(x)

− ψ̄Mn+1−1(−x)
Mn+1−1∑

k=Mn+1−[ mn
2 ]Mn+1

1
k

Dk(−x).

Now we have
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(2.2)

Mn+1−1∑
k=Mn+1−[ mn

2 ]Mn+1

1
k

Dk

=

Mn+1−1∑
k=Mn+1−[ mn

2 ]Mn

(
1
k
− 1

k + 1
)

k∑
j=1

Dj

− 1
Mn+1 − [ mn

2 ]Mn

Mn+1−[ mn
2 ]Mn∑

j=1

Dj +
1

Mn+1

Mn+1−1∑
j=1

Dj

=

Mn+1−1∑
k=Mn+1−[ mn

2 ]Mn

1
k + 1

Kk − KMn+1−[ mn
2 ]Mn

+
Mn+1 − 1

Mn+1
KMn+1−1.

From [1, Lemma 3] we get for every k ∈ {Mn+1 − [ mn
2 ]Mn, . . . ,Mn+1 − 1},

‖Kk‖1 ≤ C
n+1∑
i=0

1
2i

1
Mn+1−i

n−i∑
t=0

Mt+1 log mt ≤ C max
t=0,...,n

log mt.

Using this fact and Formula (2.2) we get

∥∥∥∥∥∥∥∥
Mn+1−1∑

k=Mn+1−[ mn
2 ]Mn+1

1
k

Dk

∥∥∥∥∥∥∥∥
1

≤
Mn+1−1∑

k=Mn+1−[ mn
2 ]Mn

1
k + 1

‖Kk‖1

+ ‖KMn+1−[ mn
2 ]Mn
‖1 + ‖KMn+1−1‖1

≤ C max
t=0,...,n

log mt.

Using Formula (2.1) we get for every n ∈N,

1
lMn+1

‖
[ mn

2 ]Mn−1∑
k=1

Dk

Mn+1 − k
‖1 ≤ C‖DMn+1‖1 + C

maxt=0,...,n log mt∑n
t=0 log mt

= O(1).

Theorem 2.1. If the sequence (mn)n is unbounded and if the sequence (FMn)n is bounded
in L1, then there exists a function f ∈ L1 such that tn f � f in L1.

Proof. We first write
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lMn+1FMn+1 =

Mn+1−1∑
k=1

Dk

Mn+1 − k

=

[ mn
2 ]Mn∑
k=1

Dk

Mn+1 − k
+

Mn+1−1∑
k=[ mn

2 ]Mn+1

Dk

Mn+1 − k

=

[ mn
2 ]Mn∑
k=1

Dk

Mn+1 − k
+

Mn+1−[ mn
2 ]Mn−1∑

k=1

Dk+[ mn
2 ]Mn

Mn+1 − [ mn
2 ]Mn − k

= I + II.

Without loss of generality we may assume that mn is even since the proof for
odd numbers can be obtained in a similar way.

Since
DsMn+1+k = DsMn+1 + ψsMn+1Dk, 1 ≤ k < Mn+1,

we obtain that

II =

Mn+1
2 −1∑
k=1

D
k+

Mn+1
2

Mn+1
2 − k

=

Mn+1
2 −1∑
k=1

D Mn+1
2
+ ψMn+1

2
Dk

Mn+1
2 − k

= D Mn+1
2

Mn+1
2 −1∑
k=1

1
Mn+1

2 − k
+ ψMn+1

2

Mn+1
2 −1∑
k=1

Dk
Mn+1

2 − k

= l Mn+1
2

D Mn+1
2
+ ψMn+1

2
l Mn+1

2
F Mn+1

2
.

It follows that

FMn+1 =
1

lMn+1

Mn+1
2∑

k=1

Dk

Mn+1 − k
+

l Mn+1
2

lMn+1

D Mn+1
2
+ ψMn+1

2

l Mn+1
2

lMn+1

F Mn+1
2
,

which leads from ψMn+1
2
= ±1,

ψMn+1
2

FMn+1 =
ψMn+1

2

lMn+1

Mn+1
2∑

k=1

Dk

Mn+1 − k
+

l Mn+1
2

lMn+1

ψMn+1
2

D Mn+1
2
+

l Mn+1
2

lMn+1

F Mn+1
2
,

and
∥∥∥∥F Mn+1

2
∗ f
∥∥∥∥

1
≥
∥∥∥∥ψMn+1

2
D Mn+1

2
∗ f
∥∥∥∥

1
− C
∥∥∥∥ψMn+1

2
FMn+1 ∗ f

∥∥∥∥
1

− C

∥∥∥∥∥∥∥∥∥
ψMn+1

2

lMn+1

Mn+1
2∑

k=1

Dk

Mn+1 − k
∗ f

∥∥∥∥∥∥∥∥∥
1

.
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Under the boundedness assumption of (FMn)n in L1 we get

‖ψMn+1
2

FMn+1 ∗ f ‖1 ≤ C‖ f ‖1.

Applying Lemma 2.1 we get

∥∥∥∥∥∥∥∥∥
ψMn+1

2

lMn+1

Mn+1
2∑

k=1

Dk

Mn+1 − k
∗ f

∥∥∥∥∥∥∥∥∥
1

≤ C‖ f ‖1.

In order to prove the divergence of
(
F Mn+1

2
∗ f
)

n
for some function f ∈ L1 it

suffices to prove that
(
ψMn+1

2
D Mn+1

2
∗ f
)

n
diverges.

Let the subsequence of even numbers (mnk )k be so that

∞∑
k=0

1√
log mnk

< +∞.

We construct the integrable function

f (x) =
∞∑

k=0

1√
log mnk

DMnk+1 (x − enk ).

For arbitrary positive integers n, k and y ∈ G we have

ψMnk+1
2

D Mnk+1
2

∗DMnl+1 (x − enl )(y)

=Mnl+1Mnk

∫
{t:y−t−enl∈Inl+1}∩Ink

ψ
mnk

2
Mnk

(t)(1 + ψMnk
(t) + . . . + ψ

mnk
2 −1

Mnk
(t))dt.

The last expression does not vanish only if

y ∈ enl + Ink + Inl+1.

This is equivalent to

{
y ∈ enl + Inl+1, k ≥ l + 1,
y ∈ Ink , k < l + 1.

Therefore, if k ≥ l + 1, we have for y ∈ enl + Inl+1

{t : y − t − enl ∈ Inl+1} ∩ Ink = Inl+1 ∩ Ink = Ink .

In this case
ψ

mnk
2

Mnk
D Mnk+1

2

∗DMnl+1(x − enl )(y) = 0.
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For l ≥ k and y ∈ Ink , we have

{t : y − t − enl ∈ Inl+1} ∩ Ink = {t : t − (y − enl ) ∈ Inl+1} ∩ Ink

= y − enl + Inl+1 ∩ Ink = y − enl + Inl+1.

It follows that for l ≥ k

ψ
mnk

2
Mnk

D Mnk+1
2

∗DMnl+1 (x − enl )(y)

=Mnk 1Ink
(y)ψ

mnk
2

Mnk
(y − enl ) · (1 + ψMnk

(y − enl ) + . . . + ψ
mnk

2 −1
Mnk

(y − enl )).

Therefore, we get

(2.3)

∥∥∥∥∥ψ
mnk

2
Mnk

D Mnk+1
2

∗ f
∥∥∥∥∥

1

=Mnk

∫
Ink

|(1 + ψMnk
(y − enk ) + . . . + ψ

mnk
2 −1

Mnk
(y − enk ))

ψ
mnk

2
Mnk

(y − enk )√
log mnk

+

∞∑
l=k+1

(1 + ψMnk
(y) + . . . + ψ

mnk
2 −1

Mnk
(y))

ψ
mnk

2
Mnk

(y)√
log mnl

|dy.

We have

1 + ψMnk
(y) + . . . + ψ

mnk
2 −1

Mnk
(y) =

sin π
2 ynk cos

mnk−2
2mnk

πynk

sin π
mnk

ynk

+ i
sin π

2 ynk sin
mnk−2
2mnk

πynk

sin π
mnk

ynk

.

Suppose that ynk is even, then we have

1 + ψMnk
(y) + · · · + ψ

mnk
2 −1

Mnk
(y) = 0,

and
|1 + ψMnk

(y − enk ) + · · · + ψ
mnk

2 −1
Mnk

(y − enk )| ∼ | cot
π

mnk

ynk |.

If in the right side of (2.3) we only integrate on even ynk , for

ynk ∈ {1, . . . ,mnk − 1}
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we get

∥∥∥∥∥ψ
mnk

2
Mnk

D Mnk+1
2

∗ f
∥∥∥∥∥

1
≥ C

1

mnk

√
log mnk

∑
ynk
∈{2,...,mnk

−2};ynk
even

| cot
π

mnk

ynk |

∼ √log mnk .

Since in [1, Theorem 2] the authors proved that under certain conditions tn f − f � 0
in L1, we may provide an example where (tn f )n diverges and the condition of [1,
Theorem 2] is not verified.

Example 2.1. There exists an unbounded Vilenkin group represented by the sequence (mn)n

such that

1. log mnk ∼
√

nk, for some subsequence (mnk )k and

2. tn f � f in L1.

Using Theorem 2.1 and [1, Lemma 4] it suffices to construct a sequence (mn)n such that

sup
n

∑n−1
k=0 (log mk)2∑n−1

k=0 log mk

< +∞.

Let mk = 2 if k � 4s for all positive integers s, and log mk = 2s =
√

k if k = 4s. Hence we
have

n−1∑
k=0

(log mk)2 =

n−1∑
s=[log

√
n−1]+1

(log 2)2 +

[log
√

n−1]∑
s=0

4s ≤ n(log 2)2 + C4log
√

n ∼ n.

On the other hand we have

n−1∑
k=0

log mk ∼ n log 2 + 2log
√

n ∼ n,

from which we easily obtain the result.

3. Conclusion

Example 2.1 is very similar to Example 1, given in [1], where the authors proved
a divergence result for some sequence (mn)n satisfying log mn = O(n

1
4 ). It is clear

that in both cases divergence is a direct consequence of the boundedness of the
subsequence (‖FMn‖1)n. This gives a better understanding on the behaviour of
unbounded sequences (mn)n that may define groups on which L1-convergence of
(tn f )n is satisfied for all integrable functions.
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