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BOUNDARY VALUE PROBLEMS FOR NONLINEAR FRACTIONAL
DIFFERENTIAL EQUATIONS

Ali Benlabbes, Maamar Benbachir and Mustapha Lakrib

Abstract. Sufficient conditions are given for the existence of solutions for the following
boundary value problem for a nonlinear fractional differential equation

{
Dα0+u(t) = f (t,u(t)), t ∈ J = [0, 1], 2 < α ≤ 3

Dα−1
0+ u (0) = 0, Dα−2

0+ u (1) = 0, u(1) = 0

where f is a given function and Dα0+ is the standard Riemman fractional derivative
operator of order α. The results are proved using Banach contraction principle and Kras-
noselskii’s cone fixed point theorem.
Keywords: Differential equation; Boundary value problem; Nonlinear fractional differ-
ential equation; Riemman fractional derivative operator

1. Introduction

Since the introduction of the different types of fractional derivatives, differential
equations of fractional order have proved to be valuable tools in the modeling of
many physical and chemical processes and in engineering. Indeed, we can find
numerous applications in viscoelasticity, electrochemistry, control, or electromag-
netics. The attention drawn to the theory of fractional integration and differentia-
tion and applications is evident from an increased number of recent publications
(see [3, 5, 7, 8, 9, 14, 15, 16, 17, 18, 19] and the references therein).

Usually, the fundamental tool used in the literature to prove the existence
of positive solutions for boundary value problems for ordinary and fractional
differential equations, difference equations, and dynamic equations on time scales,
is the theory of fixed point (see, for example, [1, 2, 4, 6, 10, 11, 12, 13] and the works
cited below).

In [18], by use of some fixed point arguments, Zhang proved the existence of
solutions for the following nonlinear fractional boundary value problem involving

Received April 26, 2014. Accepted February 25, 2015.
2010 Mathematics Subject Classification. Primary 26A33; Secondary 34B25, 34B15.

157



158 A. Benlabbes, M. Benbachir and M. Lakrib

Caputo’s derivative:

{
Dαt u + f (t, u(t)) = 0, 0 < t < 1, 1 < α < 2
u(0) = ν, u(1) = ρ, νρ � 0.

In another paper, by use of a fixed point theorem in cones, Zhang in [19] stud-
ied the existence and multiplicity of positive solutions of the nonlinear fractional
boundary value problem:

{
Dαt u + f (t, u(t)) = 0, 0 < t < 1, 1 < α < 2,
u(0) + u

′
(0) = 0, u(1) + u′(1) = 0,

where Dαt is the Caputo’s fractional derivative.

In [5], Benchohra, Hamani, Ntouyas and Ouahab, by means of the Banach fixed
point theorem and the nonlinear alternative of Leray–Schauder type, proved the
existence of solutions for the first order boundary value problem for a fractional
order differential equation:

{
Dαt u = f (t, u(t)) = 0, 0 < t < 1, 0 < α < 1,
au(0) + bu(1) = c,

where Dαt is the Caputo’s fractional derivative, f is a continuous function and a, b, c
are real constants with a + b � 0.

In [3], Bai and Lü considered the nonlinear fractional boundary value problem:

{
Dα0+u + f (t, u(t)) = 0, 0 < t < 1, 1 < α < 2,
u(0) = u(1) = 0,

where Dα0+ is the standard Riemann-Liouville fractional differential operator of
order α. They obtained the existence of positive solutions by means of some fixed
point theorems on cone.

In [8], Delbosco and Rodino proved existence and uniqueness for some classes
of nonlinear fractional differential equations of the form:

Dsu = f (t, u), 0 < s < 1,

where f : [0, a] ×R→ R, 0 < a ≤ +∞ is a given continuous function. In this paper,
the authors used the Banach contraction principle.

By using Krasnoselskii’s fixed point theorem in cones, El-Shahed in [9] proved
the existence and non-existence of positive solutions for the following nonlinear
fractional boundary value problem:

{
Dα0+u + λa(t) f (u(t)) = 0, 0 < t < 1, 2 < α ≤ 3,
u(0) = u′(0) = u′(1) = 0,
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where Dα0+ is the standard Riemann-Liouville fractional differential operator of
order α.

In [16], Saadi and Benbachir obtained sufficient conditions for the existence and
non-existence of positive solutions for the following nonlinear fractional boundary
value problem:

{
Dα0+u + a(t) f (u(t)) = 0, 0 < t < 1, 2 < α ≤ 3,
u(0) = u′(0) = 0, u′(1) − μu′(η) = λ,

where Dα0+ is the standard Riemann-Liouville fractional differential operator of
order α, f : [0,∞) −→ [0,∞) and a : (0, 1) −→ [0,∞) are continuous functions,
η ∈ (0, 1), μ ∈

[
0, 1/ηα−2

)
and λ ∈ [0,∞) are some fixed constants. By use of

Guo-Krasnoselskii’s fixed point theorem and Schauder’s fixed point theorem, the
existence of positive solutions to this problem is obtained in case when either f is
superlinear or sublinear.

Recently, in [17], Saadi, Benmezai and Benbachir gave some sufficient conditions
for the existence of positive solutions to the nonlinear fractional semi-positone
boundary value problem:

{
Dα0+u + f (t, u(t)) = 0, 0 < t < 1, 2 < α ≤ 3,
u(0) = u′(0) = 0, u′(1) = μu′(η),

where Dα0+ is the standard Riemann-Liouville differential operator of order α and
the nonlinear term f : [0, 1]×[0,+∞)→ R satisfies a L1-Carathéodory condition. By
use of a fixed point index theorem, the existence of at least two positive solutions
is obtained.

Motivated by [17], this paper deals with the existence of solutions for the fol-
lowing nonlinear fractional boundary value problem:

(1.1)
{

Dα0+u(t) = f (t, u(t)), t ∈ J, 2 < α ≤ 3
Dα−1

0+ u(0) = 0, Dα−2
0+ u(1) = 0, u(1) = 0.

The rest of this paper is organized as follows. In section 2, we present some
preliminaries and lemmas. Section 3 is devoted to the existence of solutions to
problem (1.1). In section 4 an example is treated illustrating our results.

2. Elementary definitions and lemmas

In this section [11], we introduce notations, definitions and preliminary facts which
are used throughout the paper. We denote by C(J,R) the Banach space of all
continuous functions from J = [0, 1] into R with the norm ‖u‖∞ := sup

t∈J
|u(t)| .
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Definition 2.1. The Riemann-Liouville fractional integral of order α > 0 of a func-
tion u ∈ L1 ([a, b] , [0,∞)) is defined by

Iαa u (t) =
1
Γ (α)

∫ t

a
(t − s)α−1 u (s) ds,

where Γ is the gamma function.

When a = 0, we write Iα0 u (t) =
(
u ∗ ϕα) (t), where ϕα (t) = tα−1

Γ(α) for t > 0, and
ϕα (t) = 0 for t < 0, and ϕα −→ δ as α −→ 0, where δ is the delta function.

Definition 2.2. For a function u given in [0,+∞), the expression

Dα0+u (t) =
1

Γ(α − n)

(
d
dt

)n ∫ s

0
(t − s)n−α−1 u (s) ds

is called the Riemann-Liouville fractional derivative of order α, where n = [α] + 1,
and [α] denote the integer part of number α.

Remark 2.1.

• For α < 0, we use the convention that Dα0+u (t) = I−α0 u(t), for t ≥ 0.

• For β ∈ [0, α), we have Dβ0+ Iα0+u = Iα−β0+ u, with Dα0+ I
α
0+u = u.

• For λ > −1, λ � α − 1, α − 2, ...α − n,we have, for t ≥ 0,

(2.1) Dα0+ t
λ =

Γ(λ + 1)
Γ(λ − α + 1)

tλ−α and Dα0+ t
α−i = 0, ∀i = 1, 2, ..,n.

Lemma 2.1. Let α > 0. The general solution to the homogeneous equation

Dα0+u(t) = 0,

in C(J,R)∩ L1(J,R) is

u(t) = c1tα−1 + c2tα−2 + ... + cntα−n, t ∈ J.

Lemma 2.2. Let n − 1 < α < n and u ∈ C(J,R).We have

Iα0+D
α
0+u (t) = u(t) − c1tα−1 − c2tα−2 − ... − cntα−n, t ∈ J.

Let us now present the fundamental tools on which the proofs of our main
results are based.

Definition 2.3. Let (X, ‖ · ‖) be a normed space. A contraction of X is a mapping
P : X −→ X that satisfies

∀x1, x2 ∈ X : ‖P(x1) − P(x2)‖ ≤ β‖x1 − x2‖,
for some real number β < 1.
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Theorem 2.1. (Banach fixed point theorem) Every contraction mapping on a complete
metric space has a unique fixed point.

Theorem 2.2. (Krasnselskii’s fixed point theorem) Let B be a closed convex non-
empty subset of a Banach space X. Suppose that P1, P2 map B into X such that

1. P1u + P2v ∈ B, ∀u, v ∈ B,

2. P1 is a contraction mapping,

3. P2 is continuous and P2(B) is contained in a compact set.

Then there exists u ∈ B such that P1u + P2u = u.

3. Existence of solutions

Let us consider the following problem

(3.1)
{

Dα0+u (t) = f (t, u(t)), t ∈ J = [0, 1], 2 < α ≤ 3,
Dα−1

0+ u (0) = 0, Dα−2
0+ u (1) = 0, u(1) = 0.

Definition 3.1. A function u ∈ C(J,R) is said to be a solution to problem (3.1) if u
satisfies the fractional differential equation

Dα0+u (t) = f (t, u(t)), t ∈ J,

and the conditions

Dα−1
0+ u (0) = 0, Dα−2

0+ u (1) = 0, u(1) = 0.

Lemma 3.1. Let 2 < α < 3 and let h : J −→ R be a continuous function. A function u is
a solution to the fractional integral equation

u(t) = u0 +
1
Γ (α)

∫ t

0
(t − s)α−1 h (s) ds

if and only if it is a solution to the initial value problem
{

Dα0+u (t) = h(t), t ∈ J
u(0) = u0.

Lemma 3.2. Let 2 < α < 3 and let h : J −→ R be a continuous function. A function u is
a solution of the initial value problem

(3.2)
{

Dα0+u (t) = h(t), t ∈ J,

Dα−1
0+ u (0) = 0, Dα−2

0+ u (1) = 0, u(1) = 0,
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if and only if it is a solution to the fractional integral equation

(3.3)
u(t) =

1
Γ (α)

∫ t

0
(t − s)α−1 h (s) ds +

tα−3 (1 − t)
Γ (α − 1)

∫ 1

0
(1 − s) h (s) ds

− tα−3

Γ (α)

∫ 1

0
(1 − s)α−1 h (s) ds.

Proof. Let u be a solution to problem (3.2). By Lemma 2.2 we have

(3.4) u(t) = c1tα−1 + c2tα−2 + c3tα−3 +
1
Γ(α)

∫ t

0
(t − s)α−1h(s)ds.

If we consider the boundary conditions, we have

Dα−1
0+ u(0) = 0⇒ c1 = 0,

Dα−2
0+ u (1) = 0⇒ c2 = − 1

Γ (α − 1)

∫ 1

0
(1 − s) h(s)ds

and

u(1) = 0⇒ c3 =
1
Γ (α)

∫ 1

0

[
(1 − α) (1 − s) − (1 − s)α−1

]
ds.

Replace then c2 and c3 in (3.4) to get

u(t) =
1
Γ (α)

∫ t

0
(t − s)α−1 h (s) ds +

tα−3 (1 − t)
Γ (α − 1)

∫ 1

0
(1 − s) h (s) ds

− tα−3

Γ (α)

∫ 1

0
(1 − s)α−1 h (s) ds,

that is, u is a solution to problem (3.3). Conversely if u is a solution to problem
(3.3), it can be written as follows

u(t) = Iα0 h(t) +
tα−3 (1 − t)
Γ (α − 1)

I2
0h(1) − tα−3Iα0 h(1),

so that, by (2.1) we deduce that: Dα0+u (t) = h(t), Dα−1
0+ u(0) = I1

0h(0) = 0, Dα−2
0+ u(1) =

I2
0h(1) − I2

0h(1) = 0 and u(1) = Iα0 h(1) − Iα0 h(1) = 0, which finishes to prove that u is a
solution to problem (3.2).

The first main result of this paper states that problem (3.1) admits a unique
solution. It reads as follows.

Theorem 3.1. Let f : J × [0,∞) −→ R be a continuous function such that: (H1) There
exists a constant k > 0 such that∣∣∣ f (

t, u(t) − f (t, u∗(t))
)∣∣∣ < k |u(t) − u∗(t)| ,∀u, u∗ ∈ R,∀t ∈ J.
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If the following condition is satisfied

(3.5) k

(
2

Γ (α + 1)
+

1
2Γ (α − 1)

)
< 1

then problem (3.1) has a unique solution on J.

Proof. We transform problem (3.1) into a fixed point problem. For this, consider
the operator P : C(J,R) −→ C(J,R) defined by

(3.6)

Pu(t) =
1
Γ(α)

∫ t

0
(t − s)α−1 f (s, u(s))ds

+
tα−3(1 − t)
Γ(α − 1)

∫ 1

0
(1 − s) f (s, u(s))ds

− tα−3

Γ(α)

∫ 1

0
(1 − s)α−1 f (s, u(s))ds.

It is easy to see that fixed points of P are solutions to problem (3.1). Now, according
to Theorem 2.1, it is enough to prove that P is a contraction. Let u ∈ C(J,R) and
t ∈ J. We have

|Pu1(t) − Pu2(t)|
≤ 1
Γ (α)

∫ t

0
(t − s)α−1

∣∣∣ f (s, u1(s)) − f (s, u2(s))
∣∣∣ ds

+
tα−3 (1 − t)
Γ (α − 1)

∫ 1

0
(1 − s)

∣∣∣ f (s, u1(s)) − f (s, u2(s))
∣∣∣ ds

+
tα−3

Γ (α)

∫ 1

0
(1 − s)α−1

∣∣∣ f (s, u1(s)) − f (s, u2(s))
∣∣∣ ds

≤ k ‖u1 − u2‖∞
Γ (α)

∫ t

0
(t − s)α−1 ds + k ‖u1 − u2‖∞ tα−3 (1 − t)

Γ (α − 1)

∫ 1

0
(1 − s) ds

+k ‖u1 − u2‖∞ tα−3

Γ (α)

∫ 1

0
(1 − s)α−1 ds

≤ k ||u1 − u2||∞
αΓ (α)

tα +
k ||u1 − u2||∞ tα−3 (1 − t)

2Γ (α − 1)
+

k ||u1 − u2||∞ tα−3

αΓ (α)

≤
(

2
Γ (α + 1)

+
1

2Γ (α − 1)

)
k ||u1 − u2||∞ .

from which we deduce that

‖Pu1 − Pu2‖∞ ≤
(

2
Γ (α + 1)

+
1

2Γ (α − 1)

)
k ||u1 − u2||∞ .

By (3.5), this proves that P is a contraction. As a consequence of Theorem 2.1, P has
a unique fixed point which is a unique solution of problem (3.1).
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Now, we will consider the following condition that we use in the second main
result of this work, that is Theorem 3.2 below.

(H2) There exists a constant β > 0 such that∣∣∣ f (t, u)
∣∣∣ ≤ β, ∀t ∈ J, ∀x ≥ 0.

Theorem 3.2. Suppose that (H1) and (H2) are satisfied. If there exists δ > 0 such that

(3.7) β
α2 − α + 2
Γ (α + 1)

≤ δ,

then problem (3.1) has at least one solution on J.

Proof. We will use Theorem 2.2 to prove the conclusion of Theorem 3.2. For this,
consider again the operator P defined in (3.6) and define operators P1 and P2 as
follows: For u ∈ C(J,R) and t ∈ J,

P1u(t) =
1
Γ (α)

∫ t

0
(t − s)α−1 f (s, u(s)) ds +

tα−3

Γ (α − 1)

∫ 1

0
(1 − s) f (s, u(s)) ds,

and

P2u(t) = − tα−2

Γ (α − 1)

∫ 1

0
(1 − s) f (s, u(s)) ds − tα−3

Γ (α)

∫ 1

0
(1 − s)α−1 f (s, u(s)) ds.

• let B = {u ∈ C(J,R) : ‖u‖∞ ≤ δ}. We will prove that P1u1 + P2u2 ∈ B, for any
u1, u2 ∈ B. Let u1, u2 ∈ B and t ∈ J. We have

|P1u1(t) + P2u2(t)|
≤ 1
Γ (α)

∫ t

0
(t − s)α−1

∣∣∣ f (s, u1(s))
∣∣∣ ds +

tα−3

Γ (α − 1)

∫ 1

0
(1 − s)

∣∣∣ f (s, u1(s))
∣∣∣ ds

+
tα−2

Γ (α − 1)

∫ 1

0
(1 − s)

∣∣∣ f (s, u2(s))
∣∣∣ ds +

tα−3

Γ (α)

∫ 1

0
(1 − s)α−1

∣∣∣ f (s, u2(s))
∣∣∣ ds.

≤ β

Γ (α)

∫ t

0
(t − s)α−1 ds +

β

Γ (α − 1)

∫ 1

0
(1 − s) ds

+
β

Γ (α − 1)

∫ 1

0
(1 − s) ds +

β

Γ (α)

∫ 1

0
(1 − s)α−1 ds,

≤ β

Γ (α)

( tα

α
+ α − 1 +

1
α

)
≤ β

Γ (α)

(
α2 − α + 2
α

)

from which and by condition (3.7) we deduce that

‖P1u1 − P2u2‖∞ ≤
β

Γ (α)

(
α2 − α + 2
α

)
≤ δ.

which finish to prove that Pu1 + Pu2 ∈ B.
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• Now, we will prove that P1 is a contraction mapping on C(J,R). Let u1, u2 ∈
C(J,R) and t ∈ J. We have

|P1u1(t) − P1u2(t)|
≤ 1
Γ (α)

∫ t

0
(t − s)α−1

∣∣∣ f (s, u1(s)) − f (s, u2(s))
∣∣∣ ds

+
tα−3

Γ (α − 1)

∫ 1

0
(1 − s)

∣∣∣ f (s, u1(s)) − f (s, u2(s))
∣∣∣ ds.

≤ k ‖u1 − u2‖∞
Γ (α)

∫ t

0
(t − s)α−1 ds + tα−3 k ‖u1 − u2‖∞

Γ (α − 1)

∫ 1

0
(1 − s) ds

≤ k ‖u1 − u2‖∞
Γ (α + 1)

tα + tα−3 k ‖u1 − u2‖∞
2Γ (α − 1)

≤ k

(
1

Γ (α + 1)
+

1
2Γ (α − 1)

)
‖u1 − u2‖∞

from which we deduce that

‖P1u1 − P1u2‖∞ ≤ k

(
1

Γ (α + 1)
+

1
2Γ (α − 1)

)
‖u1 − u2‖∞ .

Using the condition (3.5), we conclude that P1 is a contraction. •We will prove that

P2 is continuous. Let (un)n be a sequence such that un −→ u in C(J,R). For t ∈ J, we
have

|P2un(t) − P2u(t)|
≤ 1
Γ (α − 1)

[∫ 1

0

(
(1 − s) − (1 − s)α−1

) ∣∣∣ f (s, un(s)) − f (s, u(s))
∣∣∣ ds

]

≤ 1
Γ (α − 1)

k ||un − u||
∫ 1

0

(
(1 − s) − (1 − s)α−1

)

≤ α − 2
2αΓ (α − 1)

k ||un − u|| .

Therefore
‖P2un − P2u‖ −→ 0 as ||un − u|| −→ 0.

• Finally, we will prove the compactness of P2. From the Ascoli-Arzela Theorem,

it is sufficient to prove that for each bounded subset B of C(J,R), the set PB is
bounded and is equicontinuous. Let B be a bounded subset of C(J,R). We prove
that P2B is a bounded subset of C(J,R). Let u ∈ B and t ∈ J. We have

|P2u(t)| ≤ 1
Γ (α − 1)

∫ 1

0
(1 − s)

∣∣∣ f (s, u(s))
∣∣∣ ds +

1
Γ (α)

∫ 1

0
(1 − s)α−1

∣∣∣ f (s, u(s))
∣∣∣ ds

≤ β

Γ (α − 1)

∫ 1

0
(1 − s) ds +

β

Γ (α)

∫ 1

0
(1 − s)α−1 ds

≤ β

(
1

2Γ (α − 1)
+

1
Γ (α + 1)

)
,
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from which we deduce that

‖P2u‖∞ ≤ β
(

1
2Γ (α − 1)

+
1

Γ (α + 1)

)
= cte.

 Now, we prove that P2B is equicontinuous. Let u ∈ B and t1, t2 ∈ J with t1 < t2.
We have

|P2u(t1) − P2u(t2)|
≤ tα−2

1 − tα−2
2

Γ (α − 1)

∫ 1

0
(1 − s)

∣∣∣ f (s, u(s))
∣∣∣ ds

+
tα−3
2 − tα−3

2

Γ (α)

∫ 1

0
(1 − s)α−1

∣∣∣ f (s, u(s))
∣∣∣ ds

≤ β
tα−2
1 − tα−2

2

Γ (α − 1)

∫ 1

0
(1 − s) ds + β

tα−3
2 − tα−3

2

Γ (α)

∫ 1

0
(1 − s)α−1 ds

≤ β
tα−2
1 − tα−2

2

2Γ (α − 1)
+ β

tα−3
2 − tα−3

2

Γ (α + 1)
,

from which we deduce the desired property. Finally as a consequence of Theorem
2.2 we deduce that P has at least one fixed point, which is a solution to problem
(3.1).

4. Example

Let f : [0, 1]× [0,+∞)→ R be defined by

(4.1) f (t, x) =
x

3et + 2
.

For t ∈ [0, 1] and x ≥ 0 we have

∣∣∣ f (t, x) − f (t, y)
∣∣∣ = 1

3et + 2

∣∣∣x − y
∣∣∣ ≤ 1

5

∣∣∣x − y
∣∣∣

which proves that f is a contraction.
Now, to apply Theorem 3.1 we should verify that

1
5

(
2

Γ (α + 1)
+

1
2Γ (α − 1)

)
< 1,

which is the case since we have:

For α = 14
5 we get 1

5

(
2

Γ( 19
5 ) +

1
2Γ( 9

5 )

)
= 0.192 58 < 1, and

for α = 7
3 we get 1

5

(
2

Γ( 10
5 ) +

1
2Γ( 4

3 )

)
= 0.511 98 < 1.

In conclusion, by Theorem 3.1 we conclude that for f given by (4.1) problem (3.1)
admits at least one solution.
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